• 제목/요약/키워드: Q-difference

검색결과 736건 처리시간 0.022초

PROPERTIES ON q-DIFFERENCE RICCATI EQUATION

  • Huang, Zhi-Bo;Zhang, Ran-Ran
    • 대한수학회보
    • /
    • 제55권6호
    • /
    • pp.1755-1771
    • /
    • 2018
  • In this paper, we investigate a certain type of q-difference Riccati equation in the complex plane. We prove that q-difference Riccati equation possesses a one parameter family of meromorphic solutions if it has three distinct meromorphic solutions. Furthermore, we find that all meromorphic solutions of q-difference Riccati equation and corresponding second order linear q-difference equation can be expressed by q-gamma function if this q-difference Riccati equation admits two distinct rational solutions and $q{\in}{\mathbb{C}}$ such that 0 < ${\mid}q{\mid}$ < 1. The growth and value distribution of differences of meromorphic solutions of q-difference Riccati equation are also treated.

A RESERCH ON NONLINEAR (p, q)-DIFFERENCE EQUATION TRANSFORMABLE TO LINEAR EQUATIONS USING (p, q)-DERIVATIVE

  • ROH, KUM-HWAN;LEE, HUI YOUNG;KIM, YOUNG ROK;KANG, JUNG YOOG
    • Journal of applied mathematics & informatics
    • /
    • 제36권3_4호
    • /
    • pp.271-283
    • /
    • 2018
  • In this paper, we introduce various first order (p, q)-difference equations. We investigate solutions to equations which are linear (p, q)-difference equations and nonlinear (p, q)-difference equations. We also find some properties of (p, q)-calculus, exponential functions, and inverse function.

차균형성질을 갖는 d-동차함수로부터 생성된 새로운 순회상대차집합 (New Cyclic Relative Difference Sets Constructed from d-Homogeneous Functions with Difference-balanced Property)

  • 김상효;노종선
    • 정보보호학회논문지
    • /
    • 제12권2호
    • /
    • pp.11-20
    • /
    • 2002
  • 본 논문에서는 q는 p의 멱승이고, $F_{q^{n}}$이 원소의 개수가 $q^{n}$ 개인 유한체라 할 때, $F_{q^{n}}${0}으로부터의 $F_{q}$ 로의 차균형 성질을 갖는 d-동차함수로부터 (equation omitted) 순회상대차집합이 얻어질 수 있음을 보인다. 이에 따라 주기가 $q^{n}$ -1이고, 이상적인 자기상관성질을 갖는 p진 시퀀스 Helleseth-Gong 시퀀스 및, d-형 시퀀스로부터 (equation omitted)의 파라미터를 갖는 새로운 순회상대차집합을 생성시킨다.

FINITE LOGARITHMIC ORDER SOLUTIONS OF LINEAR q-DIFFERENCE EQUATIONS

  • Wen, Zhi-Tao
    • 대한수학회보
    • /
    • 제51권1호
    • /
    • pp.83-98
    • /
    • 2014
  • During the last decade, several papers have focused on linear q-difference equations of the form ${\sum}^n_{j=0}a_j(z)f(q^jz)=a_{n+1}(z)$ with entire or meromorphic coefficients. A tool for studying these equations is a q-difference analogue of the lemma on the logarithmic derivative, valid for meromorphic functions of finite logarithmic order ${\rho}_{log}$. It is shown, under certain assumptions, that ${\rho}_{log}(f)$ = max${{\rho}_{log}(a_j)}$ + 1. Moreover, it is illustrated that a q-Casorati determinant plays a similar role in the theory of linear q-difference equations as a Wronskian determinant in the theory of linear differential equations. As a consequence of the main results, it follows that the q-gamma function and the q-exponential functions all have logarithmic order two.

ON p, q-DIFFERENCE OPERATOR

  • Corcino, Roberto B.;Montero, Charles B.
    • 대한수학회지
    • /
    • 제49권3호
    • /
    • pp.537-547
    • /
    • 2012
  • In this paper, we define a $p$, $q$-difference operator and obtain an explicit formula which is used to express the $p$, $q$-analogue of the unified generalization of Stirling numbers and its exponential generating function in terms of the $p$, $q$-difference operator. Explicit formulas for the non-central $q$-Stirling numbers of the second kind and non-central $q$-Lah numbers are derived using the new $q$-analogue of Newton's interpolation formula. Moreover, a $p$, $q$-analogue of Newton's interpolation formula is established.

d-동차함수로부터 생성된 Singer 파라미터를 갖는 새로운 순회차집합 (New Cyclic Difference Sets with Singer Parameters Constructed from d-Homogeneous Functions)

  • 노종선
    • 정보보호학회논문지
    • /
    • 제12권1호
    • /
    • pp.21-32
    • /
    • 2002
  • 본 논문에서는 소수 p의 멱승인 q에 대해서 주기 $q_n$-1인 q진 시퀸스(d-동차함수)로부터 Singer 파라미터 equation omitted를 갖는 새로운 순회차집합을 생성하였다. q가 3의 멱승일 때, Helleseth, Kumar, Martinsen의 주기가 $q_n$-1이고, 이상적인 자기상관성질을 갖는 3진 시퀸스로부터 Singer 파라미터 equation omitted를 갖는 새로운 순회 차집합을 생성시킨다.

STABILITY OF HAHN DIFFERENCE EQUATIONS IN BANACH ALGEBRAS

  • Abdelkhaliq, Marwa M.;Hamza, Alaa E.
    • 대한수학회논문집
    • /
    • 제33권4호
    • /
    • pp.1141-1158
    • /
    • 2018
  • Hahn difference operator $D_{q,{\omega}}$ which is defined by $$D_{q,{\omega}}g(t)=\{{\frac{g(gt+{\omega})-g(t)}{t(g-1)+{\omega}}},{\hfill{20}}\text{if }t{\neq}{\theta}:={\frac{\omega}{1-q}},\\g^{\prime}({\theta}),{\hfill{83}}\text{if }t={\theta}$$ received a lot of interest from many researchers due to its applications in constructing families of orthogonal polynomials and in some approximation problems. In this paper, we investigate sufficient conditions for stability of the abstract linear Hahn difference equations of the form $$D_{q,{\omega}}x(t)=A(t)x(t)+f(t),\;t{\in}I$$, and $$D^2{q,{\omega}}x(t)+A(t)D_{q,{\omega}}x(t)+R(t)x(t)=f(t),\;t{\in}I$$, where $A,R:I{\rightarrow}{\mathbb{X}}$, and $f:I{\rightarrow}{\mathbb{X}}$. Here ${\mathbb{X}}$ is a Banach algebra with a unit element e and I is an interval of ${\mathbb{R}}$ containing ${\theta}$.