ON p, q-DIFFERENCE OPERATOR

Roberto B. Corcino and Charles B. Montero

Abstract

In this paper, we define a p, q-difference operator and obtain an explicit formula which is used to express the p, q-analogue of the unified generalization of Stirling numbers and its exponential generating function in terms of the p, q-difference operator. Explicit formulas for the non-central q-Stirling numbers of the second kind and non-central q-Lah numbers are derived using the new q-analogue of Newton's interpolation formula. Moreover, a p, q-analogue of Newton's interpolation formula is established.

1. Introduction

The difference operator denoted by Δ_{h} is a mapping that assigns to every function f the function $\Delta_{h} f$ defined by the rule

$$
\Delta_{h} f(t)=f(t+h)-f(t)
$$

for every real number t. Higher order differences are obtained by repeated operations of the difference operator, that is, for $k \geq 2$,

$$
\Delta_{h}^{k} f(t)=\Delta_{h}\left(\Delta_{h}^{k-1} f(t)\right)=\Delta_{h}^{k-1} f(t+h)-\Delta_{h}^{k-1} f(t)
$$

In fact, we have

$$
\Delta_{h}^{n} f(t)=\sum_{k=0}^{n}(-1)^{n-k}\binom{n}{k} f(t+k h) \quad n \geq 2
$$

The unified generalization of Stirling numbers of Hsu and Shuie [7], denoted by $S(n, k ; \alpha, \beta, \gamma)$, is expressed explicitly in [4] as

$$
\begin{equation*}
S(n, k ; \alpha, \beta, \gamma)=\frac{1}{k!\beta^{k}} \sum_{j=0}^{k}(-1)^{k-j}\binom{k}{j}(\beta j+\gamma \mid \alpha)_{n}, \tag{1}
\end{equation*}
$$

[^0]where $(\beta j+\gamma \mid \alpha)_{n}=\prod_{i=0}^{n-1}(\beta j+\gamma-i \alpha)$. This can further be written in terms of difference operator as
\[

$$
\begin{equation*}
S(n, k ; \alpha, \beta, \gamma)=\left[\Delta_{1}^{k}\left(\frac{(\beta x+\gamma \mid \alpha)_{n}}{k!\beta^{k}}\right)\right]_{x=0} \tag{2}
\end{equation*}
$$

\]

The above explicit formula can be expressed as

$$
\begin{equation*}
S(n, k ; \alpha, \beta, \gamma)=\frac{n!\alpha^{n}}{k!\beta^{k}} \sum_{j=0}^{k}(-1)^{k-j}\binom{k}{j}\binom{(\beta / \alpha) j+(\gamma / \alpha)}{n} \tag{3}
\end{equation*}
$$

As mentioned in Remark 1 in [4], we can be able to obtain the following exponential generating function for $S(n, k ; \alpha, \beta, \gamma)$

$$
\begin{equation*}
\Phi_{k}(t)=\sum_{n=0}^{\infty} S(n, k ; \alpha, \beta, \gamma) \frac{t^{n}}{n!}=\frac{1}{k!\beta^{k}}(1+\alpha t)^{\gamma / \alpha}\left[(1+\alpha t)^{\beta / \alpha}-1\right]^{k} \tag{4}
\end{equation*}
$$

using formula (3). More precisely, by making use of the Vandermonde's convolution identity and Cauchy's rule for the multiplication of series, we find

$$
\begin{aligned}
\Phi_{k}(t) & =\sum_{n=0}^{\infty} S(n, k ; \alpha, \beta, \gamma) \frac{t^{n}}{n!}=\sum_{n=0}^{\infty} \frac{\alpha^{n}}{k!\beta^{k}} \sum_{j=0}^{k}(-1)^{k-j}\binom{k}{j}\binom{(\beta / \alpha) j+(\gamma / \alpha)}{n} t^{n} \\
& =\frac{1}{k!\beta^{k}} \sum_{j=0}^{k}(-1)^{k-j}\binom{k}{j}\left\{\sum_{n=0}^{\infty}(\alpha t)^{n} \sum_{\lambda=0}^{n}\binom{\gamma / \alpha}{\lambda}\binom{(\beta / \alpha) j}{n-\lambda}\right\} \\
& =\frac{1}{k!\beta^{k}} \sum_{j=0}^{k}(-1)^{k-j}\binom{k}{j}\left\{\sum_{\lambda=0}^{\infty}\binom{\gamma / \alpha}{\lambda}(\alpha t)^{\lambda} \sum_{\mu=0}^{\infty}\binom{(\beta / \alpha) j}{\mu}(\alpha t)^{\mu}\right\} \\
& =\sum_{j=0}^{k}(-1)^{k-j}\binom{k}{j} \frac{(1+\alpha t)^{(\beta j+\gamma) / \alpha}}{k!\beta^{k}}
\end{aligned}
$$

which, consequently, gives (4). With the preceding equation, we can then express $\Phi_{k}(t)$ in terms of difference operator as follows

$$
\Phi_{k}(t)=\sum_{n=0}^{\infty} S(n, k ; \alpha, \beta, \gamma) \frac{t^{n}}{n!}=\left[\Delta_{1}^{k}\left(\frac{(1+\alpha t)^{\frac{\beta x+\gamma}{\alpha}}}{k!\beta^{k}}\right)\right]_{x=0}
$$

A q-analogue of the difference operator, known as q-difference operator, was defined and thoroughly discussed in $[2,8]$. More precisely, the q-difference operator of degree n, denoted by $\Delta_{q, h}^{n}$, is defined to be a mapping that assigns to every function f the function $\Delta_{q, h}^{n} f$ defined by the rule

$$
\Delta_{q, h}^{n} f(x)=\left[\prod_{j=0}^{n-1}\left(E_{h}-q^{j}\right)\right] f(x), \quad n \geq 1
$$

where E_{h} is the shift operator defined by $E_{h} f(x)=f(x+h)$. As convention, define $\Delta_{q, h}^{0}=1$ (the identity map). With the explicit formula

$$
\Delta_{q, h}^{n} f(x)=\sum_{k=0}^{n}(-1)^{k} q^{\binom{k}{2}}\left[\begin{array}{l}
n \tag{5}\\
k
\end{array}\right]_{q} f(x+(n-k) h)
$$

for the q-difference operator, we can write the q-analogue $\sigma^{1}[n, k ; \alpha, \beta, \gamma]_{q}$ for the unified generalization of Stirling numbers (see [4]) as

$$
\begin{equation*}
\sigma^{1}[n, k ; \alpha, \beta, \gamma]_{q}=\left[\Delta_{q^{\beta}, 1}^{k}\left(\frac{\langle[\beta x]+[\gamma] \mid[\alpha]\rangle_{n}^{q}}{q^{\beta\binom{k}{2}} \prod_{i=1}^{k}[i \beta]_{q}}\right)\right]_{x=0} \tag{6}
\end{equation*}
$$

where $\langle[\beta] \mid[\alpha]\rangle_{n}^{q}=\prod_{j=0}^{n-1}\left([\beta]_{q}-[j \alpha]_{q}\right)$ and

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\prod_{i=1}^{k} \frac{q^{n-i+1}-1}{q^{i}-1}
$$

the q-binomial coefficients.
In this paper, we define a p, q-difference operator and obtain an explicit formula analogous to (5). Also, we express the p, q-analogue $\sigma^{1}[n, k ; \alpha, \beta, \gamma]_{p q}$ of the unified generalization of Stirling numbers and its exponential generating function (when $\alpha=0$) in terms of the p, q-difference operator. Moreover, explicit formulas for the non-central q-Stirling numbers of the second kind and non-central q-Lah numbers are derived using the new q-analogue of Newton's interpolation formula, and a p, q-analogue of Newton's interpolation formula is established.

2. The p, q-difference operator and its applications

Before we define the p, q-difference operator, we need to introduce first the p, q-binomial coefficients which are necessary in obtaining the result in this section.

The p, q-binomial coefficients, denoted by $\left[\begin{array}{l}n \\ k\end{array}\right]_{p q}$, were defined in $[3]$ as follows

$$
\left[\begin{array}{l}
n \tag{7}\\
k
\end{array}\right]_{p q}=\prod_{i=1}^{k} \frac{p^{n-i+1}-q^{n-i+1}}{p^{i}-q^{i}}
$$

These numbers were shown in [3] to satisfy the inverse relation

$$
\left.f_{n}=\sum_{j=0}^{n}(-1)^{n-j} p^{\left(n_{2}^{2}\right)}\right)\left[\begin{array}{c}
n \\
j
\end{array}\right]_{p q} g_{j} \Longleftrightarrow g_{n}=\sum_{j=0}^{n} q^{\left(n_{2}^{2-j}\right)}\left[\begin{array}{l}
n \\
j
\end{array}\right]_{p q} f_{j}
$$

and the triangular recurrence relation

$$
\left[\begin{array}{c}
n+1 \tag{8}\\
k
\end{array}\right]_{p q}=p^{k}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{p q}+q^{n+1-k}\left[\begin{array}{c}
n \\
k-1
\end{array}\right]_{p q}
$$

One may see [3] for more properties of $\left[\begin{array}{l}n \\ k\end{array}\right]_{p q}$.

Now, let us define the p, q-difference operator parallel to the definition of q-difference operator in [2, 8].
Definition 2.1. The p, q-difference operator of degree n, denoted by $\Delta_{p, q, h}^{n}$, is a mapping that assigns to every function f the function $\Delta_{p, q, h}^{n} f$ defined by the rule

$$
\Delta_{p, q, h}^{n} f(x)=\left[\prod_{j=0}^{n-1}\left(p^{j} E_{h}-q^{j}\right)\right] f(x), \quad n \geq 1
$$

As convention, define $\Delta_{p, q, h}^{0}=1$ (the identity map).
Note that the q-difference operator of degree $n \Delta_{q, h}^{n}$ can be obtained from $\Delta_{p, q, h}^{n}$ by setting $p=1$, which further gives the difference operator Δ_{h}^{n} when q tends to 1 .

To evaluate the operator for some particular degrees, we have

$$
\begin{aligned}
\Delta_{p, q, h}^{1} f(x)= & \left(E_{h}-1\right) f(x)=E_{h} f(x)-f(x)=f(x+h)-f(x) \\
= & p^{\binom{1}{2}} q^{\binom{0}{2}}\left[\begin{array}{l}
1 \\
0
\end{array}\right]_{p q} f(x+h)-p^{\binom{0}{2}} q^{\binom{1}{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right]_{p q} f(x) ; \\
\Delta_{p, q, h}^{2} f(x)= & p E_{h}^{2} f(x)-(p+q) E_{h} f(x)+q f(x) \\
= & p^{\binom{2}{2}} q^{\binom{0}{2}}\left[\begin{array}{l}
2 \\
0
\end{array}\right]_{p q} f(x+2 h)-p^{\binom{1}{2}} q^{\binom{1}{2}}\left[\begin{array}{l}
2 \\
1
\end{array}\right]_{p q} f(x+h) \\
& +p^{\binom{0}{2}} q^{\binom{2}{2}}\left[\begin{array}{l}
2 \\
2
\end{array}\right]_{p q} f(x) .
\end{aligned}
$$

With these observations, we can now state the following theorem.
Theorem 2.2. For all integers $n \geq 1$, we have

$$
\Delta_{p, q, h}^{n} f(x)=\sum_{k=0}^{n}(-1)^{k} p^{\binom{n-k}{2}} q^{\binom{k}{2}}\left[\begin{array}{l}
n \tag{9}\\
k
\end{array}\right]_{p q} f(x+(n-k) h)
$$

Proof. Suppose for some $n \geq 1$, we have

$$
\Delta_{p, q, h}^{n} f(x)=\sum_{k=0}^{n}(-1)^{k} p^{\binom{n-k}{2}} q^{\binom{k}{2}}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{p q} f(x+(n-k) h) .
$$

Now, by definition, we have

$$
\Delta_{p, q, h}^{n+1} f(x)=p^{n} E_{h}\left(\Delta_{p, q, h}^{n} f(x)\right)-q^{n}\left(\Delta_{p, q, h}^{n} f(x)\right) .
$$

Using the inductive hypothesis, we obtain

$$
\begin{aligned}
\Delta_{p, q, h}^{n+1} f(x)= & \sum_{k=0}^{n}(-1)^{k} p^{n+\binom{n-k}{2}} q^{\binom{k}{2}}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{p q} f(x+(n+1-k) h) \\
& +\sum_{k=0}^{n}(-1)^{k+1} p^{\binom{n-k}{2}} q^{\binom{k}{2}+n}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{p q} f(x+(n-k) h) .
\end{aligned}
$$

Reindexing the sum and using the fact that $\left[\begin{array}{c}n \\ n+1\end{array}\right]_{p q}=\left[\begin{array}{c}n \\ -1\end{array}\right]_{p q}=0$, we have

$$
\begin{aligned}
\Delta_{p, q, h}^{n+1} f(x)= & \sum_{k=0}^{n+1}(-1)^{k} p^{n+\binom{n-k}{2}} q^{\binom{k}{2}}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{p q} f(x+(n+1-k) h) \\
& +\sum_{k=0}^{n+1}(-1)^{k+1} p^{\binom{n+1-k}{2}} q^{\binom{k-1}{2}+n}\left[\begin{array}{c}
n \\
k-1
\end{array}\right]_{p q} f(x+(n+1-k) h)
\end{aligned}
$$

With

$$
n+\binom{n-k}{2}=\binom{n+1-k}{2}+k \text { and } n+\binom{k-1}{2}=\binom{k}{2}+n+1-k
$$

we have

$$
\begin{aligned}
& \Delta_{p, q, h}^{n+1} f(x) \\
= & \sum_{k=0}^{n+1}(-1)^{k} p^{\binom{n+1-k}{2}} q^{\binom{k}{2}}\left\{p^{k}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{p q}+q^{n+1-k}\left[\begin{array}{c}
n \\
k-1
\end{array}\right]_{p q}\right\} f(x+(n+1-k) h) .
\end{aligned}
$$

Application of (8) completes the proof of the theorem.
Clearly, when $p=1$, Theorem 2.2 will give (5).

A p, q-analogue of the classical Stirling numbers first appeared in the work of Wachs and White [13], Leroux [9], and Medicis and Leroux [6]. They were able to give combinatorial interpretations of the p, q-analogue in terms of restricted growth functions, rook placements on stairstep Ferrers boards, and in the context of 0-1 tableau. Recently, a p, q-analogue of the unified generalization of Stirling numbers, denoted by $\sigma^{1}[n, k]_{p q}$ was defined and thoroughly investigated in [5]. One of the results obtained in [5] is the explicit formula for $\sigma^{1}[n, k]_{p q}$ which is given by

$$
\sigma^{1}[n, k]_{p q}=\frac{1}{\langle[k \beta] \mid[\beta]\rangle_{k}^{p q}} \sum_{j=0}^{k}(-1)^{k-j} q^{\beta\left(\frac{k-j}{2}\right)}\left[\begin{array}{c}
k \tag{10}\\
j
\end{array}\right]_{p^{\beta} q^{\beta}}\langle[j \beta]+[\gamma] \mid[\alpha]\rangle_{n}^{p q},
$$

where $\langle[\beta] \mid[\alpha]\rangle_{n}^{p q}=\prod_{j=0}^{n-1}\left([\beta]_{p q}-[j \alpha]_{p q}\right)$.
The next theorem provides an expression for $\sigma^{1}[n, k]_{p q}$ in terms of the p, q-difference operator.

Theorem 2.3. For nonnegative integers n and k, and complex numbers α, β, and γ, we have

$$
\begin{equation*}
\sigma^{1}[n, k]_{p q}=\left[\Delta_{p^{\beta}, q^{\beta}, 1}^{k}\left(\frac{\langle[\beta x]+[\gamma] \mid[\alpha]\rangle_{n}^{p q}}{p^{\beta\left({ }_{2}^{x}\right)}\langle[k \beta] \mid[\beta]\rangle_{k}^{p q}}\right)\right]_{x=0} \tag{11}
\end{equation*}
$$

Proof. Applying Theorem 2.2 to the function f defined by

$$
f(x)=\frac{\langle[\beta x]+[\gamma] \mid[\alpha]\rangle_{n}^{p q}}{p^{\beta\binom{x}{2}}\langle[k \beta] \mid[\beta]\rangle_{k}^{p q}},
$$

gives the following:

$$
\left.\begin{array}{rl}
& {\left[\Delta_{p^{\beta}, q^{\beta}, 1}^{k}\left(\frac{\langle[x \beta]+[\gamma] \mid[\alpha]\rangle_{n}^{p q}}{\left(p^{\beta}\right)^{\binom{x}{2}}\langle[k \beta] \mid[\beta]\rangle_{k}^{p q}}\right)\right.}
\end{array}\right]_{x=0} .
$$

This is exactly the right-hand side of (10).
Remark 2.4. When $p=1$, it can easily be shown that (11) reduces to (6). This further gives (2) as a limit when $q \rightarrow 1$.

Another result in [5] is the exponential generating function for $\widehat{\sigma}^{2}[n, k]_{p q}^{\beta, \gamma}=$ $\sigma^{1}[n, k ; 0, \beta, \gamma]_{p, q}$ which is given by

$$
\Psi_{k}^{\beta, \gamma}(t)=\sum_{n \geq 0} \widehat{\sigma}^{2}[n, k]_{p q}^{\beta, \gamma} \frac{t^{n}}{n!}=\frac{e^{[\gamma]_{p q} t}}{\langle[k \beta] \mid[\beta]\rangle_{k}^{p q}} \sum_{j=0}^{k}(-1)^{k-j} q^{\beta\left(\left(_{2}^{k-j}\right)\right.}\left[\begin{array}{l}
k \tag{12}\\
j
\end{array}\right]_{p^{\beta} q^{\beta}} e^{[j \beta]_{p q} t} .
$$

This can also be expressed in terms of the p, q-difference operator as follows:
Theorem 2.5. The number $\sigma^{1}[n, k ; 0, \beta, \gamma]_{p, q}$ has the following exponential generating function in terms of p, q-difference operator:

$$
\begin{equation*}
\Psi_{k}^{\beta, \gamma}(t)=\left[\Delta_{p^{\beta}, q^{\beta}, 1}^{k}\left(\frac{e^{\left([x \beta]_{p, q}+[\gamma]_{p, q}\right) t}}{p^{\beta\binom{x}{2}}\langle[k \beta] \mid[\beta]\rangle_{k}^{p q}}\right)\right]_{x=0} . \tag{13}
\end{equation*}
$$

Remark 2.6. When $p=1$, we obtain the exponential generating function

$$
\Omega_{k}^{\beta, \gamma}(t)=\sum_{n=0}^{\infty} \sigma^{1}[n, k ; 0, \beta, \gamma]_{q} \frac{t^{n}}{n!}
$$

for $\sigma^{1}[n, k ; 0, \beta, \gamma]_{q}$ which is expressed in terms of a q-difference operator. That is,

$$
\Omega_{k}^{\beta, \gamma}(t)=\left[\Delta_{q, 1}^{k}\left(\frac{e^{\left([x \beta]_{q}+[\gamma]_{q}\right) t}}{\langle[k \beta] \mid[\beta]\rangle_{k}^{q}}\right)\right]_{x=0}
$$

where $\Omega_{k}^{\beta, \gamma}(t)=\sum_{n \geq 0} \sigma_{q}^{\beta, \gamma}[n, k] \frac{t^{n}}{n!}$.

3. p, q-analogue of Newton's interpolation formula

The Newton's interpolation formula

$$
\begin{equation*}
f(x)=\sum_{k=0}^{\infty}\binom{x}{k} \Delta^{k} f(0)=\sum_{k=0}^{\infty} \frac{\Delta^{k} f(0)}{k!}(x)_{k} \tag{14}
\end{equation*}
$$

can be used in transforming some identities into different forms. For instance, the unified generalization of Stirling numbers $S(n, k ; \alpha, \beta, \gamma)$ of Hsu and Shuie [7] which is defined by

$$
\begin{equation*}
(t \mid \alpha)_{n}=\sum_{k=0}^{\infty} S(n, k ; \alpha, \beta, \gamma)(t-\gamma \mid \beta)_{k} \tag{15}
\end{equation*}
$$

can be expressed as

$$
(\beta t+\gamma \mid \alpha)_{n}=\sum_{k=0}^{\infty} S(n, k ; \alpha, \beta, \gamma)(\beta t \mid \beta)_{k}=\sum_{k=0}^{\infty}\binom{t}{k} S(n, k ; \alpha, \beta, \gamma) \beta^{k} k!
$$

when t in (15) is being replaced by $\beta t+\gamma$. By Newton's Interpolation Formula,

$$
\beta^{k} k!S(n, k ; \alpha, \beta, \gamma)=\left[\Delta^{k}(\beta x+\gamma \mid \alpha)_{n}\right]_{x=0}=\sum_{k=0}^{n}(-1)^{n-k}\binom{n}{k}(\beta k+\gamma \mid \alpha)_{n} .
$$

Recently, a new q-analogue of Newton's interpolation formula was established by M. S. Kim and J. W. Son in [8]. More precisely,

$$
\begin{align*}
f_{q}(x)= & f_{q}\left(x_{0}\right)+\frac{\Delta_{q^{h}, h} f_{q}\left(x_{0}\right)\left[x-x_{0}\right]}{[1]_{q^{h}}![h]}+\frac{\Delta_{q^{h}, h}^{2} f_{q}\left(x_{0}\right)\left[x-x_{0}\right]\left[x-x_{1}\right]}{[2]_{q^{h}}![h]^{2}} \\
& +\cdots+\frac{\Delta_{q^{h}, h}^{m} f_{q}\left(x_{0}\right)\left[x-x_{0}\right]\left[x-x_{1}\right] \cdots\left[x-x_{m-1}\right]}{[m]_{q^{h}}![h]^{m}} \tag{16}
\end{align*}
$$

where $[x]=[x]_{q}, m$ is the degree of $f_{q}(x)$ and $x_{k}=x_{0}+k h, k=1,2, \ldots$ such that when $h=1$ and $x_{0}=0$ with $[x]^{(m)}=[x][x-1] \cdots[x-m+1]$, we obtain

$$
\begin{equation*}
f_{q}(x)=f_{q}(0)+\Delta_{q} f_{q}(0)[x]^{(1)}+\frac{\Delta_{q}^{2} f_{q}(0)[x]^{(2)}}{[2]!}+\cdots+\frac{\Delta_{q}^{m} f_{q}(0)[x]^{(m)}}{[m]!} \tag{17}
\end{equation*}
$$

These formulas can also be used to transform some q-identities into different forms. For example, the q-Stirling numbers of the second kind $S_{q}(n, k)$ which
are defined by Carlitz [1] as

$$
\begin{equation*}
[x]^{n}=\sum_{k=0}^{n} q^{\binom{k}{2}} S_{q}(n, k)[x]_{k} \tag{18}
\end{equation*}
$$

can be expressed using (17) as

$$
q^{\left(\begin{array}{c}
k
\end{array}\right)}[k]!S_{q}(n, k)=\left[\Delta_{q}^{k}[x]^{n}\right]_{x=0} .
$$

By (5), we get the following explicit formula for $S_{q}(n, k)$

$$
S_{q}(n, k)=\frac{1}{[k]!} \sum_{j=0}^{k}(-1)^{j} q^{\binom{j}{2}-\binom{k}{2}}\left[\begin{array}{l}
k \\
j
\end{array}\right]_{q}[k-j]^{n} .
$$

The non-central q-Stirling numbers of the second kind $S_{q}(n, k ; r, h)$ which are given in [12] by

$$
[x]^{n}=\sum_{k=0}^{n} q^{k r+\binom{k}{2} h} S_{q}(n, k ; r, h)[x ; r, h]_{k}
$$

can be expressed using (5) and (17) as

$$
\begin{aligned}
S_{q}(n, k ; r, h) & =\frac{1}{q^{k r+\binom{k}{2}}[h]^{k}[k]_{q^{h}}}\left\{\Delta_{q^{h}, h}^{k}[x]^{n}\right\}_{x=r} \\
& =\frac{q^{-k r-\binom{k}{2} h}}{[h]^{k}[k]_{q^{h}}!} \sum_{j=0}^{k}(-1)^{j} q^{\binom{j}{2} h}\left[\begin{array}{c}
k \\
j
\end{array}\right]_{q^{h}}[r+(k-j) h]^{n} .
\end{aligned}
$$

This is exactly the identity in [Theorem 4.1, 11]. Moreover, using (5) and (17), the non-central q-Lah numbers $L_{q}(n, k ; r, h)$ which are defined in [12] by

$$
[x ;-r,-h]_{n}=q^{n r+\binom{n}{2} h} \sum_{k=0}^{n} q^{k r+\binom{k}{2} h} L_{q}(n, k ; r, h)[x ; r, h]_{k}
$$

can be expressed as

$$
\begin{aligned}
& L_{q}(n, k ; r, h) \\
= & \frac{1}{[h]^{k}[k]_{q^{h}}}\left\{\Delta_{q^{h}, h}^{k}[x ;-r, h]_{n}\right\}_{x=r} \\
= & \frac{q^{-(n+k) r}-\left(\binom{k}{2}+\binom{k}{2}\right) h}{[h]^{k}[k]_{q^{h}}!} \sum_{j=0}^{k}(-1)^{j} q^{\binom{j}{2} h}\left[\begin{array}{c}
k \\
j
\end{array}\right]_{q^{h}}[r+(k-j) h ;-r,-h]_{n} .
\end{aligned}
$$

This explicit formula for $L_{q}(n, k ; r, h)$ does not appear in [12] and may be considered as a new identity for $L_{q}(n, k ; r, h)$.

We now consider a p, q-analogue of Newton's interpolation formula. With

$$
[x]_{\frac{q}{p}}=\frac{[x]_{p q}}{p^{x-1}}
$$

we obtain

$$
\begin{align*}
f_{\frac{q}{p}}(x)= & a_{0}+a_{1} p^{x_{0}+1} \frac{\left[x-x_{0}\right]_{p q}}{p^{x}}+a_{2} p^{2 x_{0}+h+2} \frac{\left[x-x_{0}\right]_{p q}\left[x-x_{1}\right]_{p q}}{p^{2 x}} \\
& +\cdots+a_{m} p^{m x_{0}+\binom{m}{2} h+m} \frac{\left[x-x_{0}\right]_{p q}\left[x-x_{1}\right]_{p q} \cdots\left[x-x_{m-1}\right]_{p q}}{p^{m x}} \tag{19}
\end{align*}
$$

It can easily be seen that

$$
\Delta_{(q / p)^{h}, h}^{k}=\frac{\Delta_{p^{h} q^{h}, h}^{k}}{p^{\binom{k}{2} h}}
$$

Hence, using the same argument in deriving (16), we have

$$
\begin{equation*}
a_{k}=\frac{p^{k(h-1)} \Delta_{p^{h} q^{h}, h}^{k} f_{\frac{q}{p}}\left(x_{0}\right)}{[k h]_{p q}[(k-1) h]_{p q} \cdots[h]_{p q}} . \tag{20}
\end{equation*}
$$

To illustrate this result, let us consider the number $\tilde{S}_{n, k}^{i, j}(p, q)$ which is defined in terms of a special case of the type II p, q-analogue of the generalized Stirling numbers $\tilde{S}_{n, k}^{2, p, q}(j, 0, i)$ by Remmel and Wachs [11] as

$$
\tilde{S}_{n, k}^{i, j}(p, q)=p^{-x(n-k)-\binom{n-k+1}{2} j} \tilde{S}_{n, k}^{2, p, q}(j, 0, i)
$$

This number is necessary in giving combinatorial interpretation of the type II p, q-analogue of the generalized Stirling numbers $\tilde{S}_{n, k}^{2, p, q}(j, 0, i)$ in terms of rook theory. Using the definition of $\tilde{S}_{n, k}^{2, p, q}(j, 0, i)$, we can have

$$
\begin{equation*}
[x]_{p, q}^{n}=\sum_{k=0}^{n} \tilde{S}_{n, k}^{i, j}(p, q) p^{(x-i)(n-k)+\binom{n-k+1}{2} j}\langle x-i \mid j\rangle_{k}^{p, q} \tag{21}
\end{equation*}
$$

where $\langle x \mid j\rangle_{n}^{p, q}=[x]_{p q}[x-j]_{p q}[x-2 j]_{p q} \cdots[x-(n-1) j]_{p q}$. Multiplying both sides of (21) by $1 / p^{n x}$, we get

$$
\frac{[x]_{p, q}^{n}}{p^{n x}}=\sum_{k=0}^{n} \tilde{S}_{n, k}^{i, j}(p, q) p^{-i(n-k)+\left(\begin{array}{c}
n-k+1
\end{array}\right) j} \frac{\left\langle x-\left.i\right|_{j}\right\rangle_{k}^{p, q}}{p^{k x}}
$$

Thus, using (9), (19) and (20), we obtain

$$
\begin{aligned}
\tilde{S}_{n, k}^{i, j}(p, q) & =\frac{p^{\binom{k}{2} j+i n-\binom{n-k+1}{2} j+k j}}{[k j]_{p q}[(k-1) j]_{p q} \cdots[j]_{p q}}\left[\Delta_{p^{h} q^{h}, h}^{k} \frac{[x]_{p q}^{n}}{p^{n x}}\right]_{x=i} \\
& =\frac{p^{\binom{k}{2} j+i n-\binom{n-k+1}{2} j+k j}}{[j]_{p q}^{k}[k]_{p^{j} q^{j}}!} \sum_{s=0}^{k}(-1)^{k-s} p^{j\binom{s}{2}} q^{j\binom{k-s}{2}}\left[\begin{array}{c}
k \\
j
\end{array}\right]_{p^{j} q^{j}} \frac{[i+s j]_{p q}^{n}}{p^{n(s j+i)}} \\
& =\frac{(2 k-n)(n+1) j / 2}{[j]_{p q}^{k}[k]_{p^{j} q^{j}}!} \sum_{s=0}^{k}(-1)^{k-s} p^{j\left(\binom{s}{2}-s n\right)} q^{j\binom{k-s}{2}}\left[\begin{array}{c}
k \\
j
\end{array}\right]_{p^{j} q^{j}}[i+s j]_{p q}^{n}
\end{aligned}
$$

This is exactly the formula in [11, Theorem 13].

The above p, q-analogue of Newton's interpolation formula may be useful in transforming certain identity of p, q-analogues of some Stirling-type numbers into a more explicit form. This result can simplify the work in deriving explicit formula of p, q-analogues of some Stirling-type numbers.

There are still much to be done in developing the theory of p, q-difference operator of degree n. One may possibly derive some identities parallel to that in the usual difference operator or differential operator. For instance, expressing $\Delta_{p, q}^{n}\{f(x) g(x)\}$ as a sum of the product of p, q-difference operators of lower degrees of the form

$$
\Delta_{p, q}^{n}\{f(x) g(x)\}=\sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{p q} P_{p q}(n, k) \Delta_{p, q}^{k} f(u(x)) \Delta_{p, q}^{n-k} g(v(x))
$$

for some functions $u(x)$ and $v(x)$ and some polynomial $P_{p q}(n, k)$ in p and q, will be an interesting property for $\Delta_{p, q}^{n}$ since it is analogous to the well-known Leibniz formula and the q-Leibniz formula in [10, p. 33].

Acknowledgement. The authors wish to thank the referee for reading and evaluating the manuscript.

References

[1] L. Carlitz, q-Bernoulli numbers and polynomials, Duke Math. J. 15 (1948), 987-1000.
[2] K. Conrad, A q-analogue of Mahler expansions I, Adv. Math. 153 (2000), no. 2, 185230
[3] R. B. Corcino, On p,q-binomial coefficients, Integers 8 (2008), A29, 16 pp.
[4] R. B. Corcino, L. C. Hsu, and E. L. Tan, A q-analogue of generalized Stirling numbers, Fibonacci Quart. 44 (2006), no. 2, 154-165.
[5] R. B. Corcino and C. Montero, A p, q-analogue of the generalized Stirling numbers, JP J. Algebra Number Theory Appl. 15 (2009), no. 2, 137-155.
[6] A. De Medicis and P. Leroux, Generalized Stirling numbers, convolution formulae and p, q-analogues, Canad. J. Math. 47 (1995), no. 3, 474-499.
7] L. C. Hsu and P. J.-S. Shiue, A unified approach to generalized Stirling numbers, Adv. in Appl. Math. 20 (1998), no. 3, 366-384.
[8] M. S. Kim and J. W. Son, A note on q-difference operators, Commun. Korean Math. Soc. 17 (2002), no. 3, 423-430.
9] P. Leroux, Reduced matrices and q-log-concavity properties of q-Stirling numbers, J. Combin. Theory Ser. A 54 (1990), no. 1, 64-84.
[10] D. S. Moak, The q-analogue of the Lagurre polynomials, J. Math. Anal. Appl. 81 (1981), no. 1, 20-47.
[11] J. B. Remmel and M. L. Wachs, Rook theory, generalized Stirling numbers and (p, q)analogues, Electron. J. Combin. 11 (2004), no. 1, Research Paper 84, 48 pp.
[12] S.-Z. Song, G.-S. Cheon, Y.-B. Jun, and L. B. Beasley, A q-analogue of the generalized factorial numbers, J. Korean Math. Soc. 47 (2010), no. 3, 645-657.
[13] M. Wachs and D. White, p, q-Stirling numbers and set partition statistics, J. Combin. Theory Ser. A 56 (1991), no. 1, 27-46.

Roberto B. Corcino
Department of Mathematics
Mindanao State University
Marawi City 9700, Philippines
E-mail address: rcorcino@yahoo.com
Charles B. Montero
Department of Mathematics
Mindanao State University
Marawi City 9700, Philippines
E-mail address: charlesbmontero@yahoo.com

[^0]: Received June 28, 2010; Revised February 11, 2011.
 2010 Mathematics Subject Classification. 05A30, 05A15, 11B65, 11B73.
 Key words and phrases. p, q-difference operator, q-Stirling numbers, q-Lah numbers, Newton's interpolation formula, exponential generating function.

 This research was funded by Mindanao State University-Main Campus, Marawi City, Philippines and the Commission on Higher Education (Philippines).

