VALUE DISTRIBUTION OF SOME q-DIFFERENCE POLYNOMIALS

Na Xu and Chun-Ping Zhong

Abstract

For a transcendental entire function $f(z)$ with zero order, the purpose of this article is to study the value distributions of q-difference polynomial $f(q z)-a(f(z))^{n}$ and $f\left(q_{1} z\right) f\left(q_{2} z\right) \cdots f\left(q_{m} z\right)-a(f(z))^{n}$. The property of entire solution of a certain q-difference equation is also considered.

1. Introduction and main results

A meromorphic function $f(z)$ means meromorphic in the complex plane \mathbb{C}. If no poles occur, then $f(z)$ reduces to an entire function. For every real number $x \geq 0$, we define $\log ^{+} x:=\max \{0, \log x\}$. Assume that $n(r, f)$ counts the number of the poles of f in $|z| \leq r$, each pole is counted according to its multiplicity, and that $\bar{n}(r, f)$ counts the number of the distinct poles of f in $|z| \leq r$, ignoring the multiplicity. The characteristic function of f is defined by

$$
T(r, f):=m(r, f)+N(r, f),
$$

where

$$
N(r, f):=\int_{0}^{r} \frac{n(t, f)-n(0, f)}{t} d t+n(0, f) \log r
$$

and

$$
m(r, f):=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log ^{+}\left|f\left(r e^{i \theta}\right)\right| d \theta
$$

The notation $\bar{N}(r, f)$ is similarly defined with $\bar{n}(r, f)$ instead of $n(r, f)$. For more notations and definitions of the Nevanlinna's value distribution theory of meromorphic functions, we refer to [10, 17].

A meromorphic function $\alpha(z)$ is called a small function with respect to $f(z)$, if $T(r, \alpha)=S(r, f)$, where $S(r, f)$ denotes any quantity satisfying $S(r, f)=$ $o(T(r, f))$ as $r \rightarrow \infty$ outside a possible exceptional set E of logarithmic density

Received October 26, 2014; Revised June 6, 2015
2010 Mathematics Subject Classification. 30D35, 39A05.
Key words and phrases. q-difference polynomial, value distribution, entire function.

0 . The order and the exponent of convergence of zeros of meromorphic function $f(z)$ is respectively defined as

$$
\begin{aligned}
& \sigma(f)=\limsup _{r \rightarrow \infty} \frac{\log T(r, f)}{\log r} \\
& \lambda(f)=\limsup _{r \rightarrow \infty} \frac{\log N\left(r, \frac{1}{f}\right)}{\log r}
\end{aligned}
$$

The difference operators for a meromorphic function f are defined as

$$
\begin{aligned}
& \triangle_{c} f(z)=f(z+c)-f(z) \quad(c \neq 0) \\
& \nabla_{q} f(z)=f(q z)-f(z) \quad(q \neq 0,1)
\end{aligned}
$$

A Borel exceptional value of $f(z)$ is any value a satisfying $\lambda(f-a)<\sigma(f)$.
The zero distribution of differential polynomials is a classical topic in the theory of meromorphic functions. In [9], Hayman discussed Picard values of a meromorphic function and its derivatives. In particular, he proved the following result.
Theorem A ([9]). Let $f(z)$ be a transcendental entire function. Then
(a) for $n \geq 3$ and $a \neq 0, \psi(z)=f^{\prime}(z)-a(f(z))^{n}$ assumes all finite values infinitely often.
(b) For $n \geq 2, \phi(z)=f^{\prime}(z)(f(z))^{n}$ assumes all finite values except possibly zero infinitely often.

Recently, the difference variant of Nevanlinna theory has been established independently in $[2,6,7,8]$. With the development of difference analogue of Nevanlinna theory, many authors paid their attentions to the difference version of Hayman conjecture. For example, Laine and Yang [12] proved that if $f(z)$ is a transcendental entire function of finite order, c is a nonzero complex constant and $n \geq 2$, then $f^{n}(z) f(z+c)$ takes every nonzero value infinitely often.

Liu and Qi [14] proved the following theorem by considering q-difference polynomials, which can be seen as a q-difference counterpart of Theorem $\mathrm{A}(\mathrm{b})$.
Theorem B ([14, Theorems 1.1 and 1.2]). If $f(z)$ is a transcendental meromorphic function of zero order, a, q are nonzero complex constants. If $n \geq 6$, then $f^{n}(z) f(q z+c)$ assumes every nonzero value $b \in \mathbb{C}$ infinitely often. If $n \geq 8$, then $f^{n}(z)+a[f(q z+c)-f(z)]$ assumes every nonzero value $b \in \mathbb{C}$ infinitely often.

In [13], Liu-Liu-Cao extended this result by considering zeros distribution of q-difference products $f^{n}(z)\left(f^{m}(z)-a\right) f(q z+c)$ and $f^{n}(z)\left(f^{m}(z)-a\right)[f(q z+$ $c)-f(z)$] for the meromorphic function f of zero order.
Theorem C ([13, Theorems 1.1 and 1.3]). If $f(z)$ is a transcendental meromorphic function of zero order, a, q are nonzero complex constants, $\alpha(z)$ is a nonzero small function with respect to f. If $n \geq 6$, then $f^{n}(z)\left(f^{m}(z)-a\right) f(q z+$ c) $-\alpha(z)$ has infinitely many zeros. If $n \geq 7$, then $f^{n}(z)\left(f^{m}(z)-a\right)[f(q z+$ $c)-f(z)]-\alpha(z)$ has infinitely many zeros.

In this paper, we obtain a q-difference counterpart of Theorem A(a) and generalize it to more general cases.

Theorem 1.1. Let $f(z)$ be a transcendental entire function of zero order, a be a nonzero complex constant, $q \in \mathbb{C} \backslash\{0,1\}, n \in \mathbb{N}^{+}$. Considering q-difference polynomial

$$
H(z)=f(q z)-a(f(z))^{n}
$$

(1) if $n \geq 3$, then $H(z)-\alpha(z)$ has infinitely many zeros, where $\alpha(z)$ is a nonzero small function with respect to $f(z)$.
(2) In particular, if $\alpha(z)$ is a nonzero rational function, then the condition $n \geq 3$ can be reduced to $n>1$.

From the proof of Theorem 1.1(2), one can immediately get the following corollary.
Corollary 1.2. The q-difference equation $f(q z)-a(f(z))^{n}-R(z)=0$ has no transcendental entire solution of zero order when $n>1$, where $R(z)$ is a nonzero rational function.

In the following, we obtain more general results by considering the value distribution of q-difference polynomial

$$
F(z)=f\left(q_{1} z\right) f\left(q_{2} z\right) \cdots f\left(q_{m} z\right)-a(f(z))^{n}
$$

Theorem 1.3. Let $f(z)$ be a transcendental entire function of zero order, $q_{1}, q_{2}, \ldots, q_{m}$ be nonzero complex constants such that at least one of them is not equal to $1, a \in \mathbb{C} \backslash\{0\}$, $m, n \in \mathbb{N}^{+}$. Considering q-difference polynomial

$$
F(z)=f\left(q_{1} z\right) f\left(q_{2} z\right) \cdots f\left(q_{m} z\right)-a(f(z))^{n}
$$

(1) if $m<\frac{n-1}{2-\frac{1}{n}}$, then $F(z)-\alpha(z)$ has infinitely many zeros, where $\alpha(z)$ is a nonzero small function with respect to $f(z)$.
(2) In particular, if $\alpha(z)$ is a nonzero rational function, then the condition $m<\frac{n-1}{2-\frac{1}{n}}$ can be reduced to $n>m$.

Remark. Theorem 1.1 is a special case of Theorem 1.3 , for $m=1$. Thus, we need only give the proof of Theorem 1.3.

Corollary 1.4. The q-difference equation $f\left(q_{1} z\right) f\left(q_{2} z\right) \cdots f\left(q_{m} z\right)-a(f(z))^{n}-$ $R(z)=0$ has no transcendental entire solution of zero order when $n>m$, where $R(z)$ is a nonzero rational function.

However, by another way of proving, we have the following more general result.

Theorem 1.5. Let $f(z)$ be a transcendental entire function of zero order, $q_{1}, q_{2}, \ldots, q_{m}$ be nonzero complex constants such that at least one of them is not equal to 1 , $a \in \mathbb{C} \backslash\{0\}$, $m, n \in \mathbb{N}^{+}$. If $m \neq n$, then $F(z)-\alpha(z)$ has infinitely many zeros, where $\alpha(z)$ is a nonzero small function with respect to $f(z)$.

Note that all of the above theorems discuss the case when $f(z)$ is a transcendental entire function of zero order. It is natural to ask how about value distribution of q-difference polynomial $F(z)$ for the transcendental entire function $f(z)$ with positive order? We have the following theorem.
Theorem 1.6. Let $f(z)$ be a transcendental entire function of finite and positive order $\sigma(f), q_{1}, q_{2}, \ldots, q_{m}$ be nonzero complex constants such that at least one of them is not equal to 1 and $q_{1}^{\sigma(f)}+q_{2}^{\sigma(f)}+\cdots+q_{m}^{\sigma(f)} \neq n, a \in \mathbb{C} \backslash\{0\}$, $m, n \in \mathbb{N}^{+}$. If $f(z)$ has finitely many zeros, then $F(z)-\alpha(z)$ has infinitely many zeros, where $\alpha(z)$ is a nonzero small function with respect to $f(z)$.

Next, we will consider a special q-difference equation and obtain the following result.

Theorem 1.7. Let $G(z)$ be an entire function with order less than one, q_{1}, q_{2}, \ldots, q_{m} be nonzero complex constants such that at least one of them is not equal to 1 and $q_{1}^{\sigma(f)}+q_{2}^{\sigma(f)}+\cdots+q_{m}^{\sigma(f)} \neq n$, $a \in \mathbb{C} \backslash\{0\}$, $m, n \in \mathbb{N}^{+}$. Suppose that $f(z)$ is a finite and positive order transcendental entire solution of the q-difference equation

$$
\begin{equation*}
f\left(q_{1} z\right) f\left(q_{2} z\right) \cdots f\left(q_{m} z\right)-a(f(z))^{n}=G(z) \tag{1.1}
\end{equation*}
$$

Then $f(z)$ has infinitely many zeros.

2. Lemmas

To prove our results, we need some lemmas. The first one is the characteristic function relationship between $f(z)$ and $f(q z)$, provided that $f(z)$ is a nonconstant meromorphic function of zero order.

Lemma 2.1 ([19]). If $f(z)$ is a nonconstant meromorphic function of zero order, and $q \in \mathbb{C} \backslash\{0\}$, then

$$
\begin{equation*}
T(r, f(q z))=(1+o(1)) T(r, f) \tag{2.1}
\end{equation*}
$$

on a set of lower logarithmic density 1.
Lemma 2.2 ([2]). Let $f(z)$ be a nonconstant meromorphic function of zero order, and let $q \in \mathbb{C} \backslash\{0\}$, then

$$
\begin{equation*}
m\left(r, \frac{f(q z)}{f(z)}\right)=S(r, f) \tag{2.2}
\end{equation*}
$$

on a set of logarithmic density 1.
The following Lemma 2.3 is the well-known Weierstrass factorization theorem and Hadamard factorization theorem.

Lemma 2.3 ([1]). If an entire function f has a finite exponent of convergence $\lambda(f)$ for its zero-sequence, then f has a representation in the form

$$
f(z)=Q(z) e^{g(z)}
$$

satisfying $\lambda(Q)=\sigma(Q)=\lambda(f)$. Further, if f is of finite order, then g in the above form is a polynomial of degree less or equal to the order of f.
Lemma 2.4 ([18]). Suppose that $f_{1}(z), f_{2}(z), \ldots, f_{n}(z),(n \geq 2)$ are meromorphic functions and $g_{1}(z), g_{2}(z), \ldots, g_{n}(z)$ are entire functions satisfying the following conditions
(1) $\sum_{j=1}^{n} f_{j}(z) e^{g_{j}(z)} \equiv 0$;
(2) $g_{j}(z)-g_{k}(z)$ are not constants for $1 \leq j<k \leq n$;
(3) for $1 \leq j \leq n, 1 \leq h<k \leq n, T\left(r, f_{j}\right)=o\left(T\left(r, e^{g_{h}-g_{k}}\right)\right)(r \rightarrow \infty, r \notin E)$.

Then $f_{j}(z) \equiv 0(j=1,2, \ldots, n)$.

3. The proofs

3.1. Proof of Theorem 1.3

(1) Denote

$$
\psi(z)=\frac{f\left(q_{1} z\right) \cdots f\left(q_{m} z\right)-\alpha(z)}{a(f(z))^{n}}
$$

The condition $m<\frac{n-1}{2-\frac{1}{n}}$ implies $n>m$. Since $f(z)$ is a transcendental entire function of zero order, by Lemma 2.1, we obtain

$$
\begin{aligned}
n T(r, f) & =T\left(r, \frac{f\left(q_{1} z\right) \cdots f\left(q_{m} z\right)-\alpha(z)}{a \psi(z)}\right) \\
& \leq T\left(r, f\left(q_{1} z\right) \cdots f\left(q_{m} z\right)\right)+T(r, \psi(z))+O(1) \\
& \leq m T(r, f)+T(r, \psi)+S(r, f)
\end{aligned}
$$

which implies

$$
\begin{equation*}
(n-m) T(r, f)+S(r, f) \leq T(r, \psi) \tag{3.1}
\end{equation*}
$$

on a set of lower logarithmic density 1 . The above inequality implies that $\psi(z)$ is transcendental since $f(z)$ is a transcendental entire function and $n>m$. On the other hand,

$$
\begin{aligned}
T(r, \psi) & =T\left(r, \frac{f\left(q_{1} z\right) \ldots f\left(q_{m} z\right)-\alpha(z)}{a(f(z))^{n}}\right) \\
& \leq T\left(r, f\left(q_{1} z\right) \ldots f\left(q_{m} z\right)\right)+n T(r, f(z))+O(1)
\end{aligned}
$$

thus by Lemma 2.1, we get

$$
\begin{equation*}
T(r, \psi) \leq(n+m) T(r, f)+S(r, f) \tag{3.2}
\end{equation*}
$$

By (3.1), (3.2), and $n>m$, we obtain

$$
T(r, \psi)=O(T(r, f))
$$

Suppose $F(z)-\alpha(z)$ has finitely many zeros, then $\psi(z)$ has only finite 1-points, that is

$$
N\left(r, \frac{1}{\psi-1}\right)=S(r, \psi)=S(r, f)
$$

Thus we get from the Second Main Theorem that

$$
\begin{aligned}
T(r, \psi) & \leq \bar{N}(r, \psi)+\bar{N}\left(r, \frac{1}{\psi}\right)+\bar{N}\left(r, \frac{1}{\psi-1}\right)+S(r, \psi) \\
& \leq \frac{1}{n} N(r, \psi)+\bar{N}\left(r, \frac{1}{f\left(q_{1} z\right) \cdots f\left(q_{m} z\right)-\alpha(z)}\right)+S(r, \psi) \\
& \leq \frac{1}{n} T(r, \psi)+m T(r, f)+S(r, \psi)+S(r, f)
\end{aligned}
$$

which implies that

$$
\begin{equation*}
\left(1-\frac{1}{n}\right) T(r, \psi) \leq m T(r, f)+S(r, f) \tag{3.3}
\end{equation*}
$$

By (3.1) and (3.3), we obtain

$$
\left(1-\frac{1}{n}\right) T(r, \psi) \leq \frac{m}{n-m} T(r, \psi)+S(r, \psi)
$$

that is

$$
\begin{equation*}
\left(1-\frac{1}{n}-\frac{m}{n-m}\right) T(r, \psi) \leq S(r, \psi) \tag{3.4}
\end{equation*}
$$

Since $m<\frac{n-1}{2-\frac{1}{n}}$, we have $1-\frac{1}{n}-\frac{m}{n-m}>0$, it is clearly that (3.4) is a contradiction.

Hence, $F(z)-\alpha(z)$ has infinitely many zeros.
(2) By Lemma 2.1, we get

$$
\begin{aligned}
T(r, F) & \leq T\left(r, f\left(q_{1} z\right) \cdots f\left(q_{m} z\right)\right)+n T(r, f) \\
& \leq(n+m) T(r, f)+S(r, f)
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
n T(r, f) & =T\left(r, f\left(q_{1} z\right) \cdots f\left(q_{m} z\right)-F(z)\right) \\
& \leq T\left(r, f\left(q_{1} z\right) \cdots f\left(q_{m} z\right)\right)+T(r, F(z)) \\
& \leq m T(r, f)+T(r, F)+S(r, f)
\end{aligned}
$$

Thus by the above inequalities we have

$$
\begin{equation*}
(n-m) T(r, f)+S(r, f) \leq T(r, F) \leq(n+m) T(r, f)+S(r, f) \tag{3.5}
\end{equation*}
$$

From (3.5), we obtain $T(r, F)=O(T(r, f)), F(z)$ is transcendental as $f(z)$ is a transcendental entire function and $n>m$. Since $\sigma(f)=0$, clearly, $F(z)$ is also of zero order.

Suppose $F(z)-\alpha(z)$ has finitely many zeros, since $\alpha(z)$ is a nonzero rational function and $F(z)$ is a function of zero order, then we get

$$
F(z)-\alpha(z)=R(z)
$$

where $R(z)$ is a rational function. Thus $T(r, F)=S(r, F)$, which is a contradiction.

Hence, $F(z)-\alpha(z)$ has infinitely many zeros.

3.2. Proof of Theorem 1.5

Suppose $F(z)-\alpha(z)$ has finitely many zeros, by Lemma 2.1, we have

$$
\begin{aligned}
T(r, F-\alpha) & \leq \sum_{j=1}^{m} T\left(r, f\left(q_{j} z\right)\right)+n T(r, f)+T(r, \alpha) \\
& \leq(m+n) T(r, f)+S(r, f)
\end{aligned}
$$

Thus

$$
\sigma(F-\alpha)=0
$$

According to the Hadamard factorization theorem, we get

$$
\begin{equation*}
F(z)-\alpha(z)=f\left(q_{1} z\right) f\left(q_{2} z\right) \cdots f\left(q_{m} z\right)-a(f(z))^{n}-\alpha(z)=p(z) \tag{3.6}
\end{equation*}
$$

where $p(z)$ is a polynomial.
Rewrite (3.6) as

$$
\begin{equation*}
f\left(q_{1} z\right) f\left(q_{2} z\right) \cdots f\left(q_{m} z\right)=a(f(z))^{n}+p(z)+\alpha(z) . \tag{3.7}
\end{equation*}
$$

When $n>m$, by (3.7) and Lemma 2.1, we have

$$
\begin{aligned}
n T(r, f)=T\left(r, a f^{n}\right) & =T\left(r, \prod_{j=1}^{m} f\left(q_{j} z\right)-p-\alpha\right) \\
& \leq \sum_{j=1}^{m} T\left(r, f\left(q_{j} z\right)\right)+S(r, f) \\
& \leq m T(r, f)+S(r, f),
\end{aligned}
$$

which is a contradiction.
When $n<m$, by (3.7) and Lemma 2.2, we have

$$
\begin{aligned}
T\left(r, \prod_{j=1}^{m} f\left(q_{j} z\right)\right)=m\left(r, \prod_{j=1}^{m} f\left(q_{j} z\right)\right) & =m\left(r, f^{m} \prod_{j=1}^{m} \frac{f\left(q_{j} z\right)}{f}\right) \\
& \geq m\left(r, f^{m}\right)-m\left(r, \prod_{j=1}^{m} \frac{f}{f\left(q_{j} z\right)}\right) \\
& =m m(r, f)-S(r, f) \\
& =m T(r, f)-S(r, f)
\end{aligned}
$$

On the other hand, by (3.7), we get

$$
T\left(r, \prod_{j=1}^{m} f\left(q_{j} z\right)\right)=T\left(r, a f^{n}+p+\alpha\right) \leq n T(r, f)+S(r, f)
$$

Thus we have

$$
m T(r, f) \leq n T(r, f)+S(r, f)
$$

Which is a contradiction.
Hence, $F(z)-\alpha(z)$ has infinitely many zeros.

3.3. Proof of Theorem 1.6

Since $f(z)$ is a transcendental entire function of finite order and has finitely many zeros, by Lemma 2.3, $f(z)$ can be written as

$$
f(z)=g(z) e^{h(z)}
$$

where $g(z)(\not \equiv 0), h(z)$ are polynomials. Set

$$
h(z)=a_{k} z^{k}+\cdots+a_{0}
$$

where a_{k}, \ldots, a_{0} are constants, $a_{k} \neq 0$. Since $\sigma(f) \neq 0$, it follows that $\sigma(f)=$ $\operatorname{deg}(h(z))=k \geq 1$. We obtain

$$
\begin{equation*}
f\left(q_{1} z\right) \cdots f\left(q_{m} z\right)=p_{1}(z) e^{a_{k}\left(q_{1}^{k}+\cdots+q_{m}^{k}\right) z^{k}} \tag{3.8}
\end{equation*}
$$

where $p_{1}(z)=g\left(q_{1} z\right) \cdots g\left(q_{m} z\right) e^{a_{k-1}\left(q_{1}^{k-1}+\cdots+q_{m}^{k-1}\right) z^{k-1}+\cdots+m a_{0}}, \sigma\left(p_{1}\right) \leq k-$ $1<k$. On the other hand, we have

$$
\begin{equation*}
(f(z))^{n}=(g(z))^{n} e^{n a_{k} z^{k}+n a_{k-1} z^{k-1}+\cdots+n a_{0}}=p_{2}(z) e^{n a_{k} z^{k}} \tag{3.9}
\end{equation*}
$$

where $p_{2}(z)=(g(z))^{n} e^{n a_{k-1} z^{k-1}+\cdots+n a_{0}}, \quad \sigma\left(p_{2}\right) \leq k-1<k$.
By (3.8) and (3.9), we get

$$
\begin{equation*}
F(z)=p_{1}(z) e^{a_{k}\left(q_{1}^{k}+\cdots+q_{m}^{k}\right) z^{k}}-a p_{2}(z) e^{n a_{k} z^{k}} \tag{3.10}
\end{equation*}
$$

Since $p_{1}(z)(\not \equiv 0), p_{2}(z)(\not \equiv 0), \sigma\left(p_{1}\right)<k, \sigma\left(p_{2}\right)<k, q_{1}^{k}+q_{2}^{k}+\cdots+q_{m}^{k} \neq n$, it follows that $F(z)$ is a transcendental entire function and $\sigma(F)=\sigma(f)=k$.

Suppose $F(z)-\alpha(z)$ has finitely many zeros, then $\lambda(F-\alpha)<\sigma(F)=\sigma(f)$, $F(z)-\alpha(z)$ can be written as

$$
\begin{equation*}
F(z)-\alpha(z)=s(z) e^{t z^{k}} \tag{3.11}
\end{equation*}
$$

where $s(z)$ is an entire function with $\sigma(s)<k, t \neq 0$ is a constant. By (3.10) and (3.11), we obtain

$$
\begin{equation*}
p_{1}(z) e^{a_{k}\left(q_{1}^{k}+\cdots+q_{m}^{k}\right) z^{k}}-a p_{2}(z) e^{n a_{k} z^{k}}-s(z) e^{t z^{k}}-\alpha(z)=0 \tag{3.12}
\end{equation*}
$$

Since $q_{1}^{k}+q_{2}^{k}+\cdots+q_{m}^{k} \neq n$,
Case 1: $a_{k}\left(q_{1}^{k}+\cdots+q_{m}^{k}\right) \neq t, n a_{k} \neq t$. By Lemma 2.4, we obtain

$$
p_{1}(z) \equiv 0, p_{2}(z) \equiv 0, s(z) \equiv 0, \alpha(z) \equiv 0 .
$$

This is a contradiction.
Case 2: $a_{k}\left(q_{1}^{k}+\cdots+q_{m}^{k}\right)=t$. Then (3.12) can be written as

$$
\left(p_{1}(z)-s(z)\right) e^{a_{k}\left(q_{1}^{k}+\cdots+q_{m}^{k}\right) z^{k}}-a p_{2}(z) e^{n a_{k} z^{k}}-\alpha(z)=0 .
$$

By Lemma 2.4, we obtain

$$
p_{1}(z)-s(z) \equiv 0, p_{2}(z) \equiv 0, \alpha(z) \equiv 0
$$

which is a contradiction.
Case 3: $n a_{k}=t$. Then using the same method as above, we also obtain a contradiction.

Hence $F(z)-\alpha(z)$ has infinitely many zeros.

3.4. Proof of Theorem 1.7

Suppose $f(z)$ has finitely many zeros. Since $f(z)$ is a transcendental entire function of finite and positive order, by Lemma 2.3, $f(z)$ can be written as

$$
\begin{equation*}
f(z)=g(z) e^{h(z)} \tag{3.13}
\end{equation*}
$$

where $g(z)(\not \equiv 0), h(z)$ are polynomials. Set

$$
h(z)=a_{k} z^{k}+\cdots+a_{0},
$$

where a_{k}, \ldots, a_{0} are constants, $a_{k} \neq 0$. Since $\sigma(f) \neq 0$, then $\sigma(f)=\operatorname{deg}(h(z))$ $=k \geq 1$. Substituting (3.13) into (1.1), we obtain

$$
\begin{equation*}
p_{1}(z) e^{a_{k}\left(q_{1}^{k}+\cdots+q_{m}^{k}\right) z^{k}}-a p_{2}(z) e^{n a_{k} z^{k}}=G(z) \tag{3.14}
\end{equation*}
$$

where

$$
\begin{aligned}
& p_{1}(z)=g\left(q_{1} z\right) \cdots g\left(q_{m} z\right) e^{a_{k-1}\left(q_{1}^{k-1}+\cdots+q_{m}^{k-1}\right) z^{k-1}+\cdots+m a_{0}}, \quad \sigma\left(p_{1}\right) \leq k-1<k ; \\
& p_{2}(z)=(g(z))^{n} e^{n a_{k-1} z^{k-1}+\cdots+n a_{0}}, \quad \sigma\left(p_{2}\right) \leq k-1<k .
\end{aligned}
$$

Since $p_{1}(z)(\not \equiv 0), p_{2}(z)(\not \equiv 0), \sigma\left(p_{1}\right)<k, \sigma\left(p_{2}\right)<k, q_{1}^{k}+q_{2}^{k}+\cdots+q_{m}^{k} \neq n$, $\sigma(G)<1<k$, by (3.14) and Lemma 2.4, we obtain

$$
p_{1}(z) \equiv 0, p_{2}(z) \equiv 0, G(z) \equiv 0
$$

which is a contradiction.
Hence $f(z)$ has infinitely many zeros.
Acknowledgements. This research was partly supported by National Natural Science Foundation of China(11271304); the Natural Science Foundation of Fujian Province of China for Distinguished Young Scholars(2013J06001); and the Program for New Century Excellent Talents in University(NCET-13-0510).

References

[1] R. B. Ash, Complex Variables, Academic Press, New York-London, 1971.
[2] D. C. Barnett, R. G. Halburd, R. J. Korhonen, and W. Morgan, Nevanlinna theory for the q-difference operator and meromorphic solutions of q-difference equations, Proc. Roy. Soc. Edinburgh Sect. A. 137 (2007), no. 3, 457-474.
[3] Z. X. Chen, Value distribution of products of meromorphic functions and their differences, Taiwanese J. Math. 15 (2011), no. 4, 1411-1421.
[4] , Zeros of entire solutions to complex linear difference equations, Acta Math. Sci. Ser. B Engl. Ed. 32 (2012), no. 3, 1141-1148.
[5] Z. X. Chen, Z. B. Huang, and X. M. Zheng, On properties of difference polynomials, Acta Math. Sci. Ser. B Engl. Ed. 31 (2011), no. 2, 627-633.
[6] Y. M. Chiang and S. J. Feng, On the Nevanlinna characteristic $f(z+\eta)$ and difference equations in the complex plane, Ramanujan J. 16 (2008), no. 1, 105-129.
[7] R. G. Halburd and R. J. Korhonen, Nevanlinna theory for the difference operator, Ann. Acad. Sci. Fenn. Math. 31 (2006), no. 2, 463-478.
[8] _, Difference analogue of the lemma on the logarithmic derivative with applications to difference equations, J. Math. Anal. Appl. 314 (2006), no. 2, 477-487.
[9] W. K. Hayman, Picard values of meromorphic functions and their derivatives, Ann. Math. 70 (1959), 9-42.
[10] , Meromorphic Functions, Clarendon Press, Oxford, 1964.
[11] I. Laine, Nevanlinna Theory and Complex Differential Equations, Walter de Gruyter, Berlin, 1993.
[12] I. Laine and C. C. Yang, Value distribution of difference polynomials, Proc. Japan Acad. Ser. A Math. Sci. 83 (2007), no. 8, 148-151.
[13] K. Liu, X. L. Liu, and T. B. Cao, Uniqueness and zeros of q-shift difference polynomials, Proc. Indian Acad. Sci. Math. Sci. 121 (2011), no. 3, 301-310.
[14] K. Liu and X. G. Qi, Meromorphic solutions of q-shift difference equations, Ann. Polon. Math. 101 (2011), no. 3, 215-225.
[15] K. Liu and L. Z. Yang, Value distribution of the difference operator, Arch. Math. (Basel) 92 (2009), no. 3, 270-278.
[16] J. F. Xu and X. B. Zhang, The zeros of q-difference polynomials of meromorphic functions, Adv. Difference Equ. 2012 (2012), 200, 10 pp.
[17] L. Yang, Value Distribution Theory, Springer-Verlag, Berlin, 1993.
[18] H. X. Yi and C. C. Yang, Uniqueness Theory of Meromorphic Functions, Science Press 1995.
[19] J. L. Zhang and R. J. Korhonen, On the Nevanlinna characteristic of $f(q z)$ and its applications, J. Math. Anal. Appl. 369 (2010), no. 2, 537-544.

NA Xu
School of Mathematical Sciences
Xiamen University
Xiamen 361005, P. R. China
E-mail address: xuna406@163.com
Chun-Ping Zhong
School of Mathematical Sciences
Xiamen University
Xiamen 361005, P. R. China
E-mail address: zcp@xmu.edu.cn

