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FINITE LOGARITHMIC ORDER SOLUTIONS OF LINEAR

q-DIFFERENCE EQUATIONS

Zhi-Tao Wen

Abstract. During the last decade, several papers have focused on linear
q-difference equations of the form

n∑

j=0

aj(z)f(q
jz) = an+1(z)

with entire or meromorphic coefficients. A tool for studying these equa-
tions is a q-difference analogue of the lemma on the logarithmic deriva-

tive, valid for meromorphic functions of finite logarithmic order ρlog. It
is shown, under certain assumptions, that ρlog(f) = max{ρlog(aj )} + 1.
Moreover, it is illustrated that a q-Casorati determinant plays a similar
role in the theory of linear q-difference equations as a Wronskian determi-
nant in the theory of linear differential equations. As a consequence of the
main results, it follows that the q-gamma function and the q-exponential
functions all have logarithmic order two.

1. Introduction

Recently, many papers have focused on linear q-difference equations of the
form

(1)

n∑

j=0

aj(z)f(q
jz) = an+1(z),

where q ∈ C, 0 < |q| < 1 and aj(z) (j = 1, . . . , n+1) are rational functions. In
[5], Bergweiler and Hayman study the special case

(2) f(z)− a(z)f(cz) = 0,

where 0 < |c| < 1 and a(z) is a polynomial of degree d. They show that if
d = 0 (so that a(z) is a constant), then the only solutions of (2) are monomials
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f(z) = Azp. In particular, there are no transcendental solutions. If d > 0, then
there exists a nonnegative integer p and A, z1, . . . , zd in C\{0} such that

(3) f(z) = Azp
d∏

µ=1

∞∏

j=0

(
1−

cjz

zµ

)
.

Evidently the function f given by (3) satisfies (2) for

a(z) = c−p
d∏

µ=1

(
1−

z

zµ

)
.

In [6], Bergweiler et al. treat (1). They conclude that all meromorphic solutions
f of (1) satisfy T (r, f) = O((log r)2), and that all transcendental meromorphic
solutions of (1) satisfy (log r)2 = O(T (r, f)). Moreover, if all coefficients of (1)
are constants, then all solutions are rational. Later on, many papers go further
in the study of linear q-difference equations with rational coefficients (see [7])
or meromorphic coefficients (see [8, 9]).

In studying zero-order meromorphic functions, we make use of the concept of
logarithmic order [11]. An increasing function φ(r) is said to be of logarithmic
order ρ if

lim sup
r→∞

log+ φ(r)

log log r
= ρ.

The logarithmic order of a meromorphic function f(z) in C is defined as the
logarithmic order of its characteristic function T (r, f), and denoted by ρlog(f).
If f is a meromorphic function of finite logarithmic order, then f is of usual or-
der zero. Any rational function is of logarithmic order one, however, a function
of logarithmic order one is not necessarily a rational function. Constant func-
tions have zero logarithmic order, while there are no meromorphic functions of
logarithmic order between zero and one.

An entire function of finite logarithmic order must be a canonical product,
and hence a meromorphic function is a ratio of two canonical products. If
φ(r) is an increasing function and convex in log r such that φ(r) 6= O(log r),
then an entire function f can be constructed such that logM(r, f) ∼ φ(r),
T (r, f) ∼ φ(r) and N(r, 1/(f − c)) ∼ φ(r) for any c ∈ C [12, 13]. In particular,
for any ρ ∈ (1,∞) there exists an entire function f such that ρlog(f) = ρ.

The aim of this paper is to study the solutions of q-difference equations in
terms of logarithmic order. One of the main results is stated as follows.

Theorem 1.1. Let a0(z), . . . , an(z) be entire functions of finite logarithmic

order, and let q ∈ C\{0} be such that |q| 6= 1. If f is a meromorphic solution

of

(4)
n∑

j=0

aj(z)f(q
jz) = 0,
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and if there exists an integer i ∈ {0, . . . , n} such that

ρlog(ai) > max
j 6=i

{ρlog(aj)},

then ρlog(f) = ρlog(ai) + 1.

In [6], Bergweiler shows that all transcendental meromorphic solutions of
(1) is of logarithmic order two. Theorem 1.1 extends the rational coefficients
to any finite logarithmic order coefficients.

The reminder of this paper is organized as follows. In Section 2, we obtain
a q-difference analogue for the lemma on the logarithmic derivative. This tool
will be applied frequently in the further sections. In Section 3, we consider the
logarithmic exponent of convergence for the a-points of a meromorphic func-
tion. We obtain, for example, a growth estimate for log 1/|P (z)|, where P (z) is
entire and of finite logarithmic order. In Section 4, we show that a q-Casorati
determinant plays a similar role in the theory of q-difference equations as a
Wronskian determinant in the theory of linear differential equations. After
these preparations, we are ready to prove Theorem 1.1 in Section 5. Some fur-
ther remarks concerning first and second order q-difference equations are given
in Section 6. Finally, three examples are given in Section 7. In particular,
Theorem 1.1 is used to show that the q-gamma function and the q-exponential
functions have logarithmic order two. Moreover, we give an elementary al-
gorithm for constructing entire functions of any pre-given integer logarithmic
order.

2. q-difference logarithmic derivative analogue

When working with q-difference equations, we need a q-difference analogue
of

m

(
r,
f ′

f

)
= O(log rT (r, f)) = S(r, f),

for meromorphic functions of finite logarithmic order. This estimate holds
without an exceptional set, and is based on the following lemma.

Lemma 2.1 ([3], Lemma 5.1). Let f be a meromorphic function such that

f(0) 6= 0,∞, and let q ∈ C\{0}. Then

m

(
r,
f(qz)

f(z)

)
≤

(
n(λ, f) + n(λ,

1

f
)

)
·

(
|q − 1|δ(|q|δ + 1)

δ(1− δ)|q|δ
+

|q − 1|r

λ− |q|r
+

|q − 1|r

λ− r

)

+
4|q − 1|rλ

(λ − r)(λ − |q|r)

(
T (λ, f) + log+

∣∣∣∣
1

f(0)

∣∣∣∣
)
,

where z = reiφ, λ > max{r, |q|r} and 0 < δ < 1.
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Theorem 2.2. Let f be a meromorphic function of finite logarithmic order

ρlog(f) such that f(0) 6= 0,∞, and let q ∈ C\{0}. Then

m

(
r,
f(qz)

f(z)

)
= O

(
(log r)ρlog(f)−1+ε

)

for each ε > 0.

Proof. For every ε > 0 there exists an R > 0 such that

T (r, f) = O
(
(log r)ρlog(f)+ε

)
, r ≥ R.

By the definition of N(r, f), we deduce that

N(r2, f)−N(r, f) =

∫ r2

r

n(r, f)

t
dt ≥ n(r, f)

∫ r2

r

dt

t
.

Thus,

(5) n(r, f) ≤
N(r2, f)

log r
≤

T (r2, f)

log r
= O

(
(log r)ρlog(f)−1+ε

)
.

Similarly,

(6) n

(
r,

1

f

)
= O

(
(log r)ρlog(f)−1+ε

)
.

Finally, we choose λ = r2 in Lemma 2.1, and make use of (5) and (6). This
proves the assertion. �

Corollary 2.3. Let f be a meromorphic function of finite logarithmic order

ρlog(f) such that f(0) 6= 0,∞, and let q1, q2 ∈ C\{0}. Then

m

(
r,
f(q1z)

f(q2z)

)
= O

(
(log r)ρlog(f)−1+ε

)

for each ε > 0.

3. Logarithmic exponent of convergence

Let f be meromorphic in C, and let {zn(a)} be the sequence of a-points of
f , where a ∈ C

⋃
{∞}. Following [11], the logarithmic exponent of convergence

of the sequence {zn(a)} is given by

λlog(f, a) = inf

{
µ > 0 :

∞∑

n=1

1/| log |zn(a)||
µ < ∞

}
.

We denote λlog(f) = λlog(f, 0) for short.

Lemma 3.1 ([11]). Let f be a meromorphic function of finite logarithmic order,

and let a ∈ C. Then the logarithmic order of n(r, 1/(f−a)) equals to λlog(f, a).
Moreover, N(r, 1/(f − a)) is of logarithmic order λlog(f, a) + 1.
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By the second fundamental theorem, the characteristic T (r, f) of a tran-
scendental meromorphic function f is typically dominated by three integrated
counting functions. If f is of finite logarithmic order, then T (r, f) can be
dominated by two integrated counting functions.

Lemma 3.2 ([11], Theorem 7.1). If f is a transcendental meromorphic func-

tion of finite logarithmic order, then for any two distinct extended complex

values a and b, we have

T (r, f) ≤ N

(
r,

1

f − a

)
+N

(
r,

1

f − b

)
+O((log r)ρlog(f)−1+ε)

for any ε > 0.

If f is a transcendental entire function of finite logarithmic order, then
Lemma 3.1 shows that λlog(f, a) + 1 ≤ ρlog(f), and Lemma 3.2 shows that
λlog(f, a) + 1 ≥ ρlog(f) for any finite complex constant. Thus, λlog(f, a) + 1 =
ρlog(f) for any transcendental entire function f of finite logarithmic order.
Denote

P (z) = zm
∞∏

n=0

(
1−

z

zn

)
,

where {zn} is the zero set of f and zn 6= 0 and m ∈ N0. We have λlog(P )+1 =
ρlog(P ). If f is a transcendental meromorphic function of finite logarithmic
order, then f can be expressed in the form

f = const.zt
P (z)

Q(z)
= const.zt

∏∞
n=0

(
1− z

an

)

∏∞
m=0

(
1− z

bm

) ,

where {an 6= 0} and {bn 6= 0} are the sets of zeros and poles of f , respectively,
and t ∈ Z. It is clear that λlog(f, 0) = λlog(P ) = ρlog(P )− 1 and λlog(f,∞) =
λlog(Q) = ρlog(Q)− 1.

Lemma 3.3. Let P (z) be canonical product formed with the set {zn}, λ be the

logarithmic exponent of convergence of {zn} and Cn : |z−zn| =
1

rλ+ε
n

be a circle

about zn, where rn = |zn|. If z lies outside of {Cn} and |z| = r > 1, then we

have

log
1

|P (z)|
= O((log r)λ+1+ε).

Proof. We write

log
1

|P (z)|
=

∞∑

n=0

log
1

|1− z
zn
|
=

∑

2r≤rn

log
1

|1− z
zn
|
+

∑

2r≥rn

log
1

|1− z
zn
|

=
∑

1

+
∑

2

.
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In
∑

2, if z lies outside of {Cn}, then

log

∣∣∣∣
zn

z − zn

∣∣∣∣ ≤ log rλ+1+ε
n ≤ (λ+ 1 + ε)

(log 2r)λ+1+ε

(log rn)λ+ε
.

Therefore,

(7)
∑

2

log

∣∣∣∣
zn

z − zn

∣∣∣∣ ≤ (λ+ 1 + ε)(log 2r)λ+1+ε
∞∑

n=0

1

(log rn)λ+ε
.

In
∑

1, by using Lemma 3.1, Riemann-Stieltjes integration and L’Hospital’s
rule yields

∑

1

log
1

|1− z
zn
|
≤

∑

1

log
1

1− r
rn

=

∫ ∞

2r

log
1

1− r/t
dn(t)

≤

∫ ∞

2r

n(t)

t

r

t− r
dt = O

(∫ ∞

2r

(log t)λ+ε

t2
r

1− r/t
dt

)

= O

(
r

∫ ∞

2r

(log t)λ+ε

t2
dt

)
= O((log r)λ+ε).

(8)

From (7) and (8), we have the assertion by
∞∑

n=0

(1/ log rn)
λ+ε < ∞.

�

The circles {Cn} in Lemma 3.3 form an ε-set (see [18]). For almost all fixed
θ and r > r0(θ), z = reiθ lies outside of the ε-set, and the set E of r for which
the circle |z| = r meets the circle of an ε-set has finite logarithmic measure and
zero density.

Lemma 3.4 ([11], Lemma 4.1). Let f be meromorphic in D, and let {zn(a)}

be the sequence of a-points of f , where a ∈ Ĉ. If µ > 0, then

∑

n

1/| log |zn(a)||
µ and

∫ ∞ n
(
t, 1

f−a

)

t(log t)µ+1
dt

are either simultaneously convergent or simultaneously divergent.

The following lemma is a simple analogue of Lemma 1.2.6 in [20].

Lemma 3.5. Let f1, f2 be two entire functions with no common zeros. Then

for E = f1f2 we get

λlog(E) = max{λlog(f1), λlog(f2)}.

Proof. The inequality max{λlog(f1), λlog(f2)} ≤ λlog(E) is trivial. To prove the
converse inequality, we may assume that λlog(E) = λ ∈ (0,∞), for otherwise
there is nothing to prove. Then, for any ε > 0, the integral

∫ ∞ n
(
t, 1

E

)

t(log t)λ+1−ε
dt
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diverges by the definition of the logarithmic exponent of convergence and
Lemma 3.4. Since f1 and f2 have no common zeros, it follows that

n

(
r,

1

E

)
= n

(
r,

1

f1

)
+ n

(
r,

1

f2

)
.

Therefore, at least one of the integrals

∫ ∞ n
(
t, 1

f1

)

t(log t)λ+1−ε
dt,

∫ ∞ n
(
t, 1

f2

)

t(log t)λ+1−ε
dt

diverges, which means that

max{λlog(f1), λlog(f2)} ≥ λ− ε.

Since ε > 0 is arbitrary, we have the assertion. �

Combining Lemma 3.5 and Lemma 3.2 together, we have the following con-
sequence.

Corollary 3.6. Let f1, f2 be two entire functions of finite logarithmic order

with no common zeros. Then for E = f1f2 we get

ρlog(E) = max{ρlog(f1), ρlog(f2)}.

4. q-Casorati determinants

Let f1, . . . , fn be linearly independent entire solutions of a differential equa-
tion

f (n) + an−1(z)f
(n−1) + · · ·+ a1(z)f

′ + a0(z)f = 0

with entire coefficients a0(z), . . . , an−1(z). Then it is well-known that the
Wronskian determinant W = W (f1, . . . , fn) satisfies the differential equation
W ′ + an−1(z)W = 0 (see [20, Proposition 1.4.8]). An analogous result is true
for difference equations and a Casorati determinant (see [21, p. 86, Satz 16]).
We proceed to consider the situation for q-difference equations recalling first
the definition of a q-Casorati determinant (see [16]).

If f1, . . . , fn are meromorphic functions, then

Dq(z) =

∣∣∣∣∣∣∣∣∣

f1(z) f2(z) · · · fn(z)
f1(qz) f2(qz) · · · fn(qz)

...
...

...
f1(q

n−1z) f2(q
n−1z) · · · fn(q

n−1z)

∣∣∣∣∣∣∣∣∣

is called a q-Casorati determinant. Alternatively, we write

D∆
q (z) =

∣∣∣∣∣∣∣∣∣

f1(z) f2(z) · · · fn(z)
∆qf1(z) ∆qf2(z) · · · ∆qfn(z)

...
...

...
∆n−1

q f1(z) ∆n−1
q f2(z) · · · ∆n−1

q fn(z)

∣∣∣∣∣∣∣∣∣
,
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where ∆qf = f(qz)−f(z) and ∆n+1
q f = ∆n

q f(qz)−∆n
q f(z). By basic properties

of determinants, we have D∆
q (z) = Dq(z).

If q ∈ C \ {0.1}, then the q-Casorati determinant vanishes identically on C

if and only if the functions f1, . . . , fn are linearly independent over the field of
Kq := {γ(z) | γ(z) = γ(qz), γ is meromorphic}. Moreover, if |q| 6= 1, then this
field consists of only constant functions. That is because γ(z) is of logarithmic
order one by Theorem 1.1, and γ(z) ∈ Kq has no zeros and no poles from
the equality γ(z) = γ(qz), which is impossible. Hence, for |q| 6= 1, the linear
independence of functions over Kq is in the classical sense.

In the real line, a linear q-difference equation of order n has a fundamental
set of n linearly independent solutions (see [1]). However, in the complex plane
it is still an open problem to find conditions for the meromorphic coefficients
under which (1) has n linearly independent meromorphic solutions over Kq.
Examples 3 and 4 in [5] illustrate that a linear q-difference equation of order
two can have at least two linearly independent solutions.

Theorem 4.1. Suppose that f1, . . . , fn are meromorphic solutions of equation

(4) and linearly independent over the field Kq. Then Dq(z) satisfies the q-
difference equation

an(z)Dq(qz) + (−1)n+1a0(z)Dq(z) = 0.

Proof. Since

f(qnz) = −

n−1∑

i=0

a0(z)

an(z)
f(qiz),

it follows that

Dq(qz) =

∣∣∣∣∣∣∣∣∣

f1(qz) f2(qz) · · · fn(qz)
f1(q

2z) f2(q
2z) · · · fn(q

2z)
...

...
...

f1(q
nz) f2(q

nz) · · · fn(q
nz)

∣∣∣∣∣∣∣∣∣

= −

∣∣∣∣∣∣∣∣∣

f1(qz) · · · fn(qz)
f1(q

2z) · · · fn(q
2z)

...
...∑n−1

i=0
a0(z)
an(z)

f1(q
iz) · · ·

∑n−1
i=0

a0(z)
an(z)

fn(q
iz)

∣∣∣∣∣∣∣∣∣

= −

∣∣∣∣∣∣∣∣∣

f1(qz) f2(qz) · · · fn(qz)
f1(q

2z) f2(q
2z) · · · fn(q

2z)
...

...
...

a0(z)
an(z)

f1(z)
a0(z)
an(z)

f2(z) · · · a0(z)
an(z)

fn(z)

∣∣∣∣∣∣∣∣∣

= (−1)n
a0(z)

an(z)
Dq(z).

This proves the assertion. �
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Next we consider the case an(z) ≡ 1 in (4), that is,

(9) f(qnz) + an−1(z)f(q
n−1z) + · · ·+ a0(z)f(z) = 0.

Theorem 4.1 and Theorem 1.1 yield the following consequence.

Corollary 4.2. Suppose that f1, . . . , fn are entire solutions of equation (9) and
linearly independent over the field Kq. If a0(z), . . . , an(z) are entire functions

of finite logarithmic order, then

ρlog(Dq) = ρlog(a0) + 1.

Theorem 4.3. Suppose that f1, . . . , fn are entire solutions of equation (9) and
linearly independent over the field Kq. If a0(z), . . . , an(z) are entire functions

of finite logarithmic order and

(10) ρlog(a0) > max
0<j<n

{ρlog(aj)},

then the product E := f1 · · · fn is of the logarithmic order of

ρlog(E) = ρlog(a0) + 1.

Proof. Theorem 1.1 and (10) imply that every solution f of the equation (9)
satisfies

(11) ρlog(f) = ρlog(a0) + 1,

so that

(12) ρlog(E) ≤ ρlog(a0) + 1.

Now dividing Dq(z) by E = f1 · · · fn, we obtain

Dq

E
=

∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
f1(qz)
f(z)

f2(qz)
f(z) · · · fn(qz)

f(z)

...
...

...
f1(q

n−1z)
f(z)

f2(q
n−1z)

f(z) · · · fn(q
n−1z)

f(z)

∣∣∣∣∣∣∣∣∣∣

.

By using Theorem 2.2 and (11), we have, for every ε > 0, that

m

(
r,
Dq

E

)
= O

(
(log r)ρlog(a0)+ε

)
.

By writing Dq =
Dq

E E, we see that

T (r,Dq) ≤ m

(
r,
Dq

E

)
+N

(
r,
Dq

E

)
+ T (r, E)

≤ m

(
r,
Dq

E

)
+ 2T (r, E),

and hence
ρlog(Dq) ≤ max{ρlog(a0) + ε, ρlog(E)}.

According to Corollary 4.2, we have ρlog(E) ≥ ρlog(a0)+ 1. This together with
(12) yields the assertion. �
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5. Proof of Theorem 1.1

First we consider homogeneous q-difference equations of the form (4).

Theorem 5.1. Let a0(z), . . . , an(z) be meromorphic functions of finite loga-

rithmic order such that

(13) ρlog(ai) > max
j 6=i

{ρlog(aj)}

for some i ∈ {0, . . . , n}, and let q ∈ C\{0}. If f is a meromorphic solution of

(4), then ρlog(f) ≥ ρlog(ai). Moreover, if a0(z), . . . , an(z) are entire functions

of finite logarithmic order, then ρlog(f) ≥ ρlog(ai) + 1.

Proof. Let us suppose a0(z), . . . , an(z) are entire functions first. We divide
equation (4) by f(qiz) to obtain

(14) ai(z) = −

n∑

j=0
j 6=i

aj(z)
f(qjz)

f(qiz)
.

Using Corollary 2.3 and (13), we have

m(r, ai) ≤

n∑

j=0
j 6=i

m(r, aj) +O
(
(log r)ρlog(f)−1+ε

)

≤ O
(
(log r)ρlog(ai)−ε

)
+O

(
(log r)ρlog(f)−1+ε

)
(15)

for each ε > 0 small enough. There is a sequence (rn) of points tending to
infinity such that m(rn, ai) ≥ (log rn)

ρlog(ai)−ε/2. This gives us

ρlog(ai)− ε/2 ≤ ρlog(f)− 1 + ε,

where we may let ε → 0+.
If a0(z), . . . , an(z) are meromorphic functions, then (14) implies that

N(r, ai) ≤

n∑

j=0
j 6=i

N(r, aj) +O
(
(log r)ρlog(f)+ε

)
.

Together with (15), we have

ρlog(ai)− ε/2 ≤ ρlog(f) + ε,

where we may let ε → 0+. �

Next we consider non-homogeneous q-difference equations of the form

(16)

n∑

j=0

aj(z)f(q
jz) = an+1(z).
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Lemma 5.2 ([19], Lemma 3.3). Let the coefficients a0(z), . . . , an+1(z) of (16)
be meromorphic. If f is a meromorphic solution of (16), then there exists a

finite constant C > 0 such that

n(r, f) ≤ C




n+1∑

j=0

n(r, aj) + n

(
r,

1

a0

)
 log r

for sufficiently large values of r.

The following result originates from [19, Theorem 3.5], which deals with the
case of the usual order of growth.

Theorem 5.3. Let a0(z), . . . , an(z), an+1(z) be meromorphic functions of finite

logarithmic order. Denote

ρ = max
0≤j≤n+1

{ρlog(aj)},

and let q ∈ C\{0} be such that |q| 6= 1. If f is a meromorphic solution of (16),
then ρlog(f) ≤ ρ+ 1.

Proof. According to Lemma 3.1, we deduce

n(r, aj) + n(r, 1/a0) = O((log r)ρ−1+ε),

where j = 0, . . . , n+ 1. By using Lemma 5.2, we have

n(r, f) = O((log r)ρ+ε),

which shows that

(17) N(r, f) = O
(
(log r)ρ+1+ε

)
.

To estimate m(r, f), let us assume that the coefficients a0, . . . , an, an+1 are
entire and |q| > 1 at first. Following the proof of Theorem 3.5 in [19], we apply
Lemma 3.3 to fix certain discs of radius |zj|

−(ρ+ε) around the zeros zj of an
such that outside of these discs, |an(z)| > exp(−(log r)ρlog(an)+ε) for sufficiently
large values of r. Let us fix T such that f has no poles with modulus |q|jT for
any j ∈ N and these circles are outside of the discs of radius |zj|

−(ρ+ε). Then

M(|q|k+nT, f) ≤ exp
(
(log |q|kT )ρ+ε

)



k+n−1∑

j=k

M(|s|jT, f) + 1




≤ exp
(
(log |q|kT )ρ+ε

)



n+k−1∑

j=k

Mj + 1




≤ exp
(
(log |q|kT )ρ+ε

)
(n+ 1)Mk+n−1,

where Mk = maxj=0,1,...,k M(|q|jT, f) + 1. Thus, for

k ≥
(log(n+ 1))

1
ρ+ε − logT

log |q|
,
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we have
Mk+n ≤ exp(A(log |q|kT )ρ+ε)Mk+n−1

for some A and all k ∈ N. Therefore,

logMk+n ≤ A(log |q|kT )ρ+ε + logMn+k−1

for large k. It follows that

m(|q|k+nT, f) ≤ logM(|q|k+nT, f) ≤ Ak(log |q|kT )ρ+ε

= A(log |q|kT )ρ+ε

(
log(|q|kT )− logT

log |q|

)
.

(18)

Combining (17) and (18), we obtain

T (r, f) = O
(
(log r)ρ+1+ε

)

for r = |q|kT, k ∈ N, k → ∞. Since T (r, f) is increasing, it is now not difficult
to see that the last equation also holds if r → ∞ through any sequence of r-
values. If |q| < 1, we denote s = 1/q and make a change of a variable in (16) by
replacing z with snz. This leads to a linear s-difference equation, corresponding
to (16). This change of a variables does not interfere with the growth of the
coefficients or solutions by p. 36 in [15]. The proof given above now applies to
this new equation.

Finally, if the coefficients are meromorphic, we multiply away denominators,
and then proceed similarly as above. �

From Theorems 5.1 and 5.3, we have Theorem 1.1.

6. First and second order equations

We add some remarks about first and second order q-difference equations.
We recall from [11] that if f is a meromorphic function in C of finite logarithmic
order ρlog(f), then α ∈ C is called a logarithmic Borel exceptional value of f ,
provided that

λ(f, α) = lim sup
r→∞

n
(
r, 1

f−α

)

log log r
< ρlog(f)− 1.

According to Lemma 3.2, a meromorphic function f of finite logarithmic order
has at most one logarithmic Borel exceptional value.

We begin with the first order q-difference equation

(19) f(qz) = A(z)f(z),

where A(z) is the finite logarithmic order function and |q| 6= 1. If A(z) is entire
and f is the solution of (19), then Theorem 1.1 shows that ρlog(f) = ρlog(A)+1.
Suppose that A(z) is meromorphic, write A(z) = π1(z)/π2(z), where π1(z) and
π2(z) are canonical products formed form zeros and poles of A(z), respectively.
If one of {0,∞} is a logarithmic Borel exceptional value of A(z), then according
to Theorem 1.1 and Lemma 3.2, we still have ρlog(f) = ρlog(A) + 1. Suppose
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there exists one solution f satisfying ρlog(f) < ρlog(A) + 1, then λlog(A) =
λlog(A,∞) = ρlog(A)− 1. Moreover, we have

N

(
r,

1

A

)
= T (r, A) + S(r, A) and N(r, A) = T (r, A) + S(r, A)

by Corollary 2.3.
We proceed with the second order q-difference equation

(20) f(q2z) +A(z)f(qz) + B(z)f(z) = 0,

where A(z), B(z) are entire functions of finite logarithmic order and |q| 6= 1.
If there exist two meromorphic solutions f1, f2 of (20), linearly independent
over Kq, such that the q-Casorati determinant of f1 and f2 does not vanish
identically and satisfies

Dq(qz) = B(z)Dq(z).

By using Theorem 5.3, we have

ρlog(B) + 1 = ρlog(Dq) ≤ ρlog(E) ≤ max{ρlog(f1), ρlog(f2)}

≤ max{ρlog(A), ρlog(B)}+ 1.

This means that

max{ρlog(f1), ρlog(f2)} = max{ρlog(A), ρlog(B)} + 1.

Suppose that ρlog(B) < ρlog(A) and fi (i = 1, 2) are entire functions. According
to Lemma 3.2, it follows that

ρlog(A) + 1 = ρlog(f1) = λlog(f1) + 1 ≤ λlog(E) + 1

= ρlog(E) = ρlog(B) + 1,

which is impossible. Now we apply the reasoning of above, and obtain the
following theorem.

Theorem 6.1. If f1 and f2 are solutions of (20), linearly independent over

Kq, then at least one of f1 and f2 satisfies

ρlog(fi) = max{ρlog(A), ρlog(B)}+ 1,

where i = 1 or i = 2. Moreover, if there exists two entire linearly independent

solutions over Kq satisfying (20), then ρlog(B) ≥ ρlog(A).

7. Examples

Suppose that A(z) is an entire function of finite logarithmic order ρlog(A),
and let q ∈ C\{0}. If |q| 6= 1, then every meromorphic solution f of (19)
satisfies ρlog(f) = ρlog(A) + 1 by Theorem 1.1. This result is useful in the
following examples.
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Example 1. Let q ∈ C be such that 0 < |q| < 1. Then the q-gamma function
is defined by

Γq(x) :=
(q; q)∞
(qx; q)∞

(1 − q)1−x,

where (a; q)∞ = Π∞
k=0(1 − aqk) (see [2, p. 493]). Here we take the principal

values of qx and (1− q)x. Thus, Γq(x) is a meromorphic function with poles at
x = −n± 2πik/ log q, where k and n are non-negative integers. Define

γq(z) := (1− q)x−1Γq(x), z = qx,

and γq(0) := (q; q)∞. Then γq(z) is a meromorphic function of order zero
with no zeros, having its poles at {q−k}∞k=0, see [3]. Moreover, γq(z) satisfies
the q-difference equation (19) with A(z) = 1 − z. Hence, in fact, γq(z) has
logarithmic order 2.

Example 2. Given any positive integer m it is easy to construct an en-
tire function of logarithmic order m. Denote W1(z) = 1 − z and W2(z) =∏∞

n=1 W1(z/q
n), where |q| > 1. In fact, W2(z) =

∏∞
n=1(1 −

z
qn ), which clearly

converges in compact subsets of C, and hence is entire. It is clear that W2(z)
satisfies

W2(qz) = (1 − z)W2(z) = W1(z)W2(z).

Therefore, W2(z) has logarithmic order 2. Further, the entire function W3(z) =∏∞
n=1 W2(z/q

n) satisfies

W3(qz) = W2(z)W3(z),

and hence it has logarithmic order 3. Proceeding inductively, for any positive
integer m, the entire function

Wm(z) =

∞∏

n=1

Wm−1(z/q
n)

satisfies the q-difference equation

Wm(qz) = Wm−1(z)Wm(z),

and has logarithmic order ρlog(Wm) = m.

Example 3. q-exponential functions are q-analogues of the exponential func-
tion ez, and are denoted by

Eq(z) = (−z, q)∞ and eq(z) = 1/(z, q)∞.

We have eq(z)Eq(−z) = 1 (see [14, p. 11]). Both of Eq(z) and eq(z) satisfy
(19) with A = 1+ z and A(z) = 1/(1− z), respectively. Hence Eq(z) and eq(z)
have logarithmic order 2. Moreover, it is clear that

Eq(z
2) = E√

q(z)E−√
q(z).

Since E√
q(z) and E−√

q(z) have no common zeros, Corollary 3.6 implies that

Eq(z
2) is of logarithmic order two, the same order as for Eq(z). Proceeding
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inductively, Eq(z
n) has logarithmic order 2, where n is any integer. In contrast,

the functions ez
n

and ez have different orders, if n 6= 1.
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