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ON p, g-DIFFERENCE OPERATOR

ROBERTO B. CORCINO AND CHARLES B. MONTERO

ABSTRACT. In this paper, we define a p, g-difference operator and ob-
tain an explicit formula which is used to express the p, g-analogue of the
unified generalization of Stirling numbers and its exponential generating
function in terms of the p, g-difference operator. Explicit formulas for the
non-central g-Stirling numbers of the second kind and non-central g-Lah
numbers are derived using the new g-analogue of Newton’s interpolation
formula. Moreover, a p, g-analogue of Newton’s interpolation formula is
established.

1. Introduction

The difference operator denoted by Aj is a mapping that assigns to every
function f the function Ay f defined by the rule

Anf(t) = f(t+h) = f(?)

for every real number t. Higher order differences are obtained by repeated
operations of the difference operator, that is, for k > 2,

ARF(t) = Ap(AFT f(1) = AN F(E+ h) — AT F(1).

In fact, we have

P =S~ (Z) Flt+kh) n>2.
k=0
The unified generalization of Stirling numbers of Hsu and Shuie [7], denoted
by S(n, k;a, 8,7), is expressed explicitly in [4] as

1 [k
(1) S(nvk;aaﬁv ):7 (_1)k7] . (ﬂ"’ |O‘)n7
! klﬂ’“; <,) T
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where (85 +~|a), = [/ (8j +~ — ia). This can further be written in terms
of difference operator as

B stk = o (PhY]
The above explicit formula can be expressed as

nla™ $~ 1 kes (R ((B/a)i + (v/)
B Stukias) = g S (5) (e 0T,

As mentioned in Remark 1 in [4], we can be able to obtain the following expo-
nential generating function for S(n, k; «, 58,7)

4)  Pu(t) = Z S(n, k; oz,ﬁyy)t k'ﬁk (14 at)r/e {(1 +at)Ble - 1} k

n=0

using formula (3). More precisely, by making use of the Vandermonde’s con-
volution identity and Cauchy’s rule for the multiplication of series, we find

-3 s( St ks, B,) i o kj<k_)<<5/a>j+<v/a>>tn
0 o . J n
i Hiat:o OE)
,{./13162 >{ 7/04 Ai(ﬂ/a> )}

e

|
=)

M:

pn=0
(B]+’Y)/O‘

-y () e

which, consequently, gives (4). With the preceding equation, we can then
express @ (t) in terms of difference operator as follows

Ny
! KBk ’
=0

A g-analogue of the difference operator, known as g-difference operator, was
defined and thoroughly discussed in [2, 8]. More precisely, the g-difference
operator of degree n, denoted by A™ 0.ho 18 defined to be a mapping that assigns
to every function f the function A}, f defined by the rule

LS 4
= Zs(nvlﬁaaﬂa’}/)ﬁ =

n=0

n—1

Agnflz) = H(Eh—qj) f(x), n>1,

=0
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where E}, is the shift operator defined by Fjf(x) = f(x + h). As convention,
define Ag,h =1 (the identity map). With the explicit formula
n - k n
(5) Apufe) =3 (0" [[] fa+ = k)
k=0
for the g-difference operator, we can write the g-analogue o'[n, k; o, 3,7], for
the unified generalization of Stirling numbers (see [4]) as

([Ba] + ]l[o)?
(6) o, ki, By = [A’;B 1 ()] ,
! PO 8, /L,

where ([]|[a])}, = TT}=, (8, — lial,) and

the g-binomial coefficients.

In this paper, we define a p,¢-difference operator and obtain an explicit
formula analogous to (5). Also, we express the p, g-analogue a'[n, k; o, 3,7]pq
of the unified generalization of Stirling numbers and its exponential generating
function (when o = 0) in terms of the p,g-difference operator. Moreover,
explicit formulas for the non-central ¢-Stirling numbers of the second kind and
non-central ¢g-Lah numbers are derived using the new g-analogue of Newton’s
interpolation formula, and a p, g-analogue of Newton’s interpolation formula is
established.

2. The p, g-difference operator and its applications

Before we define the p, g-difference operator, we need to introduce first the
p, g-binomial coefficients which are necessary in obtaining the result in this
section.

The p, g-binomial coefficients, denoted by [Z]pq, were defined in [3] as follows

" I

A
i=1 P4

n—i+1 _ n—i+1

These numbers were shown in [3] to satisfy the inverse relation

n

I = Z(_1>n,—jp("L;j) [ﬂpq gj = gn = éq("z") {7]” fi

=0 J

and the triangular recurrence relation

n+1 P -k | n
(8) [ } =p +q"" :
] = e[

One may see [3] for more properties of [Z]pq
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Now, let us define the p, g-difference operator parallel to the definition of
g-difference operator in [2, 8.

Definition 2.1. The p, g-difference operator of degree n, denoted by A7 .
is a mapping that assigns to every function f the function A7 , f defined by
the rule

n—1

AR @) = [[0En =) f), n=>1

7=0
As convention, define Ag » =1 (the identity map).

Note that the g-difference operator of degree n A” 1, can be obtained from
AD ,.n by setting p =1, which further gives the dlfference operator A} when ¢
tends to 1.

To evaluate the operator for some particular degrees, we have

Apgnf(@) = (Bn— 1)f(_x) =Enf(z) - f(z) = f(z+h) - f(z)
=p04® || gm0 [{] s

- pq

A2 W f(@) = pERf(x) — (p+ Q) Enf(x) + qf (z)

=4 3] sarom -0 2] sorn)

With these observations, we can now state the following theorem.

Theorem 2.2. For all integers n > 1, we have

n

9 A @) =3 (1) pl" ) mm f(z+ (n—k)h).

k=0
Proof. Suppose for some n > 1, we have

n

n n—k k n
A qnd @) =3 1 DB V] fot (= i)
k=0
Now, by definition, we have
Azz,lhf( ) =p"Ep (AZ q,hf(l‘)> —q" (Az,q,hf(w)) :
Using the inductive hypothesis, we obtain

n

Ayt (@) = ];) (—1)F (7)) [:Lq f@+(n+1-k)h)

+Zn: yert ("2 k)q(§)+n[”} F@+ (n — k)h).

k
k=0
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Reindexing the sum and using the fact that [nil] = [fl} =0, we have
pq pq
n+1 . . n
k pp(noF
AL ) = 3 (—1)F pr (7)) [k]qu(x+ (n+1— k)h)
k=0
s n+l—k k—1 n
+ Z (—1)k+1p( 2 )q( 2 )+n |: ] f($U+ <n+ 1_ k’)h)
k-1
k=0 pq
With
n+ (HQk) = <n+2 k)+k and n+(k2 ): (];)—i-n—i-l—k,
we have
AZ:’]_}}L (z)

_ f(—lfp("*%’k)q(g) {p‘“ [Z]pmn“‘k [kﬁl] }f<w+<n+1—k>h>~

k=0 rq

Application of (8) completes the proof of the theorem. O

Clearly, when p = 1, Theorem 2.2 will give (5).

A p, g-analogue of the classical Stirling numbers first appeared in the work
of Wachs and White [13], Leroux [9], and Medicis and Leroux [6]. They were
able to give combinatorial interpretations of the p, g-analogue in terms of re-
stricted growth functions, rook placements on stairstep Ferrers boards, and in
the context of 0-1 tableau. Recently, a p,g-analogue of the unified general-
ization of Stirling numbers, denoted by o[n, k],, was defined and thoroughly
investigated in [5]. One of the results obtained in [5] is the explicit formula for
o'[n, k]pq which is given by

1 k _; ko k . g
(10) al[n7k1pq:W;<fl>k ol >[j]pﬁqﬁ<bm+m|[a1>n,

—1 .
where ([8][[a])y" = TT;Zo ([Blpg — [ialpa)-

The next theorem provides an expression for ol[n,k],, in terms of the
p, g-difference operator.

Theorem 2.3. For nonnegative integers n and k, and complex numbers o, (3,
and vy, we have

1 K ([B2] + [[ed)y
11 o [n,klpg = Ai”ﬂ a?,1 3 7 .
1) A [ , <p6<2> <[km|w]>z‘Zﬂ -
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Proof. Applying Theorem 2.2 to the function f defined by

_ {[B2] + i)
p*G) (k3| [8))2

gives the following:

" <<[w6] l[a])?? )]
6)
(%)) ([kB)| (82

(-1 p*("2)g ’[’“
5’67 J

J } pBgh

Il
s

B]-F[VH[@D£?
pPa° ) (k8] [8))2

DI Ll

j=

i ) [ﬂ Uk — 8] + [l [a))??

1 k
= T 2= Y
T 2

i ) [ﬂ A+ el

This is exactly the right-hand side of (10). O

Remark 2.4. When p = 1, it can easily be shown that (11) reduces to (6). This
further gives (2) as a limit when ¢ — 1.

Another result in [5] is the exponential generating function for 52[n, k|5, =
aln, k;0,B,7]p.q which is given by
(12)

6[7 pat k k j k .
WPty = 3 3, K Z 1) g8 )H CliBluat
> Tl q J1pBgs
n>0 j= ptq

This can also be expressed in terms of the p, g-difference operator as follows:

Theorem 2.5. The number o'[n, k;0,3,7],, has the following exponential
generating function in terms of p, q-difference operator:

(13) \Ijﬁvfy(t) = [Ak ( 6([xﬁ]PvQ+[7]p,q)t >‘|
k pf,q°,1 pﬁ(;) ([k‘ﬁ]‘[ﬁ])iq IZO.

Remark 2.6. When p = 1, we obtain the exponential generating function

Q27(t) Zank‘Oﬂfy]

n=0
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for o [n, k; 0, 3, 7], which is expressed in terms of a g-difference operator. That
is,
([zBla+[]q)t
- ()L
¥ I (EBIBNE /) aso
where Q27(t) = Ym0 ol [n, k5 Ay

3. p, g-analogue of Newton’s interpolation formula

The Newton’s interpolation formula

(14) 1@ =3 (3)akr0 =3 S wn

k=0 k=0

can be used in transforming some identities into different forms. For instance,
the unified generalization of Stirling numbers S(n, k; «, 3,+) of Hsu and Shuie
[7] which is defined by

(15) (tlo)n = S(n, ks, B,7)(t = 7B)x
k=0
can be expressed as
Bt la), = Stk B.7) (B8) = 3 () str ki sppn
k=0 k=0

when ¢ in (15) is being replaced by St++. By Newton’s Interpolation Formula,

n

B RIS (n, ks, B,) = [AR (B +ola)a],_y = S (~1)" ( )(6k+m>

k=0
Recently, a new g-analogue of Newton’s interpolation formula was estab-
lished by M. S. Kim and J. W. Son in [8]. More precisely,

Agonfalao)le —xo] A2 folwo)lr — wollx — a1]
folz) = fo(zo) + : [1]gn'[A] ; [2]gn![R)?

Agi pfa(@o)[z — zo][x —an] -+ [# — xp]
[m]gn![p]™ ’

(16)
qh
where [z] = [z]4, m is the degree of f,(z) and z, = xo + kh, k = 1,2,... such
that when h = 1 and xg = 0 with [2](™) = [2][z — 1] -+ - [x — m + 1], we obtain

A2 f4(0)[z]®) A7 fo(0)[a]) ™)
B R 77 R

These formulas can also be used to transform some g¢-identities into different
forms. For example, the ¢-Stirling numbers of the second kind Sy(n, k) which

(A7) fo(z) = f,(0) + Aqfq(o)[x](l) +
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are defined by Carlitz [1] as

(18) " = 3 ¢() S, (n, k)]s

k=0

can be expressed using (17) as
k
@[S, (n. k) = [AFl"],_, -
By (5), we get the following explicit formula for Sq(n, k)

k j k
Sy(n, k) = ﬁ _:OH)j g®)-() mq [k — 4]

The non-central g-Stirling numbers of the second kind Sy(n, k;r, h) which
are given in [12] by

x}n _ Z qkT+(§)hSq(n, k, T, h)[l’, T, h]k
k=0

can be expressed using (5) and (17) as

Sq(n,k;r h) = - ! {Akh’h[x]"}

I
=
-
S
(]~
—
A
S~—
<.
(=)
—
o
&
>
| —
<
—_
[~}
>
=
+
—
ol
\
<
S~—
=
3

This is exactly the identity in [Theorem 4.1, 11]. Moreover, using (5) and (17),
the non-central ¢-Lah numbers Ly(n, k; 7, h) which are defined in [12] by
n
[xy -, —h = nT+ hzqk hL n If r, h)[x r, h]
k=0
can be expressed as
Lq(n7 k7 T, h)
1
= o { Al a7 il )
[h]k[k]qh { qh’h[x7 " ] T=r

—(ntk)r=((3)+(3))h &

q i ( k N
= 3 (1) g3 {j]qh[r+(l@ G)h; =1, — ],

§=0
This explicit formula for Ly (n,k;r, h) does not appear in [12] and may be
considered as a new identity for Lq(n, k;r, k).

We now consider a p, g-analogue of Newton’s interpolation formula. With

_ [zl
[I’]% - pw_la
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we obtain

r — X r — X r — I

f% (CL’) = a 4 alpw0+l[ px ]pq + a2p2w0+h+2[ ]Z;]Q[x }Pq
(19) T aypm ot (B)hEm [z = @olpg[r — 21]pq - - [7 — J'3m—1}pq.
pmw
It can easily be seen that
k
AF Aphq’Hh
(a/p)", p(’;)h ’

Hence, using the same argument in deriving (16), we have
pPOTVAR, L fa (o)
[kh]pg[(k — 1)Alpg - - [hlpg

(20) ap =

To illustrate this result, let us consider the number S ( p,q) which is defined
in terms of a special case of the type II p, g-analogue of the generalized Stirling
numbers $>%9(j,0,7) by Remmel and Wachs [11] as

i3 (p,q) = p~ = (ETIg2Ra 5 0 4.

This number is necessary in giving combinatorial 1nterpretation of the type II
p, g-analogue of the generalized Stirling numbers S #9(4,0,4) in terms of rook

theory. Using the definition of $2%9(j,0,1), we can have

- i z—i)(n— n—kt1l) S AP,
B0 b= 3 S b g

k=

Ip

where (z|7)29 = [z]pglr — Flpglx — 24]pg -+ - [ — (n — 1)j]pq. Multiplying both
sides of (21) by l/p , we get

n
i+ (ks 2 i
Z Sn k p’ ( )+( ’ )J pkx :
Thus, using (9), (19) and (20), we obtain
k\ in— n—k+1Y) . . n
S’i’jk(p Q) = p(2)]+ ( 2 )J+kj |: kh h h [x]pq:l
" [kdlpal(k = Djlpg - [ilpg L 77" 2™ |,y

_pPrm U et [K] sl
= G1E T&] 0o (1) "p'\/q ; pn(si+i)
JpgFlpiqi: s=0 Jlpigi P

k=) (n+1)j/2 & yEs () -sm) (*57) [ -
R RO O] e,

This is exactly the formula in [11, Theorem 13].
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The above p, g-analogue of Newton’s interpolation formula may be useful in
transforming certain identity of p, g-analogues of some Stirling-type numbers
into a more explicit form. This result can simplify the work in deriving explicit
formula of p, g-analogues of some Stirling-type numbers.

There are still much to be done in developing the theory of p, ¢-difference
operator of degree n. One may possibly derive some identities parallel to that in
the usual difference operator or differential operator. For instance, expressing
AP Af(z)g(z)} as a sum of the product of p, g-difference operators of lower
degrees of the form

pPq

Ay A @g@)} =30 [7] Paln )AL f(u@) A7 g(v(a))
k=0

for some functions u(x) and v(z) and some polynomial P,,(n,k) in p and g,
will be an interesting property for A7 since it is analogous to the well-known
Leibniz formula and the g-Leibniz formula in [10, p. 33].

Acknowledgement. The authors wish to thank the referee for reading and
evaluating the manuscript.

References

[1] L. Carlitz, g-Bernoulli numbers and polynomials, Duke Math. J. 15 (1948), 987-1000.
[2] K. Conrad, A g-analogue of Mahler expansions I, Adv. Math. 153 (2000), no. 2, 185—
230.
[3] R. B. Corcino, On p, g-binomial coefficients, Integers 8 (2008), A29, 16 pp.
[4] R. B. Corcino, L. C. Hsu, and E. L. Tan, A g-analogue of generalized Stirling numbers,
Fibonacci Quart. 44 (2006), no. 2, 154-165.
[5] R. B. Corcino and C. Montero, A p, g-analogue of the generalized Stirling numbers, JP
J. Algebra Number Theory Appl. 15 (2009), no. 2, 137-155.
[6] A. De Medicis and P. Leroux, Generalized Stirling numbers, convolution formulae and
D, g-analogues, Canad. J. Math. 47 (1995), no. 3, 474-499.
[7] L. C. Hsu and P. J.-S. Shiue, A unified approach to generalized Stirling numbers, Adv.
in Appl. Math. 20 (1998), no. 3, 366-384.
[8] M. S. Kim and J. W. Son, A note on g-difference operators, Commun. Korean Math.
Soc. 17 (2002), no. 3, 423-430.
[9] P. Leroux, Reduced matrices and g-log-concavity properties of q-Stirling numbers, J.
Combin. Theory Ser. A 54 (1990), no. 1, 64-84.
[10] D. S. Moak, The g-analogue of the Lagurre polynomials, J. Math. Anal. Appl. 81 (1981),
no. 1, 20-47.
[11] J. B. Remmel and M. L. Wachs, Rook theory, generalized Stirling numbers and (p, q)-
analogues, Electron. J. Combin. 11 (2004), no. 1, Research Paper 84, 48 pp.
[12] S.-Z. Song, G.-S. Cheon, Y.-B. Jun, and L. B. Beasley, A g-analogue of the generalized
factorial numbers, J. Korean Math. Soc. 47 (2010), no. 3, 645-657.
[13] M. Wachs and D. White, p, g-Stirling numbers and set partition statistics, J. Combin.
Theory Ser. A 56 (1991), no. 1, 27-46.



ON p, ¢-DIFFERENCE OPERATOR

ROBERTO B. CORCINO

DEPARTMENT OF MATHEMATICS
MINDANAO STATE UNIVERSITY
Marawt CiTy 9700, PHILIPPINES
E-mail address: rcorcino@yahoo.com

CHARLES B. MONTERO

DEPARTMENT OF MATHEMATICS

MINDANAO STATE UNIVERSITY

MARrRAWI CITY 9700, PHILIPPINES

E-mail address: charlesbmontero@yahoo.com

547



