• Title/Summary/Keyword: QKD(Quantum Key Distribution)

Search Result 18, Processing Time 0.026 seconds

Privacy Amplification of Quantum Key Distribution Systems Using Continuous Variable (연속 변수를 이용한 양자 키 분배 시스템의 보안성 증폭)

  • Lee, Sun Yui;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.3
    • /
    • pp.1-5
    • /
    • 2016
  • The continuous variable quantum key distribution has been considered to have practical solution to provide high key rate. This paper explains the difference between DV-QKD and CV-QKD schemes. It describes CV-QKD as a theory that satisfies the uncertainty principle using continuous variable and homodyne detector. We shows varying length of secret key in QKD systems and amount of the exposed information to amplify privacy.

A Design of Secure Communication Architecture Applying Quantum Cryptography

  • Shim, Kyu-Seok;Kim, Yong-Hwan;Lee, Wonhyuk
    • Journal of Information Science Theory and Practice
    • /
    • v.10 no.spc
    • /
    • pp.123-134
    • /
    • 2022
  • Existing network cryptography systems are threatened by recent developments in quantum computing. For example, the Shor algorithm, which can be run on a quantum computer, is capable of overriding public key-based network cryptography systems in a short time. Therefore, research on new cryptography systems is actively being conducted. The most powerful cryptography systems are quantum key distribution (QKD) and post quantum cryptograph (PQC) systems; in this study, a network based on both QKD and PQC is proposed, along with a quantum key management system (QKMS) and a Q-controller to efficiently operate the network. The proposed quantum cryptography communication network uses QKD as its backbone, and replaces QKD with PQC at the user end to overcome the shortcomings of QKD. This paper presents the functional requirements of QKMS and Q-Controller, which can be utilized to perform efficient network resource management.

Design of Quantum Key Distribution System without Fixed Role of Cryptographic Applications (암호장치의 송·수신자 역할 설정이 없는 양자키분배 시스템 설계)

  • Ko, Haeng-Seok;Ji, Se-Wan;Jang, Jingak
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.5
    • /
    • pp.771-780
    • /
    • 2020
  • QKD(Quantum Key Distribution) is one of the protocols that can make two distant parties safely share secure keys against the threat of quantum computer. Generally, cryptographic applications which are connected to the QKD device have fixed roles as a transmitter and a receiver due to the race condition and complexity of implementation. Because the conventional QKD system is mainly applied to the link encryptor, there are no problems even if the roles of the cryptographic devices are fixed. We propose a new scheme of QKD system and protocol that is easy to extend to the QKD network by eliminating quantum key dependency between cryptographic device and QKD node. The secure keys which are generated by the TRNG(True Random Number Generator) are provided to the cryptographic applications instead of quantum keys. We design an architecture to transmit safely the secure keys using the inbound and outbound quantum keys which are shared between two nodes. In this scheme, since the dependency of shared quantum keys between two QKD nodes is eliminated, all cryptographic applicatons can be a master or a slave depending on who initiates the cryptographic communications.

Efficient Post-Processing for Quantum Communication Systems (양자 통신 시스템의 효율적 후처리 방식)

  • Lee, Sun Yui;Jung, Kuk Hyun;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.4
    • /
    • pp.7-12
    • /
    • 2014
  • Quantum cryptography is one of the most feasible fields using quantum mechanics. Therefore, quantum cryptography has consistently been researched, and a variety of cryptographic exchange method has been developed, such as BB84, etc. This paper explains a basic concept of quantum communications and quantum key distribution systems using quantum mechanics. Also, it introduces a reason of the development of quantum cryptography and attack scenarios which threaten the security of QKD. Finally, the experiment of this paper simulates quantum key attack by estimating qubit phases through a modeled quantum channel, and discusses needs of post-processing methods for overcoming eavesdropping.

Key Derivation Functions Using the Dual Key Agreement Based on QKD and RSA Cryptosystem (양자키분배와 RSA 암호를 활용한 이중키 설정 키유도함수)

  • Park, Hojoong;Bae, Minyoung;Kang, Ju-Sung;Yeom, Yongjin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.4
    • /
    • pp.479-488
    • /
    • 2016
  • For a secure communication system, it is necessary to use secure cryptographic algorithms and keys. Modern cryptographic system generates high entropy encryption key through standard key derivation functions. Using recent progress in quantum key distribution(QKD) based on quantum physics, it is expected that we can enhance the security of modern cryptosystem. In this respect, the study on the dual key agreement is required, which combines quantum and modern cryptography. In this paper, we propose two key derivation functions using dual key agreement based on QKD and RSA cryptographic system. Furthermore, we demonstrate several simulations that estimate entropy of derived key so as to support the design rationale of our key derivation functions.

Recent Technology Trends of Free-Space Quantum Key Distribution System and Components (무선 양자암호통신 시스템 및 부품 최신 기술 동향)

  • Youn, C.J.;Ko, H.;Kim, K.J.;Choi, B.S.;Choe, J.S.
    • Electronics and Telecommunications Trends
    • /
    • v.33 no.6
    • /
    • pp.94-106
    • /
    • 2018
  • A quantum key distribution (QKD) provides in principle an unconditional secure communication unlike the standard public key cryptography depending on the computational complexity. In particular, free-space QKD can give a secure solution even without a fiber-based infrastructure. In this paper, we investigate an overview of recent research trends in the free-space QKD system, including satellite and handheld moving platforms. In addition, we show the key components for a free-space QKD system such as the integrated components, single photon detectors, and quantum random number generator. We discuss the technical challenges and progress toward a future free- space QKD system and components.

Security Amplification of Partially Trusted Quantum Key Distribution System (부분 신뢰성을 갖는 양자 키 분배 시스템의 보안성 증폭)

  • Lee, Sun Yui;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.4
    • /
    • pp.152-156
    • /
    • 2017
  • This paper introduces the concept of random security amplification to amplify security in a quantum key distribution system. It seems to provide security amplification using the relationship between quantum error correction and security. In addition;we show that random security amplification in terms of security amplification offers better security than using existing universal hash function. We explain how the universal hash function enhances security using the BB84 protocol, which is a typical example of QKD. Finally, the proposed random security amplification and the conventional scheme compare the security according to the key generation rate in the quantum QKD.

Quantum Key Distribution System integrated with IPSec (양자키분배와 IPSec을 결합한 네트워크 보안 장치 연구)

  • Lee, Eunjoo;Sohn, Ilkwon;Shim, Kyuseok;Lee, Wonhyuk
    • Convergence Security Journal
    • /
    • v.21 no.3
    • /
    • pp.3-11
    • /
    • 2021
  • Most of the internet security protocols rely on classical algorithms based on the mathematical complexity of the integer factorization problem, which becomes vulnerable to a quantum computer. Recent progresses of quantum computing technologies have highlighted the need for applying quantum key distribution (QKD) on existing network protocols. We report the development and integration of a plug & play QKD device with a commercial IPSec device by replacing the session keys used in IPSec protocol with the quantum ones. We expect that this work paves the way for enhancing security of the star-type networks by implementing QKD with the end-to-end IP communication.

Privacy Amplification of Quantum Key Distribution Systems Using Dual Universal Hush Function (듀얼 유니버셜 해쉬 함수를 이용한 양자 키 분배 시스템의 보안성 증폭)

  • Lee, Sun Yui;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.1
    • /
    • pp.38-42
    • /
    • 2017
  • This paper introduces the concept of a dual hash function to amplify security in a quantum key distribution system. We show the use of the relationship between quantum error correction and security to provide security amplification. Also, in terms of security amplification, the approach shows that phase error correction offers better security. We describe the process of enhancing security using the universal hash function using the BB84 protocol, which is a typical example of QKD. Finally, the deterministic universal hash function induces the security to be evaluated in the quantum Pauli channel without depending on the length of the message.

Plug & Play quantum cryptography system (Plug & Play 양자암호 시스템)

  • Lee, Kyung-Woon;Park, Chul-Woo;Park, Jun-Bum;Lee, Seung-Hun;Shin, Hyun-Jun;Park, Jung-Ho;Moon, Sung-Wook
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.3
    • /
    • pp.45-50
    • /
    • 2007
  • We present a auto compensating quantum key distribution system based on optical fiber at 1550nm. In the quantum key transmission system, main control board and phase modulation driving board are fabricated for auto controlling quantum key distribution(QKD). We tested the single photon counts per dark counts for a single photon detector, quantum key distribution rate($R_{sift}$) and the quantum bit error rate (QBER). Quantum bit error rate of 3.5% in 25km QKD is obtained. This system is commercially available.