A Design of Secure Communication Architecture Applying Quantum Cryptography

  • Shim, Kyu-Seok (Korea Institute of Science and Technology Information (KISTI), Advanced Quantum KREONET Team, KREONET Centre) ;
  • Kim, Yong-Hwan (Korea Institute of Science and Technology Information (KISTI), Advanced Quantum KREONET Team, KREONET Centre) ;
  • Lee, Wonhyuk (Korea Institute of Science and Technology Information (KISTI), Advanced Quantum KREONET Team, KREONET Centre)
  • Received : 2022.04.20
  • Accepted : 2022.05.17
  • Published : 2022.06.20


Existing network cryptography systems are threatened by recent developments in quantum computing. For example, the Shor algorithm, which can be run on a quantum computer, is capable of overriding public key-based network cryptography systems in a short time. Therefore, research on new cryptography systems is actively being conducted. The most powerful cryptography systems are quantum key distribution (QKD) and post quantum cryptograph (PQC) systems; in this study, a network based on both QKD and PQC is proposed, along with a quantum key management system (QKMS) and a Q-controller to efficiently operate the network. The proposed quantum cryptography communication network uses QKD as its backbone, and replaces QKD with PQC at the user end to overcome the shortcomings of QKD. This paper presents the functional requirements of QKMS and Q-Controller, which can be utilized to perform efficient network resource management.



This research was supported by Korea Institute of Science and Technology Information (KISTI).


  1. Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J. C., Barends, R., Biswas, R., Boixo, S., Brandao, F., Buell, D. A., Burkett, B., Chen, Y., Chen, Z., Chiaro, B., Collins, R., Courtney, W., Dunsworth, A., Farhi, E., Foxen, B., . . . Martinis, J. M. (2019). Quantum supremacy using a programmable superconducting processor. Nature, 574(7779), 505-510.
  2. Bennett, C. H., & Brassard, G. (2020). Quantum cryptography: Public key distribution and coin tossing. Theoretical Computer Science, 560(Pt 1), 7-11.
  3. Chen, T. Y., Liang, H., Liu, Y., Cai, W. Q., Ju, L., Liu, W. Y., Wang, J., Yin, H., Chen, K., Chen, Z. B., Peng, C. Z., & Pan, J. W. (2009). Field test of a practical secure communication network with decoy-state quantum cryptography. Optics Express, 17(8), 6540-6549.
  4. Elliott, C., Pearson, D., & Troxel, G. (2003, August 25-29). Quantum cryptography in practice. Proceedings of the 2003 conference on Applications, technologies, architectures, and protocols for computer communications (SIGCOMM'03) (pp. 227-238). ACM.
  5. Elliott, C., & Yeh, H. (2007). DARPA quantum network testbed. Defense Technical Information Center.
  6. ETSI. (2019). Quantum key distribution (QKD); Protocol and data format of key delivery API to applications, GS QKD 014, V1.1.1.
  7. ETSI. (2021). Quantum key distribution (QKD); Control interface for software defined networks, GS QKD 015 V1.1.1.
  8. European Commission. (2017). China to launch world's first quantum communication network.
  9. Han, Z. F., Xu, F. X., Chen, W., Wang, S., Yin, Z. Q., Zhang, Y., Liu, Y., Zhou, Z., Li, H. W., Liu, D., & Guo, G. C. (2010, March 21-25). An application-oriented hierarchical quantum cryptography network test bed. Proceedings of the 2010 Conference on Optical Fiber Communication (OFC/NFOEC), Collocated National Fiber Optic Engineers Conference (pp. 1-3). IEEE.
  10. Kim, D., Kim, Y. H., Park, C., & Kim, K. I. (2018). KREONETS: Software-defined wide area network design and deployment on KREONET. IAENG International Journal of Computer Science, 45(1), 27-33.
  11. Krawczyk, H., & Eronen, P. (2010). HMAC-based extract-andexpand key derivation function (HKDF).
  12. KREONET. (2021). KREONET web site.
  13. Langer, T. (2013). The practical application of quantum key distribution (doctoral dissertation). University of Lausanne, Lausanne, Switzerland.
  14. Langer, T., & Lenhart, G. (2009). Standardization of quantum key distribution and the ETSI standardization initiative ISG-QKD. New Journal of Physics, 11(5), 055051.
  15. Ma, X., Yuan, X., Cao, Z., Qi, B., & Zhang, Z. (2016). Quantum random number generation. npj Quantum Information, 2, 16021.
  16. Park, M. K., Jung, W. J., Lee, J. Y., & Kim, B. C. (2010). A study of future internet testbed construction using NetFGA/OpenFlow switch on KOREN/KREONET. Journal of the Institute of Electronics Engineers of Korea TC, 47(7), 109-117.
  17. Peev, M., Pacher, C., Alleaume, R., Barreiro, C., Bouda, J., Boxleitner, W., Debuisschert, T., Diamanti, E., Dianati, M., Dynes, J. F., Fasel, S., Fossier, S., Furst, M., Gautier, J. D., Gay, O., Gisin, N., Grangier, P., Happe, A., Hasani, Y., . . . Zeilinger, A. (2009). The SECOQC quantum key distribution network in Vienna. New Journal of Physics, 11, 075001.
  18. Qiu, J. (2014). Quantum communications leap out of the lab. Nature, 508(7497), 441-442.
  19. Sasaki, M., Fujiwra, M., Ishizuka, H., Klaus, W., Wakui, K., Takeoka, M., Tanaka, A., Yoshino, K., Nambu, Y., Takahashi, S., Tajima, A., Tomita, A., Domeki, T., Hasegawa, T., Sakai, Y., Kobayashi, H., Asai, T., Shimizu, K., Tokura, T., . . . Zeilinger, A. (2011, May 1-6). Tokyo QKD network and the evolution to secure photonic network. Proceedings of the Laser Science to Photonic Applications (CLEO'11) (pp. 1-3). IEEE.
  20. Sergienko, A. (2005). Quantum communications and cryptography. CRC Press.
  21. Shimizu, K., Honjo, T., Fujiwara, M., Ito, T., Tamaki, K., Miki, S., Yamashita, T., Terai, H., Wang, Z., & Sasaki, M. (2014). Performance of long-distance quantum key distribution over 90-km optical links installed in a field environment of Tokyo metropolitan area. Journal of Lightwave Technology, 32, 141-151.
  22. Shor, P. W. (1994, November 20-22). Algorithms for quantum computation: Discrete logarithms and factoring. Proceedings of the 35th Annual Symposium on Foundations of Computer Science (pp. 124-134). IEEE.
  23. Shor, P. W., & Preskill, J. (2000). Simple proof of security of the BB84 quantum key distribution protocol. Physical Review Letters, 85(2), 441-444.
  24. Travagnin, M., & Lewis, A. (2019). Quantum key distribution in-field implementations, EUR 29865 EN. European Union.
  25. Wang, S., Chen, W., Yin, Z. Q., Li, H. W., He, D. Y., Li, Y. H., Zhou, Z., Song, X. T., Li, F. Y., Wang, D., Chen, H., Han, Y. G., Huang, J. Z., Guo, J. F., Hao, P. L., Li, M., Zhang, C. M., Liu, D., Liang, W. Y., . . . Han, Z. F. (2014). Field and long-term demonstration of a wide area quantum key distribution network. Optics Express, 22(18), 21739-21756.
  26. Wang, S., Chen, W., Yin, Z. Q., Zhang, Y., Zhang, T., Li, H. W., Xu, F. X., Zhou, Z., Yang, Y., Huang, D. J., Zhang, L. J., Li, F. Y., Liu, D., Wang, Y. G., Guo, G. C., & Han, Z. F. (2010). Field test of wavelength-saving quantum key distribution network. Optics Letters, 35(14), 2454-2456.
  27. Xu, F. X., Chen, W., Wang, S., Yin, Z. Q., Zhang, Y., Liu, Y., Zhou, Z., Zhao, Y., Li, H., Liu, D., Han, Z., & Guo, G. C. (2009). Field experiment on a robust hierarchical metropolitan quantum cryptography network. Chinese Science Bulletin, 54, 2991-2997.
  28. Zhang, Q., Xu, F., Chen, Y. A., Peng, C. Z., & Pan, J. W. (2018). Large scale quantum key distribution: Challenges and solutions [Invited]. Optics Express, 26(18), 24260-24273.
  29. Zhang, Z. (2017). Quantum tech to link Jinan governments.
  30. Zhao, Y. (2019). The integration of QKD and security services. Paper presented at the ITU QIT4N Workshop, Shanghai, China.