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ON p, q-DIFFERENCE OPERATOR

Roberto B. Corcino and Charles B. Montero

Abstract. In this paper, we define a p, q-difference operator and ob-
tain an explicit formula which is used to express the p, q-analogue of the

unified generalization of Stirling numbers and its exponential generating
function in terms of the p, q-difference operator. Explicit formulas for the
non-central q-Stirling numbers of the second kind and non-central q-Lah

numbers are derived using the new q-analogue of Newton’s interpolation
formula. Moreover, a p, q-analogue of Newton’s interpolation formula is
established.

1. Introduction

The difference operator denoted by ∆h is a mapping that assigns to every
function f the function ∆hf defined by the rule

∆hf(t) = f(t+ h)− f(t)

for every real number t. Higher order differences are obtained by repeated
operations of the difference operator, that is, for k ≥ 2,

∆k
hf(t) = ∆h(∆

k−1
h f(t)) = ∆k−1

h f(t+ h)−∆k−1
h f(t).

In fact, we have

∆n
hf(t) =

n∑
k=0

(−1)n−k

(
n

k

)
f(t+ kh) n ≥ 2.

The unified generalization of Stirling numbers of Hsu and Shuie [7], denoted
by S(n, k;α, β, γ), is expressed explicitly in [4] as

(1) S(n, k;α, β, γ) =
1

k!βk

k∑
j=0

(−1)k−j

(
k

j

)
(βj + γ|α)n,
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where (βj + γ|α)n =
∏n−1

i=0 (βj + γ − iα). This can further be written in terms
of difference operator as

S(n, k;α, β, γ) =

[
∆k

1

(
(βx+ γ|α)n

k!βk

)]
x=0

.(2)

The above explicit formula can be expressed as

(3) S(n, k;α, β, γ) =
n!αn

k!βk

k∑
j=0

(−1)k−j

(
k

j

)(
(β/α)j + (γ/α)

n

)
.

As mentioned in Remark 1 in [4], we can be able to obtain the following expo-
nential generating function for S(n, k;α, β, γ)

(4) Φk(t) =
∞∑

n=0

S(n, k;α, β, γ)
tn

n!
=

1

k!βk
(1 + αt)γ/α

[
(1 + αt)β/α − 1

]k
using formula (3). More precisely, by making use of the Vandermonde’s con-
volution identity and Cauchy’s rule for the multiplication of series, we find

Φk(t) =
∞∑

n=0

S(n, k;α, β, γ)
tn

n!
=

∞∑
n=0

αn

k!βk

k∑
j=0

(−1)k−j

(
k

j

)(
(β/α)j + (γ/α)

n

)
tn

=
1

k!βk

k∑
j=0

(−1)k−j

(
k

j

){ ∞∑
n=0

(αt)n
n∑

λ=0

(
γ/α

λ

)(
(β/α)j

n− λ

)}

=
1

k!βk

k∑
j=0

(−1)k−j

(
k

j

){ ∞∑
λ=0

(
γ/α

λ

)
(αt)λ

∞∑
µ=0

(
(β/α)j

µ

)
(αt)µ

}

=

k∑
j=0

(−1)k−j

(
k

j

)
(1 + αt)(βj+γ)/α

k!βk

which, consequently, gives (4). With the preceding equation, we can then
express Φk(t) in terms of difference operator as follows

Φk(t) =

∞∑
n=0

S(n, k;α, β, γ)
tn

n!
=

[
∆k

1

(
(1 + αt)

βx+γ
α

k!βk

)]
x=0

.

A q-analogue of the difference operator, known as q-difference operator, was
defined and thoroughly discussed in [2, 8]. More precisely, the q-difference
operator of degree n, denoted by ∆n

q,h, is defined to be a mapping that assigns
to every function f the function ∆n

q,hf defined by the rule

∆n
q,hf(x) =

n−1∏
j=0

(Eh − qj)

 f(x), n ≥ 1,
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where Eh is the shift operator defined by Ehf(x) = f(x + h). As convention,
define ∆0

q,h = 1 (the identity map). With the explicit formula

∆n
q,hf(x) =

n∑
k=0

(−1)
k
q(

k
2)
[n
k

]
q
f(x+ (n− k)h)(5)

for the q-difference operator, we can write the q-analogue σ1[n, k;α, β, γ]q for
the unified generalization of Stirling numbers (see [4]) as

σ1[n, k;α, β, γ]q =

[
∆k

qβ ,1

(
⟨[βx] + [γ]|[α]⟩qn
qβ(

k
2)
∏k

i=1[iβ]q

)]
x=0

,(6)

where ⟨[β]|[α]⟩qn =
∏n−1

j=0 ([β]q − [jα]q) and[n
k

]
q
=

k∏
i=1

qn−i+1 − 1

qi − 1
,

the q-binomial coefficients.

In this paper, we define a p, q-difference operator and obtain an explicit
formula analogous to (5). Also, we express the p, q-analogue σ1[n, k;α, β, γ]pq
of the unified generalization of Stirling numbers and its exponential generating
function (when α = 0) in terms of the p, q-difference operator. Moreover,
explicit formulas for the non-central q-Stirling numbers of the second kind and
non-central q-Lah numbers are derived using the new q-analogue of Newton’s
interpolation formula, and a p, q-analogue of Newton’s interpolation formula is
established.

2. The p, q-difference operator and its applications

Before we define the p, q-difference operator, we need to introduce first the
p, q-binomial coefficients which are necessary in obtaining the result in this
section.

The p, q-binomial coefficients, denoted by
[
n
k

]
pq
, were defined in [3] as follows[n

k

]
pq

=

k∏
i=1

pn−i+1 − qn−i+1

pi − qi
.(7)

These numbers were shown in [3] to satisfy the inverse relation

fn =
n∑

j=0

(−1)n−jp(
n−j
2 )
[
n

j

]
pq

gj ⇐⇒ gn =
n∑

j=0

q(
n−j
2 )
[
n

j

]
pq

fj

and the triangular recurrence relation[
n+ 1

k

]
pq

= pk
[n
k

]
pq

+ qn+1−k

[
n

k − 1

]
pq

.(8)

One may see [3] for more properties of
[
n
k

]
pq
.
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Now, let us define the p, q-difference operator parallel to the definition of
q-difference operator in [2, 8].

Definition 2.1. The p, q-difference operator of degree n, denoted by ∆n
p,q,h,

is a mapping that assigns to every function f the function ∆n
p,q,hf defined by

the rule

∆n
p,q,hf(x) =

n−1∏
j=0

(pjEh − qj)

 f(x), n ≥ 1.

As convention, define ∆0
p,q,h = 1 (the identity map).

Note that the q-difference operator of degree n ∆n
q,h can be obtained from

∆n
p,q,h by setting p = 1, which further gives the difference operator ∆n

h when q
tends to 1.

To evaluate the operator for some particular degrees, we have

∆1
p,q,hf(x) = (Eh − 1)f(x) = Ehf(x)− f(x) = f(x+ h)− f(x)

= p(
1
2)q(

0
2)
[
1

0

]
pq

f(x+ h)− p(
0
2)q(

1
2)
[
1

1

]
pq

f(x);

∆2
p,q,hf(x) = pE2

hf(x)− (p+ q)Ehf(x) + qf(x)

= p(
2
2)q(

0
2)
[
2

0

]
pq

f(x+ 2h)− p(
1
2)q(

1
2)
[
2

1

]
pq

f(x+ h)

+ p(
0
2)q(

2
2)
[
2

2

]
pq

f(x).

With these observations, we can now state the following theorem.

Theorem 2.2. For all integers n ≥ 1, we have

∆n
p,q,hf(x) =

n∑
k=0

(−1)
k
p(

n−k
2 )q(

k
2)
[n
k

]
pq

f(x+ (n− k)h).(9)

Proof. Suppose for some n ≥ 1, we have

∆n
p,q,hf(x) =

n∑
k=0

(−1)
k
p(

n−k
2 )q(

k
2)
[n
k

]
pq

f(x+ (n− k)h).

Now, by definition, we have

∆n+1
p,q,hf(x) = pnEh

(
∆n

p,q,hf(x)
)
− qn

(
∆n

p,q,hf(x)
)
.

Using the inductive hypothesis, we obtain

∆n+1
p,q,hf(x) =

n∑
k=0

(−1)
k
pn+(

n−k
2 )q(

k
2)
[n
k

]
pq

f(x+ (n+ 1− k)h)

+
n∑

k=0

(−1)
k+1

p(
n−k

2 )q(
k
2)+n

[n
k

]
pq

f(x+ (n− k)h).
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Reindexing the sum and using the fact that
[

n
n+1

]
pq

=
[

n
−1

]
pq

= 0, we have

∆n+1
p,q,hf(x) =

n+1∑
k=0

(−1)
k
pn+(

n−k
2 )q(

k
2)
[n
k

]
pq

f(x+ (n+ 1− k)h)

+
n+1∑
k=0

(−1)
k+1

p(
n+1−k

2 )q(
k−1
2 )+n

[
n

k − 1

]
pq

f(x+ (n+ 1− k)h).

With

n+

(
n− k

2

)
=

(
n+ 1− k

2

)
+ k and n+

(
k − 1

2

)
=

(
k

2

)
+ n+ 1− k,

we have

∆n+1
p,q,hf(x)

=
n+1∑
k=0

(−1)
k
p(

n+1−k
2 )q(

k
2)

{
pk
[n
k

]
pq
+qn+1−k

[
n

k − 1

]
pq

}
f(x+ (n+ 1− k)h).

Application of (8) completes the proof of the theorem. □

Clearly, when p = 1, Theorem 2.2 will give (5).

A p, q-analogue of the classical Stirling numbers first appeared in the work
of Wachs and White [13], Leroux [9], and Medicis and Leroux [6]. They were
able to give combinatorial interpretations of the p, q-analogue in terms of re-
stricted growth functions, rook placements on stairstep Ferrers boards, and in
the context of 0-1 tableau. Recently, a p, q-analogue of the unified general-
ization of Stirling numbers, denoted by σ1[n, k]pq was defined and thoroughly
investigated in [5]. One of the results obtained in [5] is the explicit formula for
σ1[n, k]pq which is given by

(10) σ1[n, k]pq =
1

⟨[kβ]|[β]⟩pqk

k∑
j=0

(−1)k−jqβ(
k−j
2 )
[
k

j

]
pβqβ

⟨[jβ] + [γ]|[α]⟩pqn ,

where ⟨[β]|[α]⟩pqn =
∏n−1

j=0 ([β]pq − [jα]pq).

The next theorem provides an expression for σ1[n, k]pq in terms of the
p, q-difference operator.

Theorem 2.3. For nonnegative integers n and k, and complex numbers α, β,
and γ, we have

(11) σ1[n, k]pq =

[
∆k

pβ ,qβ ,1

(
⟨[βx] + [γ]|[α]⟩pqn
pβ(

x
2) ⟨[kβ]|[β]⟩pqk

)]
x=0

.
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Proof. Applying Theorem 2.2 to the function f defined by

f(x) =
⟨[βx] + [γ]|[α]⟩pqn
pβ(

x
2) ⟨[kβ]|[β]⟩pqk

,

gives the following:[
∆k

pβ ,qβ ,1

(
⟨[xβ] + [γ]|[α]⟩pqn
(pβ)(

x
2) ⟨[kβ]|[β]⟩pqk

)]
x=0

=
k∑

j=0

(−1)
j
pβ(

k−j
2 )qβ(

j
2)
[
k

j

]
pβqβ

f(k − j)

=

k∑
j=0

(−1)
j
pβ(

k−j
2 )qβ(

j
2)
[
k

j

]
pβqβ

⟨[(k − j)β] + [γ]|[α]⟩pqn
pβ(

k−j
2 ) ⟨[kβ]|[β]⟩pqk

=
1

⟨[kβ]|[β]⟩pqk

k∑
j=0

(−1)
j
qβ(

j
2)
[
k

j

]
pβqβ

⟨[(k − j)β] + [γ]|[α]⟩pqn

=
1

⟨[kβ]|[β]⟩pqk

k∑
j=0

(−1)
k−j

qβ(
k−j
2 )
[
k

j

]
pβqβ

⟨[jβ] + [γ]|[α]⟩pqn .

This is exactly the right-hand side of (10). □

Remark 2.4. When p = 1, it can easily be shown that (11) reduces to (6). This
further gives (2) as a limit when q → 1.

Another result in [5] is the exponential generating function for σ̂2[n, k]β,γpq =

σ1[n, k; 0, β, γ]p,q which is given by
(12)

Ψβ,γ
k (t) =

∑
n≥0

σ̂2[n, k]β,γpq

tn

n!
=

e[γ]pqt

⟨[kβ]|[β]⟩pqk

k∑
j=0

(−1)k−jqβ(
k−j
2 )
[
k

j

]
pβqβ

e[jβ]pqt.

This can also be expressed in terms of the p, q-difference operator as follows:

Theorem 2.5. The number σ1[n, k; 0, β, γ]p,q has the following exponential
generating function in terms of p, q-difference operator:

(13) Ψβ,γ
k (t) =

[
∆k

pβ ,qβ ,1

(
e([xβ]p,q+[γ]p,q)t

pβ(
x
2) ⟨[kβ]|[β]⟩pqk

)]
x=0

.

Remark 2.6. When p = 1, we obtain the exponential generating function

Ωβ,γ
k (t) =

∞∑
n=0

σ1[n, k; 0, β, γ]q
tn

n!
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for σ1[n, k; 0, β, γ]q which is expressed in terms of a q-difference operator. That
is,

Ωβ,γ
k (t) =

[
∆k

q,1

(
e([xβ]q+[γ]q)t

⟨[kβ]|[β]⟩qk

)]
x=0

,

where Ωβ,γ
k (t) =

∑
n≥0 σ

β,γ
q [n, k] t

n

n! .

3. p, q-analogue of Newton’s interpolation formula

The Newton’s interpolation formula

f(x) =
∞∑
k=0

(
x

k

)
∆kf(0) =

∞∑
k=0

∆kf(0)

k!
(x)k(14)

can be used in transforming some identities into different forms. For instance,
the unified generalization of Stirling numbers S(n, k;α, β, γ) of Hsu and Shuie
[7] which is defined by

(t|α)n =
∞∑
k=0

S(n, k;α, β, γ)(t− γ|β)k(15)

can be expressed as

(βt+ γ|α)n =
∞∑
k=0

S(n, k;α, β, γ) (βt|β)k =
∞∑
k=0

(
t

k

)
S(n, k;α, β, γ)βkk!

when t in (15) is being replaced by βt+γ. By Newton’s Interpolation Formula,

βkk!S(n, k;α, β, γ) =
[
∆k(βx+ γ|α)n

]
x=0

=
n∑

k=0

(−1)n−k

(
n

k

)
(βk + γ|α)n.

Recently, a new q-analogue of Newton’s interpolation formula was estab-
lished by M. S. Kim and J. W. Son in [8]. More precisely,

fq(x) = fq(x0) +
∆qh,hfq(x0)[x− x0]

[1]qh ![h]
+

∆2
qh,hfq(x0)[x− x0][x− x1]

[2]qh ![h]2

+ · · ·+
∆m

qh,hfq(x0)[x− x0][x− x1] · · · [x− xm−1]

[m]qh ![h]m
,(16)

where [x] = [x]q,m is the degree of fq(x) and xk = x0 + kh, k = 1, 2, . . . such

that when h = 1 and x0 = 0 with [x](m) = [x][x− 1] · · · [x−m+ 1], we obtain

(17) fq(x) = fq(0) + ∆qfq(0)[x]
(1) +

∆2
qfq(0)[x]

(2)

[2]!
+ · · ·+

∆m
q fq(0)[x]

(m)

[m]!
.

These formulas can also be used to transform some q-identities into different
forms. For example, the q-Stirling numbers of the second kind Sq(n, k) which
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are defined by Carlitz [1] as

[x]n =
n∑

k=0

q(
k
2)Sq(n, k)[x]k(18)

can be expressed using (17) as

q(
k
2)[k]!Sq(n, k) =

[
∆k

q [x]
n
]
x=0

.

By (5), we get the following explicit formula for Sq(n, k)

Sq(n, k) =
1

[k]!

k∑
j=0

(−1)
j
q(

j
2)−(

k
2)
[
k

j

]
q

[k − j]n.

The non-central q-Stirling numbers of the second kind Sq(n, k; r, h) which
are given in [12] by

[x]n =
n∑

k=0

qkr+(
k
2)hSq(n, k; r, h)[x; r, h]k

can be expressed using (5) and (17) as

Sq(n, k; r, h) =
1

qkr+(
k
2)h[h]k[k]qh

{
∆k

qh,h[x]
n
}
x=r

=
q−kr−(k2)h

[h]k[k]qh !

k∑
j=0

(−1)
j
q(

j
2)h
[
k

j

]
qh

[r + (k − j)h]n.

This is exactly the identity in [Theorem 4.1, 11]. Moreover, using (5) and (17),
the non-central q-Lah numbers Lq(n, k; r, h) which are defined in [12] by

[x;−r,−h]n = qnr+(
n
2)h

n∑
k=0

qkr+(
k
2)hLq(n, k; r, h)[x; r, h]k

can be expressed as

Lq(n, k; r, h)

=
1

[h]k[k]qh

{
∆k

qh,h[x;−r, h]n

}
x=r

=
q−(n+k)r−((k2)+(

k
2))h

[h]k[k]qh !

k∑
j=0

(−1)
j
q(

j
2)h
[
k

j

]
qh

[r + (k − j)h;−r,−h]n.

This explicit formula for Lq(n, k; r, h) does not appear in [12] and may be
considered as a new identity for Lq(n, k; r, h).

We now consider a p, q-analogue of Newton’s interpolation formula. With

[x] q
p
=

[x]pq
px−1

,
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we obtain

f q
p
(x) = a0 + a1p

x0+1 [x− x0]pq
px

+ a2p
2x0+h+2 [x− x0]pq[x− x1]pq

p2x

+ · · ·+ ampmx0+(m2 )h+m [x− x0]pq[x− x1]pq · · · [x− xm−1]pq
pmx

.(19)

It can easily be seen that

∆k
(q/p)h,h

=
∆k

phqh,h

p(
k
2)h

.

Hence, using the same argument in deriving (16), we have

ak =
pk(h−1)∆k

phqh,hf q
p
(x0)

[kh]pq[(k − 1)h]pq · · · [h]pq
.(20)

To illustrate this result, let us consider the number S̃i,j
n,k(p, q) which is defined

in terms of a special case of the type II p, q-analogue of the generalized Stirling
numbers S̃2,p,q

n,k (j, 0, i) by Remmel and Wachs [11] as

S̃i,j
n,k(p, q) = p−x(n−k)−(n−k+1

2 )jS̃2,p,q
n,k (j, 0, i).

This number is necessary in giving combinatorial interpretation of the type II
p, q-analogue of the generalized Stirling numbers S̃2,p,q

n,k (j, 0, i) in terms of rook

theory. Using the definition of S̃2,p,q
n,k (j, 0, i), we can have

[x]np,q =
n∑

k=0

S̃i,j
n,k(p, q)p

(x−i)(n−k)+(n−k+1
2 )j⟨x− i|j⟩p,qk ,(21)

where ⟨x|j⟩p,qn = [x]pq[x − j]pq[x − 2j]pq · · · [x − (n − 1)j]pq. Multiplying both
sides of (21) by 1/pnx, we get

[x]np,q
pnx

=
n∑

k=0

S̃i,j
n,k(p, q)p

−i(n−k)+(n−k+1
2 )j ⟨x− i|j⟩p,qk

pkx
.

Thus, using (9), (19) and (20), we obtain

S̃i,j
n,k(p, q) =

p(
k
2)j+in−(n−k+1

2 )j+kj

[kj]pq[(k − 1)j]pq . . . [j]pq

[
∆k

phqh,h

[x]npq
pnx

]
x=i

=
p(

k
2)j+in−(n−k+1

2 )j+kj

[j]kpq[k]pjqj !

k∑
s=0

(−1)
k−s

pj(
s
2)qj(

k−s
2 )
[
k

j

]
pjqj

[i+ sj]npq
pn(sj+i)

=
(2k − n)(n+ 1)j/2

[j]kpq[k]pjqj !

k∑
s=0

(−1)
k−s

pj((
s
2)−sn)qj(

k−s
2 )
[
k

j

]
pjqj

[i+ sj]npq.

This is exactly the formula in [11, Theorem 13].
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The above p, q-analogue of Newton’s interpolation formula may be useful in
transforming certain identity of p, q-analogues of some Stirling-type numbers
into a more explicit form. This result can simplify the work in deriving explicit
formula of p, q-analogues of some Stirling-type numbers.

There are still much to be done in developing the theory of p, q-difference
operator of degree n. One may possibly derive some identities parallel to that in
the usual difference operator or differential operator. For instance, expressing
∆n

p,q{f(x)g(x)} as a sum of the product of p, q-difference operators of lower
degrees of the form

∆n
p,q{f(x)g(x)} =

n∑
k=0

[n
k

]
pq

Ppq(n, k)∆
k
p,qf(u(x))∆

n−k
p,q g(v(x))

for some functions u(x) and v(x) and some polynomial Ppq(n, k) in p and q,
will be an interesting property for ∆n

p,q since it is analogous to the well-known
Leibniz formula and the q-Leibniz formula in [10, p. 33].
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