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ABSTRACT

This paper concentrates on reduction of a Quadratic Fractional Integer Programming Problem (QFIP)
to a 0-1 Mixed Linear Programming Problem (0-1 MLP). The solution technique is based on convert-
ing the integer variables to binary variables and then the resulting Quadratic Fractional 0-1 Pro-
gramming Problem is linearized to a 0-1 Mixed Linear Programming problem. It is illustrated with
the help of a numerical example and is solved using the LINDO software.

Keywords: Quadratic Programming, Integer Programming, Fractional Programming, 0-1 Program-
ming, Linearization

1. Introduction

Consider the Quadratic Fractional Integer Programming Problem (QFIP) with
linear and/or quadratic constraints which is of the form
(QFIP) min f(y1, y2, ", y)
subject to gi(yy, yz, o, y0)2bii=1,2, -, m
0<yi<uforj=1,2, -, k
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26 GAUR AND ARORA

y=(yy y2, -, yx) is an integer

where the function f is a quadratic fractional function, gi(y1, y2, -+, yx) (1 <i<m) can
be linear or quadratic.

Conversion of an integer formulation to a zero-one formulation is easily accom-
plished. Given the integer variable y; has a finite upper bound u;, the variable y; can

be expressed in terms of binary variables xjp’s as follows:
y

]
= P
Y “’Z 2 Xip
p=0
Yisy

where xp=0or1forO<p<Jandj=1,2, -, k and ] is the smallest integer such that
u; <2 -1

Using the above transformation, the problem (QFIP) is reduced to the following
0-1 Quadratic Fractional Programming Problem (QFP1)

(QFP1) min F(xy, x2, **, Xn)
subjectto  Gi(x1, x2, ***, xa)<bj,i=1,2, -, m

x=(x1, x2, ", xn} € {0, 1}

where the function F is a Quadratic Fractional function, Gi(xi, X2, ***, Xn) can be linear
or quadratic fori=1,2, -, m.

The problem (QFP1) can be expressed in the form

xTAX+

(QFP1) min Bt p

subjectto Cx2c¢

xID'x>vy, for¢=1,2, -, L

x=(x1, X2, ***, Xa) € {0, 1)m

where A = (aj), B = (bs), D’ = (di) for £ =1, 2, -, L are symmetric matrices of order

nxn, C = (Cy) is an (In—L)xn matrix, ¢ € R,
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It is assumed that x™Bx + B > 0 over the feasible set of the given problem.

Hence, the ensuing discussion will be directed at reducing zero-one quadratic
fractional formulation to a mixed zero-one linear fractional formulation.

Systematic studies and applications of single-ratio fractional programs generally
began to appear in the literature in the early 1960s. Since then, a rich body of work
has been accomplished on the classification, theory, applications and solutions of
these problems. An overview of this work is contained in the articles by Schaible [10],
the monographs by Craven [6], Martos [9] and references therein. Integer program-
ming and methods of solutions of integer programs has been studied by Balas [1],
Balinski [2] and Beale [3] in detail.

The problem presented in this article can be handled in its present form, but it
has been reduced to an equivalent 0-1 mixed linear program as it is easy to handle
linear programs. The solution technique is based on branch and bound method and
guarantees global optimal solution of the problem while the solution might not be
global in nature when the problem is considered in its present form.

In general method for obtaining a global optimal solution of 0-1 Quadratic Frac-
tional Programming problems has been proposed by Li [8] which was improved by
Wu [11]. After that Chang [4, 5] proposed a model which required fewer auxilliary
constraints to linearize the mixed 0-1 fractional programming problem than Li’s and
Wu's. Wanprach [12] presented a technique for solving quadratic programs. The prob-
lem considered in this paper would have been difficult to handle in its present form.
This article presents a very simple method of solving quadratic fractional programs by
linearization technique making the problem a LPP which can be handled easily.

The paper is organized as follows: Section 2 is divided into two subsections: Sec-
tion 2.1 examines a special case of the problem considered in this paper. Solution 2.2
deals with the general case and section 3 explains the technique with the help of nu-
merical examples.

2. Theoretical Development and Solution Technique

2.1 When the elements of A, B and D’ (1 < £ < L) are non-negative

ie. a; by, d; >0 (1<e<L),x e {0, 1}

i’
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Define the feasible set S={xe{0, " ICx>c, x"D'x>y, {I</<L)}

Let M, = Ilgax[zn: lay IJ=|| All; M, = gn'ax[zn: Ib; Ij =|B|
<i<n 1 <i<n

= j=1

and Mgzmax(zn: |df;|J=||Df|| (1<<L)
=1

1<i<n

Define a 0-1 linear fractional programming problem (LFP1) as:

o+e’s!

Ttl

(LEP1) min
St B +e

where S, ={(x,s°,s',t°, t', ", ", 1", ") Ix € {0, 1}";
CxZc,Ax=s°+sl;OSSOSMl(e—x);OSsllex}
Bx=1t0+1t1; 0 <te < Ma(e — x); 0 < t1 < Max;

D'xzr) el >y, r'< Mix (1</<L))

Theorem 2.1: The problem (QFP1) has an optimal solution x? iff 3 so(x?),
s'(x°), £°(x%), t'(x"), r°(x°), r (x°)(1 < £ <L)
st (x%,8°(x%), 8 (x%), °(x%), t'(x°), 1 (x°), £ (x"), -+, £ (X7), " (X"))
is an optimal solution of (LFPI).
Proof: Let x° be an optimal solution of problem (QFP1). Corresponding to any feasi-
ble point x, feasible for the problem (QFP), define the vectors
s°(x), s}(x), to(x), t1(x), r1%(x), r'(x), -, r*°(x°), r"'(x°), as follows:
when x; =1, s{(x) =(Ax);, t}(x) = (Bx),, r" (x) = (D'x), (1</¢<L),
ss(X) =t} =1°(x)=0 (1<¢<L),
and when x, =0, 8;(X)=(Ax);, (x)=(Bx);, £°(x)=(D'x);, (1<¢<L)
s =t(0=1"(=0 (1s(<L),

Then it is clear that
x"Ax=e"s'(x), x"Bx=e"t'(x), x"D'x=e"r’'(x)(1</<L)
It is clear that whenever x € S,

(%, 8°(x), 8" (%), t(x), t'(x), 1 (x), 1" (x), -+, (), 1 (x)) €S,
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_a+e’s’ . a+x"Ax

and in — = min =
S B+e't xS B+x Bx

Ca+(x*) AX°  a+e's'(x°)
B+(x")'Bx®  B+e't'(x°)

Therefore, (x°, s°(x°), s'(x°), to(x°), t}(x°), rO(x°), rii(x?), ---, r*(x°), r"'(x°)) is an
optimal solution of (LFPI). The converse part of the theorem can be proved in a simi-

lar way.

By using Charnes and Cooper transformation q =M’ the 0-1 linear frac-
e

tional programming problem (LFPI) is reduced to an equivalent linear programming
problem.

It is to be observed that q > 0 (since B + e™t! > 0). Also g < 1/B (since et = 0).

Next we define the vectors $2, St, T?, T, R, R" e R™ (1 <{¢<L)as follows:

Se=qsl, S'=qs!, T'=qto, Ti=gqt,
R =qr", R"=qr" (1</<L), K=qx

Now, consider a 0 - 1 mixed linear programming problem (MLP1) as

(MLP1) minfaq+ e'S'}

where Sz :{(X, SO, Sl, To, Tl, Rw, Rﬂ,"',RLO, RLl, K/ q)}
CK2cq, AK=5"+S,0<S° <M,(eq-K), 0<S' <MK, BK=T°+T",

0<T<M,(eq-K), 0<T' <M,K, Bq+e'T' =1, K2q6+%(x~e),

K <qge, Ks(é]x, qﬂ-‘é—, D'K-R‘ >0, e'R' 27, q,

R'<sM;K(1<¢<L), xe{0, 1", qeR"}
It is to be observed that the constraints

KZC{Q+%(X—€), K<qe, KS(%JX
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imply Ki=q when xi=1 and Ki= 0, when xi=0
All the facts stated above conclude that solving (QFP1) means to solve the 0-1
mixed linear programming problem (MLP1).

2.2 When some elements of A, B and D* (1 < £ < L) may be negative

Define the matrices A, B and D’ (1</<L) as follows:
Ax=Ax+M,e; Bx=Bx+M,e; D'x=D'x+Mle (1<(<L)

Clearly, the vectors Ax, Bx, D'x (1<£<L) are non-negative n-vectors. Thus

the problem (QFP1) can be written as

. o+x Ax-M,e"x
xe$, B + XTBX - MzeTX

(QFP2)

where S, ={xe{0, J"ICx>c¢c, xX'"D'x2y, (1<£<L)}. Since B + x"Bx > 0, therefore
B+x"Bx-M,e"™x>0 forall xeS§,.

Consider the following 0-1 linear fractional programming problem (LFP2) de-
fined as

T.1 T
. o+x's ~M,e'x
(LFP2) xS VL X
x5, P+xt ~M,e'x
where 52--{(x,s",sl,t°,tl,r“’,r”,---,rw,r”)}

Cx>c, Ax=5"+5", 0<s’ <2M,(e-x), 0<s' <2M,x, Bx =1’ +t',
0<t’ <2M,(e-x), 0<t' <2M,x, D'x =1 +1", 0<r" <2Mj(e-x),
0<r? <2Mix(1</<L), xe{0, I}"}

Since Ax, Bx and Dx (1 </ < L) are non-negative in nature, therefore, we can
choose non-negative vector s, s\, to, tI, r%,r" (1</<L) st
Ax=5"+s' where s'< ”Axx, s’ < ”E"(e—x)

Bx=1t+t' where t' S"EHX, t° s"ﬁ”(e—x)
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D'x=1"+1" (1</<L) where "rz1 "Slll—y "x (1<¢<L),
[=°)<| D Je-% a<e<t)

Also,  [A] = max | Ax]

But | Ax| =] Ax+Me| <|Ax|+M,|e]|
<Al el
=2Mi

= "Kx“ﬁZMl Vx:“x||<1

e|=1)

= Jmax Ax ”S 2M,
= A N <2M,

Similarly it can be shown that|B|<2M, and |D’||<2M; (1<¢<L)

We shall now prove the equivalence of 0-1 quadratic fractional programming

problem (QFP2) and hence of (QFP1) and the 0-1 linear fractional programming prob-
lem (LFP2).

Theorem 2.2: The problem (QFP2) and hence (QFP1) has an optimal solution x° iff 3
nx1 vectors so(x?), si(x?), t(x%), ti(x?), ro(x9), ri(x?), ---, r**(x"), r"'(x%)
s.t. (X0, s9(x9), s1(x?), t0(x0), t(x?), rio(x%), r'(x?), ---, r**(x°), r"'(x°) is an

optimal solution of the problem (LFP2):.
Proof: Let x° be an optimal solution of the problem (QFP1) and hence of (QFP2). Cor-
responding to any feasible point of the problem (LFP2) (or of (QFP1), define

the vectors s, s!, 10, t, 110, r11, -+ L0 ¢L1 55 follows:
when  xi=1:8%(x) = t9(x) = r9(x) = — = r*°(x) =0,
si(x) = (Ax),, t'(x)=(Bx),, r'(x)=(D'x),, 1<¢<L and
when  xi=0:5"(x) = (Ax);, t°(x) = (Bx),, r'*(x) =(D’x),, (1<(<L)
si(x) =ti(x) =rli(x) = -+ =1L(x)=0

L

Clearly, whenever xeS,,(x,s°, s, t°, ), r'% ', -, ', 'Y e S, we also see that
1 4 4 2

x"Ax=e's', x"Bx=e"t' and x"D'x=e"r" (1</<L)
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: . a+e's' -Me"x . a+x"Ax—M,e"x
Now, consider ~min—————-—=— =min = T
S B+e't —M,e'x S B+x Bx-M,e x
_a+ (X)) AX° -Me'x°  a+e’s'(x°)-M;e"x°
B+(x°)"Bx° -M,e"x° B+e't'(x°)-M,e"x°

= (xO,SO(xo), Sl(xO)’ tO(XO), tl(x0), rlO(XO), rll(x0), .-, TLO(XO), TLl(xO))

is an optimal solution of the problem (LFP2). The proof of the necessary part of the
theorem is completed. The sufficient part of the theorem can also be proved in the
same way. Hence we conclude that solving the 0-1 quadratic fractional programming
problem (QFP1) is equivalent to solving the 0-1 linear fractional program (LFP2)
which can be transformed to a 0-1 mixed linear programming problem by Charnes-
Cooper transformation method as used before. Thus the problem (QFP2) is equiva-

lent to the following 0-1 mixed linear programming problem (MLP2).

(MLP2) min aq+e'S' —M,e"K
in aq ,

Sz

where
S, =1{(x, $°, S, T°, T", R®,R",-..,RY,R", K, q)|CK > cq, AK=5"+8!,
0<8°<2M,(eq-K),0<S' <2M,K, BK=T"+T?,
0<T’ <2M,(eq-K), 0< T <2M,K, Bq+e'T' =1,
D'K-R‘ >0, e'R! 2v,q, R <2MK(1</<L),

Kqu+(%)(x~e), K<qe, Ks[%]x, qs%, xe{0,1})",qeR"}

1
B+x"Bx~M,e"x

where q=

3. Numerical Examples

3.1 Consider the following Quadratic Fractional Integer Programming Problem (QFIP)

y'Aly+a 2y +2yy, +y; +7

(QFIP): min
Q y'B'y +B yi +4y; +1
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subject to 2y1+y222
y1+2y223
yitys>1
yiy2=>1
0<y1<3
0<y2<4

where y1, y2 are integers.

It is assumed that y™B'y + 3 > 0 over the feasible set.

3.1)
(3.2)
(3.3)
(3.4)
(3.5)
(3.6)

The above mentioned problem is reduced to an equivalent 0-1 formulation using

the transformation
yr=x1+2x2and y2=x3 + 2x4 + 4x5
The resultant problem is then defined as

T
PG1)  min XX _
x Bx+p
(2X] +8X5 + X5 + 45 + 1652 +8x,X, +2X,X, +4x,%, +8X,X,
X, X5 +8x%,X, +16X,X; +4X,;X, +8X,X; +16X,X; +7)

mln 2 2 2 2 2
XT 45 +4x5 + 16X, + 645 + 4%, X, +16X,X, +32x,%5 +64x,%,5 +1

subject to 21+ 4x2 + X3+ 2x4 + 4x5 > 2
X1+ 2x2+2x3 + 4x4 + 8x5 2 3
X1+ 2x253
X3+ 2xs4 +4x5 < 4
XT +4%; +4%,X, + X3 + 45 + 1652 +4x,x, +16x,%, +8x,%, > 1

Xy X5 + 2%, X, + 4%, X5 + 2X,X; +4X,X, +8X,X%5 > 1

where
2 41 2 4 1 2 0 0 0
4 8 2 4 8 24 0 0 O
A=l1 2 1 2 4|, B=|0 0 4 8 16
2 4 2 4 8 0 0 8 16 32
4 8 4 8 16 (0 0 16 32 64

(3.7)
(3.8)
(3.9)

(3.10)

(3.11)

(3.12)
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c[pe124 (2
112248 U3

1200 0 0 0 1/2
2400 0 0 0 1
D'=[0 0 1 2 4|, D*=/1/2 1 0
0024 8 1 2 0
00 48 16 2 4 0

(v, 72) = (1, 1), x = (x1, X2, X3, X4, x5) € {0, 1}n.

Here, Mi= |A| =40,M:= ||B| =112, M; =|D*| =28, MZ=|D?|=7

It is to be observed that B+x"Bx>0 V xe{0, 1}"

1

S O O N

Step 1: Linearizing the terms xTAx, x™Bx: For this include the following constraints

in (P 3.1)
Ax =s°+s!, s < Mix, s° < Mi(e - x);

Bx = to + 1, {1 < Max, to < Ma(e - x);

Ax =50+ = 2x1 +4x2+ 3xs + 6x4 + 12x5 = 7 +5,

4x1+8x2 + 6x3 + 12xa + 24x5= s) +5)
3x1+6x2+x3+2xa+4x5= 83 +5,
6x1+12x2+ 2x3 + 4x4 + 8xs= s) +5,
12x1 +24x2 + 4x3 + 8xa + 16x5 = s +5

sl<Mix= s <40x, fori=1,2, -, 5

so<Mife-x)= s <40(1-x,) fori=1,2, -,

Bx=to+tl = x1+2x2= ) +t]
21+ dxe= 5+t
4x3+8xa+16x5= 5 +t;
8x3+ 16x4 + 32x5= 3 +1}
16x3 + 32x4 + 64x5= t +1t;
tt<Max = t <112,
te<Ma(e —x) = t7 <112(1-x,),

1

5

fori=1,2, ---,5
fori=1,2, ---,5

(3.13)
(3.14)
(3.15)
(3.16)
(3.17)
(3.18)
(3.19)
(3.20)
(3.21)
(3.22)
(3.23)
(3.24)
(3.25)
(3.26)

Step 2: Linearization of Quadratic terms appeared in the constraint set: For this in-
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clude the following constraints in (P3.1)

2
Dix>1% er02y; < Mix; Dx>1l; efrl>yy; 1< Mix;

Dix>re= X1+ 2x2 >r (3.27)
2x1 + 4x2 >r (3.28)
X3+ 2x4 + 4xs 21y (3.29)
2x3 + 4x4 + 8x5 >r, (3.30)
4x3 + 8x4 + 16x5 2r (3.31)
ey, A+ 4 10 21 (3.32)
r°<Mijx = r’<28x, fori=1,2, -, 5 (3.33)
Dx>rl = X3+ X4 + 2X5 >r (3.34)
X3 + 24 + 4xs5 > (3.35)
X1+ x2 >, (3.36)
x1 +2x2 >r, (3.37)
2x1 + dx2 > (3.38)
e'r'zy, > 1 +r4rn 4+ 21 (3.39)
r'<Mjx= ' <7x, fori=1,2, -, 5 (3.40)
Observe that e=(1,1,1,1,1)T € R5, s® =(sy,89,59,85,8) ;
s’ =(s1,8,, 83,8, 85)"; = (t], 1,15, 45, 15)";
th=(t, 6, b, 6, 5); =, 5,1, 5
U= n.5,n,5) =01, 12)
sy, s, 10,1, 0,6 20 fori=1,2,3,4,5.

Hence, the problem (P3.1) reduces to

7+e's!
1+e’t
subject to(3.7)-(3.10), (3.13)-(3.40)

wherex € {0, 1}5; s}, s, 1,1, t°,t/,K. >0 fori=1,2,3,4,5.

(P3.2) min

Step 3: Transformation of objective into non-fractional form:
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For this transformation, include the following constraint in P(3.2)
1
B+e't!

ie. q+ti+t +t +t, +t) =1 (3.41)

q where q>0

Step 4: Substitute So = gs°, S'=gs!Re = qreR! = qr!, K = gx, Te = qto, T = qt!
where S°, S, Re, RY, To, T1, K e R? and are non-negative.
The substitution K = qgx must imply that Ki = 0 when xi=0 and Ki=q when

xi =1, which can be put in the form of the following constraints:

K < Max where Ma = upper bound on q,

K2 q—Mu(e — x) and K<qe
Here Ms=1
K<Mx = Ki<xi(1<i<5) (3.42)
Kzq+Myx-e)= Kiz2g+(xi-1)(1<i<b) (3.43)
K<ge= Ki<q(1<i<?5) (3.44)

Multiplying the constraints (3.7)-(3.10), (3.13)-(3.40) in the problem (P. 3.2) by q

where q satisfies the constraint (3.41) and substituting as mentioned above, we get

(P3.3) min (7q + eTSY)

subject to 2K + 4Kz + Ks + 2Ks + 4Ks > 2q (3.45)
Ki+ 2Kz + 2Kz + 4Ks + 8Ks > 3q (3.46)
Ki+2Kz2<3q (3.47)
K+ 2Ks + 4Ks < 4q (3.48)
2K1 + 4Kz + 3Ks + 6Ke + 12Ks = S° +6! (3.49)
4K+ 8Ka + 6Ks + 12Ka + 24Ks = S2 +S) (3.50)
3Ki + 6Kz + Ks + 2Ka + 4Ks = S2 +8! (3.51)
6K1 + 12Kz + 2K + 4Ka + 8Ks = S2 +51 (3.52)
12Ky + 24Kz + 4K + 8Ke + 16Ks = §2 +S! (3.53)
s! <40K, fori=1,2,3,4,5 (3.54)

s° <40(q-K,) fori=1,2,3,4,5 (3.55)
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K1+ 2K =T +T;
2K + 4K2 T2 + T}
4K + 8Ks + 16Ks T2 +T!
8Ks + 16K + 32Ks =T +T,
16Ks + 32K4 + 64Ks =TS +T,
T' <112K, fori=1,2,3,4,5

T° <112 (q-K,) fori=1,2,3,4,5
Ki+2Ko 2R}

2K1 + 4Ko >R;

Ks + 2Ks + 4Ks >R;

2Ks + 4Ks + 8Ks 2R}

4K + 8Ks + 16Ks >RS¢
RI+RJ+R;+R{+R: 2q

RC <28K, fori=1,2,3,4,5

0.5Ks + Ka + 2Ks >R}

Ks + 2Ka + 4Ks >R}
0.5K1 + K2 >R;

Ki +2Ko >R}

2K + 4Ka >R}

R} +R}+R}+R} +R} >q

R; <7K, fori=1,2,3,4,5
q+T+T, +T, +T, + T, =1

Constraint (3.42)-(3.44)
qg<1

(3.56)
(3.57)
(3.58)
(3.59)
(3.60)
(3.61)
(3.62)
(3.63)
(3.64)
(3.65)
(3.66)
(3.67)
(3.68)
(3.69)
(3.70)
(3.71)
(3.72)
(3.73)
(3.74)
(3.75)
(3.76)
(3.77)

(3.78)

where x = (x1, x2, x3, x4, x5) € {0, 1}5; K, S, S], R?, R}, T?, T 20 fori=1,2,3,4,5;

q>0

We see that the above problem is a mixed integer linear program and can be

solved easily.

The solution of the problem, using Lindo software, is x1 =1, x2=0,
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x3=0, x4 =1, x5 =1 and the objective function value is 0.390411.
Therefore, y1 =1, y2 = 6 is the solution of the original problem and the value of
objective function is 0.390411.

3.2 General Case
(P3.4) min YTTAIYW _ 44y -yi-6yiy,
y'B'y+B 2y’ -4y,y,-y2+21

subject to yi+y2<4 3.79)

y1-2y:<1 (3.80)

yi+y;21/4 (3.81)

yiy221 (3.82)

0<yi<2 (3.83)

0<y2<3 (3.84)

where y1, y2 are integers.

It is assumed that y'B'y+B >0 over the feasible set.

This problem is reduced to an equivalent 0-1 formulation using the transforma-
tion y1=x1+2x2and y2 = x3 + 2x4

The resultant problem is then defined as

(445 +4x2 =G — 42 +4x,X, —6X;X,

(P35) min xTTAix ta - 12x12x4 - 122x2x23 - 242x2x4 —4x,X,)
X B'x+B  (21+2x7 +8x; —x; —4x; +8x,X, ~4X,X,
—8x,%x, —8x,%; —16x,%, —4X;X,)
s.t. X1+ 2x2+x3+2xs < 4 (3.85)
X1+ 2x2—2xs—4xa < 1 (3.86)
X1 +2x2£2 (3.87)
x3+2x4<3 (3.88)
X; +4x; +4x,%, +X5 +4x2 +4x,x, 21/4 (3.89)
X1X3 + 2X1X4 + 2X2X3 + 4xaxa > 1 (3.90)
1 2 3 -6 2 4 -2 4
h A 2 4 -6 -12 B 4 8 4 -8
WEASls 6 a1 2T 2 4 a1

-6 -12 2 -4 4 -8 2 -4
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1200 0 0 05 1
D12400 D20012
o0 1 2/ 105 1 0
00 2 4 1 2 0

()
Y2 1
Here, B+x'Bx>0 Vvxe{0, 1}*

4

4
Also, My =[Af=maxd. [a,[=24, M, =|BJ=max3. b,
== ==

=24,

4 4
M; =[D|=maxd [dif=6, Mi=|D* [=maxd [d}[-2.
Consider two matrices A and B s.t.
Xy +2x; —=3x; —6x, +24
2x, +4x, -6x, —12x, + 24
=3x; ~6X, —X; —2x, +24
—bx, ~12x, -2x, —4x, +24

Ax=Ax+M,e=

2x; +4x, —2x, —4x, +24
4x, +8x, ~4x, —8x, +24
—2x; —4x; — X5 —2x, +24
—4x; —8x, —2x, —4x, +24

Bx =Bx+M,e =

Then Ax and Bx are non-negative 4-vectors and the objective function as-

sumes the form

4+x"(Ax+M,e-M,e) . 4+x"Ax-Mx"e
= m

min T mn = T
21+x" (Bx+M,e—M,e) 21+x Bx-M,x e

Step 1: Linearizing x"Ax and x"Bx:
Since Ax and Bx are non-negative vectors, therefore we can find 4-vectors se,

sl, to, tl s.t.
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Ax =5’ +s' where sls||A|

x, s° S"/—%"(e—x)
Bx =t°+t' where t1£||§||x, t°£||§||(e—x)

Now, |A[<2M, =48 and, |

Al<2m, =48

Step 2: Linearizing quadratic terms appeared in the constraints:
D'x-r""+Mie>0,e"r' ' —~Mle"™x >y,
and r"'<2Mix forl</<2

where x e {0, 1}

Hence the problem (P 3.5) on including the constraints mentioned in Step 1 and

Step 2, can be written as

4+e's' —24e"x
21+e"t! —24e"x
subject to (3.85)-(3.88) and

_ a0 1
X, +2x, =3x, —6x, =s; +5, —24

(P3.6)

2x, +4x, —6x, —12x, =) +s; —24
=3%, —6X, = X5 —2x, =83 +5; —24
—6x, —12x, —2x, —4x, =s) +s; —24
s| <48x, fori=1,2,3,4
s <48(1-x,) fori=1,234
2x, +4x, ~2x, —4x, =17 +t; 24
4x; +8x, —4x, —8x, =t5 +t; —24
—2x; —4x, ~ X, —2x, =t3 +t} —24
—4x, —8x, —2x, —4x, =t +t, 24
t} <48x, fori=1,2,3,4
t <48(1-x,) fori=1234
X, +2x, 17 +620
2%, +4x, -1, +620
X;+2x, -1, +6>0

2x; +4x, -1, +6 20

(3.91)
(3.92)
(3.93)
(3.94)
(3.95)
(3.96)
(3.97)
(3.98)
(3.99)

(3.100)

(3.101)

(3.102)

(3.103)

(3.104)

(3.105)

(3.106)
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°—6x 2025 fori=1,2,3, 4 (1.107)
r’ <12x, fori=1,2,3,4 (3.108)
05, +x, ~1} +320 (3.109)
X;+2%,—1 +3>0 (3.110)
05%,+x, ~11 +320 (3.111)
X, +2%, ~1 4320 (3.112)
r -3x,>1 fori=1,2,3,4 (3.113)
' <6x, fori=1,2,3,4 (3.114)

where xe{0,1}*;s’, s, r°, 1, t°, t1 >0 fori=1,2,3 4.

Hence, the above problem is a 0-1 linear fractional programming problem

Step 3: Reduction to a non-fractional problem:

Choose a positive real number q s.t.
q(21+e't' —24e"x) =1 (3.115)

As seen earlier (21 + eTt! — 24eTx) > 0 V x € {0, 1}4, therefore, 3 an
e >0s.t.
1

4= 21 +e't —24e’x

L (3.116)
c

where € is a very small real number to be suitably chosen. Since all the entries of B

and B are integers, so we can take € = 1.

Include the constraints (3.115) and (3.116) in (P 3.6) to obtain

(P3.7)  min 4q+e’s!q —4eTxq
s.t. (3.85)-(3.88) and (3.91)-(3.116)
and q>0

Step 4 : Reduction to a mixed 0-1 linear program
Multiply the constraints (3.85)-(3.88) and (3.91)-(3.115) by q along with the fol-
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lowing substitution.

§°=gqs’, §'=qs'", R°=qr’, R'=qr’, T'=qt’, T'=qt' and K=qgx

where S, S, R?, R}, T’, T}, K, >0 fori=1,2,3,4.

1

Also, gx = K must imply that Ki = 0 when xi = 0 and Ki = q when xi = 1 for which

the following constraints should be included in the problem

Kzq + }—(x—e), K<qge, KS}—X
€ €

(3.117)

Thus the problem considered is reduced to the following mixed 0-1 linear pro-

gramming problem:

(P3.8)  min4q+e™S - 24e™K

s.t.

K1+ 2K> + Kz + 2Ke < 4q
Ki+2Ks - 2Ks + 4Ks < q

K1 +2K2 < 2q

Ks +2Ks< 3q

Ki+2Kz - 3Ks - 6Ks = S +S} —24q
2Ki + 4Kz - 6Ks — 12Ks = S+, —24q
—3Ki - 6Ka— Kz — 2Ka= S +S} ~24q
—6Ki - 12Kz~ 2Ks - 4Ks = S +8, —24q
S} < 48K, fori=1,2,3,4.

S? <48(q-K,) fori=1,2,3,4.
2K, +4K, - 2K, - 4K, =T? + T} - 24q
4K, +8K, -4K, - 8K, =T? + T} - 24q
-2K, -4K, -K, - 2K, =T{ + T} - 24q
~4K, -8K, - 2K, 4K, =T{ + T, —24q
T' <48K, fori=1,2,3,4

T° <48(q-K,) fori=1,2,3,4
K;+2K,-Rj+6q20

(3.118)
(3.119)
(3.120)
(3.121)
(3.122)

(3.123)
(3.124)
(3.125)
(3.126)
(3.127)
(3.128)
(3.129)
(3.130)
(3.131)
(3.132)
(3.133)
(3.134)
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2K, +4K, -R;+6q >0

K,+2K,-R;+6q=20

2K, +4K, -R$ +6q >0

R -6K, >025q fori=1,2,3, 4.

Ry <12K, fori=1,2,3, 4.

05K, +K, ~R! +3q >0

K, +2K, R} +3q>0

0.5K, +K, ~R}+3q >0

K, +2K, -R} +3q>0

Ri-3K,>q fori=1,23,4.

R} <6K, fori=1,2,3, 4.

21q+T) +T) + T} + T} - 24K, - 24K, - 24K, ~ 24K, =1
Constraint (3.116), (3.117)

xe {0,114

s°, 81, RS, R, T°, T, K, 20 fori=1,2,3,4,q>0

(3.135)
(3.136)
(3.137)
(3.138)
(3.139)
(3.140)
(3.141)
(3.142)
(3.143)
(3.144)
(3.145)
(3.146)

The optimal solution of this problem is —68 at x1 = 1, x2 = 0, xa= 1, x4 = 0 using
LINDO software.
Hence, the optimal solution of the original problem is, y1 =1, y2=1 and objective
function value is z = -2/18 = - 0.111111.

Conclusions: This paper proposes a technique for solving integer quadratic fractional

programming problems. The algorithm is based on the linearization

approach in which the quadratic terms appearing in the objective as

well as the constraint set are linearized resulting in a linear fractional

programming problem. The problem is then solved using the Charnes

and Cooper method.
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