Browse > Article

Privacy Amplification of Quantum Key Distribution Systems Using Dual Universal Hush Function  

Lee, Sun Yui (광운대학교 전파공학과 소속 유비쿼터스 통신 연구실)
Kim, Jin Young (광운대학교 전파공학과 소속 유비쿼터스 통신 연구실)
Publication Information
Journal of Satellite, Information and Communications / v.12, no.1, 2017 , pp. 38-42 More about this Journal
Abstract
This paper introduces the concept of a dual hash function to amplify security in a quantum key distribution system. We show the use of the relationship between quantum error correction and security to provide security amplification. Also, in terms of security amplification, the approach shows that phase error correction offers better security. We describe the process of enhancing security using the universal hash function using the BB84 protocol, which is a typical example of QKD. Finally, the deterministic universal hash function induces the security to be evaluated in the quantum Pauli channel without depending on the length of the message.
Keywords
Calderbank-Shor-Steane (CSS) code; QKD(Quantum Key Distribution); hash functions; ${\epsilon}-almost$ $universal_2$ hash functions; Random Number Generator (RNG);
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. De, C. Portmann, T. Vidick, and R. Renner, Trevisan's extractor in the presence of quantum side information [Online]. Available: arXiv:0912.5514   DOI
2 C. H. Bennett and G. Brassard, "Quantum cryptography: Public key distribution and coin tossing," in Proc. IEEE Int. Conf. Comput. Syst. Signal Process., Bangalore, India, Dec. 1984, pp. 175-179.
3 C. H. Bennett, G. Brassard, C. Crepeau, and U. M. Maurer, "Generalized privacy amplification," IEEE Trans. Inf. Theory, vol. 41, no. 6, pp. 1915-1923, Nov. 1995.   DOI
4 G. Brassard and L. Salvail, T. Helleseth, Ed., "Secret-key reconciliation by public discussion," in Proc. Adv. Cryptol.-Eurocrypt, 1994, vol. 765, LNCS, pp. 410-423.
5 J. L. Carter and M. N.Wegman, "Universal classes of hash functions," J. Comput. Syst. Sci., vol. 18, pp. 143-154, 1979.   DOI
6 I. Csiszar, "Almost independence and secrecy capacity," Probl. Inf. Transmiss., vol. 32, no. 1, pp. 40-47, 1996.
7 I. Csiszar and J. Karner, Information Theory: Coding Theorem for Discrete Memoryless Systems. New York, NY, USA: Academic, 1981.
8 Y. Dodis and A. Smith, "Correcting errors without leaking partial information,"in Proc. 37th Annu. ACM Symp. Theory Comput., 2005, pp. 654-663.
9 S. Fehr and C. Schaffner, "Randomness extraction via delta-biased masking in the presence of a quantum attacker," in Proc. Theory Cryptogr. Conf., 2008, pp. 465-481.
10 D. Gottesman, H.-K. Lo, N. Lutkenhaus, and J. Preskill, "Security of quantum key distribution with imperfect devices," J. Quant. Inf. Comput., vol. 5, pp. 325-360, 2004.
11 M. Hamada, "Reliability of Calderbank-Shor-Steane codes and security of quantum key distribution," J. Phys. A: Math. Gen., vol. 37, no. 34, pp. 8303-8328, 2004.   DOI
12 D. R. Stinson, J. Feigenbaum, Ed., "Universal hashing and authentication codes," in Proc. Adv. Cryptol.-CRYPTO, 1992, vol. 576, LNCS, pp. 62-73.
13 D. R. Stinson, "Universal hash families and the leftover hash lemma, and applications to cryptography and computing," J. Combin. Math. Combin. Comput., vol. 42, pp. 3-31, 2002.
14 M. Tomamichel, C. Schaffner, A. Smith, and R. Renner, "Leftover hashing against quantum side information," IEEE Trans. Inf. Theory, vol. 57, no. 8, pp. 5524-5535, Aug. 2011.   DOI
15 P. W. Shor and J. Preskill, "Simple proof of security of the BB84 quantum key distribution protocol," Phys. Rev. Lett., vol. 85, pp. 441-444, 2000.   DOI