
Commun. Korean Math. Soc. 33 (2018), No. 4, pp. 1141–1158

https://doi.org/10.4134/CKMS.c170135

pISSN: 1225-1763 / eISSN: 2234-3024

STABILITY OF HAHN DIFFERENCE EQUATIONS IN

BANACH ALGEBRAS

Marwa M. Abdelkhaliq and Alaa E. Hamza

Abstract. Hahn difference operator Dq,ω which is defined by

Dq,ωg(t) =

{
g(qt+ω)−g(t)

t(q−1)+ω
, if t 6= θ := ω

1−q
,

g′(θ), if t = θ

received a lot of interest from many researchers due to its applications

in constructing families of orthogonal polynomials and in some approx-

imation problems. In this paper, we investigate sufficient conditions for
stability of the abstract linear Hahn difference equations of the form

Dq,ωx(t) = A(t)x(t) + f(t), t ∈ I,

and

D2
q,ωx(t) +A(t)Dq,ωx(t) +R(t)x(t) = f(t), t ∈ I,

where A,R : I → X, and f : I → X. Here X is a Banach algebra with a

unit element e and I is an interval of R containing θ.

1. Introduction and preliminaries

Hahn introduced his difference operator, which is defined by

Dq,ωf(t) =

{
f(qt+ω)−f(t)
t(q−1)+ω , if t 6= θ,

f ′(θ), if t = θ,

where 0 < q < 1 and ω > 0 are fixed real numbers, θ = ω/(1− q), see [11, 12].
This operator unifies and generalizes two well-known difference operators. The
first is the Jackson q-difference operator defined by

Dqf(t) =
f(qt)− f(t)

t(q − 1)
, t 6= 0,

where q is fixed. Here f is supposed to be defined on a q-geometric set A ⊂ R
for which qt ∈ A whenever t ∈ A, see [1,2,4,5,10,18–20]. The second operator

Received March 31, 2017; Revised February 3, 2018; Accepted August 29, 2018.
2010 Mathematics Subject Classification. Primary 39A13, 39A70.
Key words and phrases. Hahn difference operator, Jackson q-difference operator, stability

theory.

This work was financially supported by KRF 2003-041-C20009.

c©2018 Korean Mathematical Society

1141



1142 M. M. ABDELKHALIQ AND A. E. HAMZA

is the forward difference operator

∆ωf(t) =
f(t+ ω)− f(t)

ω
,

see [6–9, 21, 22]. Fine mathematicians applied Hahn’s operator to construct
families of orthogonal polynomials and to investigate some approximation prob-
lems. For more details, see [24–26]. Hahn difference operator did not receive
any interest until M. H. Annaby, A. E. Hamza and K. A. Aldwoah studied this
operator with a different view to establish a calculus based on Hahn difference
operator. In [14], Hamza and Ahmed studied the theory of linear Hahn differ-
ence equations after proving the existence and uniqueness of solutions of Hahn
difference equations. A. E. Hamza and M. M. Abdelkhaliq, studied the theory
of Hahn difference equations in Banach algebras, see [13].

Recently, there has been an interest in studying the behavior of solutions of
Hahn difference equations associated with Hahn difference operator. In [17],
A. E. Hamza, A. S. Zaghrout and S. M. Ahmed, investigated characterizations
of stability of scalar first order Hahn difference equations. They established
many types of stability like (uniform, uniform exponential and ψ-) stability.
Also, A. E. Hamza and S. D. Makharesh in [15] established the existence of
positive solutions of non-linear Hahn difference equations.

Throughout this paper, X is a Banach space, X is a Banach algebra with a
unit e and a norm ‖ ‖, and I is an interval including θ.

In this paper we obtain sufficient conditions for many kinds of stability like
(uniform, uniform exponential and h-) stability of abstract first order Hahn
difference equations in Banach algebras of the from

Dq,ωx(t) = A(t)x(t) + f(t), t ∈ I.

We use these results to establish the same kinds of stability for the abstract
second order Hahn difference equations of the form

D2
q,ωx(t) +A(t)Dq,ωx(t) +R(t)x(t) = f(t), t ∈ I,

where A,R : I → X, and f : I → X is continuous at θ. Every choice of the
Banach algebra gives a wide family of Hahn difference equations. Therefore,
we study the stability of many types of Hahn difference equations according to
what Banach algebra we consider. For instance, this study allows us to consider
equations with solutions with values in the Banach algebra B(X), the Banach
space of all bounded linear operators from a Banach space X into itself. As
special cases, our study includes finite and infinite systems of Hahn difference
equations.

In our study we need the function µ(t) = qt+ω, which is normally taken to
be defined on the interval I. The sequence

µk(t) = qkt+ ω[k]q, t ∈ I,
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is the k-th order iteration of µ(t), which uniformly converges to θ on I, and
[k]q is defined by

[k]q =
1− qk

1− q
.

Now, we will introduce some basic definitions and theorems that will be
needed in our study.

Definition. Assume that f : I → X is a function and let a, b ∈ I. The
q, ω-integral of f from a to b is defined by∫ b

a

f(t)dq,ωt =

∫ b

θ

f(t)dq,ωt−
∫ a

θ

f(t)dq,ωt,

where ∫ x

θ

f(t)dq,ωt = (x(1− q)− ω)

∞∑
k=0

qkf(µk(x)), x ∈ I,

provided that the series converges at x = a and x = b.

Definition. For certain z ∈ C, the q, ω-exponential functions ez(t) and Ez(t)
are defined by

(1) ez(t) =

∞∑
k=0

(
z(t(1− q)− ω)

)k
(q; q)k

=
1∏∞

k=0

(
1− zqk(t(1− q)− ω)

) ,
and

(2) Ez(t) =

∞∑
k=0

q
1
2k(k−1)

(
z(t(1− q)− ω)

)k
(q; q)k

=

∞∏
k=0

(
1 + zqk(t(1− q)− ω)

)
.

The functions ez(t) and Ez(t) are the solutions of the first order Hahn difference
equations

(3) Dq,ωy(t) = zy(t), y(θ) = 1,

and

(4) Dq,ωy(t) = −zy(qt+ ω), y(θ) = 1,

respectively, see [3]. For the proofs of the equalities in (1) and (2), see [10,
Section 1.3] and [23]. Also these equalities were proved using the method
of successive approximation, in [13]. Here the q-shifted factorial (b; q)n for a
complex number b and n ∈ N0 is defined to be

(b; q)n =

{ ∏n
j=1(1− bqj−1), if n ∈ N,

1, if n = 0.

By replacing the complex fixed number z by a complex function p(t) which is
continuous at θ in (3) and (4), we obtain the exponential functions ep(t) and
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Ep(t), defined by

ep(t) =
1∏∞

k=0

(
1− p(µk(t))qk(t(1− q)− ω)

) ,
Ep(t) =

∞∏
k=0

(
1 + p(µk(t))qk(t(1− q)− ω)

)
,

whenever the two products are convergent to a nonzero number for every t ∈
I, see [14]. It is worth noting that the two products are convergent since∑∞
k=0 |p(αk(t))|qk(t(1− q)− ω) is convergent, see [27].

In [13], for a continuous operator A : I → X at θ, the operator exponential
functions eA(t) and EA(t) are defined to be

(5) eA(t) =
[ ∞∏
k=0

(
e− qk(t(1− q)− ω)A(µk(t))

)]−1
,

and

(6) EA(t) =

∞∏
k=0

(
e + qk(t(1− q)− ω)A(µk(t))

)
,

where the products in (5) and (6) are convergent and the first product has an
inverse.

The operator exponential function eA(t, τ) is defined to be

eA(t, τ) = eA(t)e−1A (τ).

The following lemma gives the q, ω derivative of sum, product and quotients
of q, ω differentiable functions, with values in X.

Lemma 1.1. Let A : I → X and B : I → X be q, ω-differentiable at t ∈ I.
Then:

(i) Dq,ω(A+B)(t) = Dq,ωA(t) +Dq,ωB(t),
(ii) Dq,ω(AB)(t) = Dq,ω(A(t))B(h(t))+A(t)Dq,ωB(t) = Dq,ω(A(t))B(t)+

A(h(t))Dq,ωB(t),
(iii) for any constant c ∈ X, Dq,ω(cA)(t) = cDq,ω(A(t)),
(iv) Dq,ω(A−1)(t) = −

(
A−1(h(t))

)(
Dq,ωA(t)

)
A−1(t) provided that for ev-

ery t ∈ I,
(
A−1(t)

)
exists,

(v)

Dq,ω(AB−1)(t) = Dq,ωA(t)
(
B−1(h(t))

)
−A(t)

(
B−1(h(t))

)
Dq,ωB(t)

(
B−1(t)

)
provided that for every t ∈ I,

(
B−1(t)

)
exists.

The following theorem is important and will be used later.

Theorem 1.2 ([3]). Assume f : I → R is continuous at θ. Then the following
statements are true.

(i) {f((sqk) + ω[k]q)}k∈N converges uniformly to f(θ) on I.
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(ii)

∞∑
k=0

qk
∣∣f(sqk + ω[k]q)

∣∣ is uniformly convergent on I and consequently

f is q, ω-integrable over I.
(iii) Define

F (x) :=

∫ x

θ

f(t)dq,ωt, x ∈ I.

Then F is continuous at θ. Furthermore, Dq,ωF (x) exists for every
x ∈ I and

Dq,ωF (x) = f(x).

Conversely,∫ b

a

Dq,ωf(t)dq,ωt = f(b)− f(a) for all a, b ∈ I.

2. Basic concepts of stability

In this section we introduce the concepts of many types of stability. See for
instance [16]. Consider the Hahn difference equation of the form

(7) Dq,ωx(t) = F (t, x), x(τ) = xτ ∈ X, t, τ ∈ I,

where F is assumed to satisfy all conditions that imply Equation (7) to have a
unique solution.

Definition. Equation (7) is called stable if for every τ ∈ I and every ε > 0,
there exists δ = δ(ε, τ) > 0 such that for any two solutions x(t) = x(t, τ, xτ )
and x̂(t) = x̂(t, τ, x̂τ ) of Equation (7), we have

‖xτ − x̂τ‖ < δ ⇒ ‖x(t)− x̂(t)‖ < ε for all t ≥ τ, t, τ ∈ I.

Definition. Equation (7) is called uniformly stable if for every ε > 0, there
exists δ = δ(ε) > 0 independent on τ such that for any two solutions x(t) =
x(t, τ, xτ ) and x̂(t) = x̂(t, τ, x̂τ ) of Equation (7), we have

‖xτ − x̂τ‖ < δ ⇒ ‖x(t)− x̂(t)‖ < ε for all t ≥ τ, t, τ ∈ I.

Definition. Equation (7) is called asymptotically stable if it is stable and
there exists γ = γ(τ) > 0 such that for any two solutions x(t) = x(t, τ, xτ ) and
x̂(t) = x̂(t, τ, x̂τ ) of Equation (7), we have

‖xτ − x̂τ‖ < γ ⇒ lim
t→∞

‖x(t)− x̂(t)‖ = 0.

Definition. Equation (7) is called uniformly asymptotically stable if it is uni-
formly stable and there exists γ > 0 independent of τ such that for any two
solutions x(t) = x(t, τ, xτ ) and x̂(t) = x̂(t, τ, x̂τ ) of Equation (7), we have

‖xτ − x̂τ‖ < γ ⇒ lim
t→∞

‖x(t)− x̂(t)‖ = 0.
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Definition. Equation (7) is called globally asymptotically stable if it is stable
and for any two solutions x(t) = x(t, τ, xτ ) and x̂(t) = x̂(t, τ, x̂τ ) of Equation
(7), we have

lim
t→∞

‖x(t)− x̂(t)‖ = 0.

Definition. Equation (7) is called exponentially stable if there exists a con-
stant α > 0 such that for any solution x(t) = x(t, τ, xτ ) of Equation (7), we
have

‖x(t)‖ ≤ γ(τ, ‖xτ‖)e−α(t, τ) for all t ≥ τ, t, τ ∈ I,
for some function γ : I × R≥0 → R+.

Definition. Equation (7) is called uniformly exponentially stable if γ is inde-
pendent on τ ∈ I.

Definition. Let h : I → R be a positive bounded function. We say that
Equation (7) is h-stable if for any solution x(t) = x(t, τ, xτ ) of Equation (7),
we have

‖x(t)‖ ≤ γ(τ, ‖xτ‖)h(t)h−1(τ) for all t ≥ τ, t, τ ∈ I,
for some function γ : I × R≥0 → R+. Here h−1(t) = 1

h(t) .

Definition. Equation (7) is called h-uniformly stable if γ > 0 is independent
on τ ∈ I.

3. Stability of first order Hahn difference equations

In this section, we obtain some characterizations of different types of stability
for linear Hahn difference equations of the form

CP (0) : Dq,ωx(t) = A(t)x(t), x(τ) = xτ ∈ X, t ≥ τ, t, τ ∈ I,

and

CP (f) : Dq,ωx(t) = A(t)x(t) + f(t), x(τ) = xτ ∈ X, t ≥ τ, t, τ ∈ I,

where A, f : I → X are continuous at θ. We suppose all conditions that imply
the existence of the exponential functions eA(t, τ) and EA(t, τ).

The initial value problems CP (0) and CP (f) have the unique solutions

x(t) = eA(t, τ)xτ

and

x(t) = eA(t, τ)
(
xτ +

∫ t

τ

f(s)eA(τ, µ(s))dq,ωs
)

respectively.
For the proof of the following two theorems, see [17].

Theorem 3.1. The following statements are equivalent.

(i) CP (0) is stable.
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(ii) For every τ ∈ I and every ε > 0, there exists δ = δ(ε, τ) such that for
any solution x(t) = x(t, τ, xτ ) of CP (0), we have

‖xτ‖ < δ ⇒ ‖x(t)‖ < ε.

(iii) CP (f) is stable.
(iv) For every τ ∈ I, {‖eA(t, τ)‖}t≥τ,t∈I is bounded.
(v) For every τ ∈ I, there exists γ(τ) > 0 such that for any solution

x(t) = x(t, τ, xτ ) of CP (0) (resp. CP (f)), we have

‖x(t)‖ ≤ γ(τ)‖xτ‖ for all t ≥ τ, t ∈ I.

Theorem 3.2. The following statements are equivalent.

(i) CP (0) is uniformly stable.
(ii) For every ε > 0, there exists δ = δ(ε) such that for any solution x(t) =

x(t, τ, xτ ) of CP (0), we have

‖xτ‖ < δ ⇒ ‖x(t)‖ < ε.

(iii) CP (f) is uniformly stable.
(iv) {‖eA(t, τ)‖ : t, τ ∈ I, t ≥ τ} is bounded.
(v) There is γ > 0 such that for any solution x(t) = x(t, τ, xτ ) of CP (0)

(resp. CP (f)), we have

‖x(t)‖ ≤ γ‖xτ‖ for all t ≥ τ, t ∈ I.

Now, we establish a necessary and sufficient condition for the global asymp-
totic stability of CP (0).

Theorem 3.3. The following statements are equivalent.

(i) CP (0) is asymptotically stable.
(ii) limt→∞ ‖eA(t, τ)x‖ = 0 for every x ∈ X and every τ ∈ I.
(iii) CP (0) is globally asymptotically stable.

Proof. (i)⇒(ii) Suppose that CP (0) is asymptotically stable. Then, there exists
γ > 0 such that for any solution x(t) = x(t, τ, xτ ) of CP (0), with initial value
xτ , we have

‖xτ‖ < γ ⇒ lim
t→∞

‖x(t)‖ = 0.

Let 0 6= x ∈ X. Put xτ = γx
2‖x‖ . Then,

lim
t→∞

∥∥∥∥eA(t, τ)γx

2‖x‖

∥∥∥∥ = 0.

Consequently, limt→∞ ‖eA(t, τ)x‖ = 0.
(ii)⇒(iii) By condition (ii) and the Uniform Boundedness Theorem [28], we

insure the boundedness of {‖eA(t, τ)‖}t≥τ,t∈I . Consequently, CP (0) is stable
(by Theorem 3.1). Thus by our assumption, CP (0) is globally asymptotically
stable.

(iii)⇒(i) is clear. �
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For the proof of the next theorem, again see [17].

Theorem 3.4. Assume that

F (t) =

∫ t

τ

f(s)E−A(µ(s))dq,ωs

is bounded for any τ ∈ I. Then, CP (0) is globally asymptotically stable if and
only if CP (f) is globally asymptotically stable.

We follow the proof of Theorem 2.5 in [17], to obtain the next two results.

Theorem 3.5. The following statements are equivalent.

(i) CP (0) is exponentially stable.
(ii) There exists α > 0 such that

‖eA(t, τ)‖ ≤ β(τ)e−α(t, τ) for all t ≥ τ,
for some function β : I → R+.

Proof. (i)⇒(ii) Let x(t) be any nontrivial solution corresponding to the initial
value xτ 6= 0. Then, we have ‖x(t)‖ ≤ γ(τ, ‖xτ‖)e−α(t, τ) for some function
γ : I × R≥0 → R+. Consequently, we have ‖eA(t, τ)xτ‖ ≤ γ(τ, ‖xτ‖)e−α(t, τ)
for any initial value xτ ∈ X. This implies that for any non zero xτ ∈ X, we
have

‖eA(t, τ)‖ ≤ sup
‖xτ‖=1

γ(τ, ‖xτ‖)e−α(t, τ).

Then
‖eA(t, τ)‖ ≤ β(τ)e−α(t, τ),

where β(τ) = sup‖xτ‖=1 γ(τ, ‖xτ‖).
(ii)⇒(i) Let ‖eA(t, τ)‖ ≤ β(τ)e−α(t, τ). Then, we have

‖x(t)‖ = ‖eA(t, τ)xτ‖
≤ ‖eA(t, τ)‖‖xτ‖
≤ β(τ)e−α(t, τ)‖xτ‖ for all t ≥ τ.

Hence, CP (0) is exponentially stable. �

Theorem 3.6. The following statements are equivalent.

(i) CP (0) is uniformly exponentially stable.
(ii) There exist α > 0 and β > 0 independent on τ such that

‖eA(t, τ)‖ ≤ βe−α(t, τ) for all t ≥ τ.

The following results concerning h-stability and h-unifom stability are more
general than Theorems 3.5 and 3.6.

Theorem 3.7. The following statements are equivalent.

(i) CP (0) is h-stable.
(ii) There exists a function β : I → R+ such that

‖eA(t, τ)‖ ≤ β(τ)h(t)h−1(τ) for all t ≥ τ.
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Proof. (i)⇒(ii) Assume that CP (0) is h-stable. There exists γ : I → R+ such
that any solution x(t) = x(t, τ, xτ ) CP (0) with an initial value xτ ∈ X, satisfies

‖x(t)‖ = ‖eA(t, τ)xτ‖ ≤ γ(τ, ‖xτ‖)h(t)h−1(τ) for all t ≥ τ.
Consequently, we have

‖eA(t, τ)‖ ≤ sup
‖xτ‖=1

γ(τ, ‖xτ‖)h(t)h−1(τ).

Then

‖eA(t, τ)‖ ≤ β(τ)h(t)h−1(τ),

where β(τ) = sup‖xτ‖=1 γ(τ, ‖xτ‖).
(ii)⇒(i) Assume that ‖eA(t, τ)‖ ≤ β(τ)h(t)h−1(τ) for some function β : I →

R+. Then, we have

‖x(t)‖ = ‖eA(t, τ)xτ‖
≤ ‖eA(t, τ)‖‖xτ‖
≤ β(τ)‖xτ‖h(t)h−1(τ) for t ≥ τ.

Hence, CP (0) is h-stable. �

We can prove the following theorem similarly, so the proof will be omitted.

Theorem 3.8. The following statements are equivalent.

(i) CP (0) is h-uniformly stable.
(ii) There exists γ > 0 independent on τ such that

‖eA(t, τ)‖ ≤ γh(t)h−1(τ) for all t ≥ τ.

Now, we study some different types of q, ω- stability of the non-homogeneous
first order Hahn difference equations. As usual I denotes an interval which
contains θ. For s ∈ I, we define the class [s]q,ω by

[s]q,ω =: {µk(s) = sqk + ω[k]q : k ∈ Z}
⋂
I
⋃
{θ}.

It is well known that the following facts are true:

(1) For s > θ, we have µk(s)→ θ as k →∞ and µ−k(s)→∞.
(2) For s < θ, we have µk(s)→ θ as k →∞ and µ−k(s)→ −∞.

See [3], [14].

Definition. We say that Equation (7) is q, ω-exponentially stable if there exists
a constant α > 0 such that for any s ∈ I, for any τ ∈ [s]q,ω and for any solution
x(t) = x(t, τ, xτ ) of Equation (7) with initial value xτ , we have

‖x(t)‖ ≤ γ(τ, ‖xτ‖)e−α(t, τ) for all t ≥ τ, t ∈ [s]q,ω,

for some function γ : I × R≥0 → R+.

Definition. Equation (7) is called q, ω-uniformly exponentially stable if γ is
independent on τ ∈ I.
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Definition. Let h : I → R be a positive bounded function. We say that
Equation (7) is q, ω-h-stable if for any s ∈ I, for any τ ∈ [s]q,ω and for any
solution x(t) = x(t, τ, xτ ) of Equation (7), we have

‖x(t)‖ ≤ γ(τ, ‖xτ‖)h(t)h−1(τ) for all t ≥ τ, t ∈ [s]q,ω,

for some function γ : I × R≥0 → R+. Here h−1(t) = 1
h(t) .

Definition. Equation (7) is called q, ω-h-uniformly stable if γ is independent
on τ ∈ I.

The proofs of the following results concerning the q, ω-exponentially stability
and q, ω-h-stability are similar to the proofs of Theorems 3.5-3.8. So they will
be omitted.

Theorem 3.9. The following statements are equivalent.

(i) CP (0) is q, ω-exponentially stable.
(ii) There exists α > 0 such that for any s ∈ I, τ ∈ [s]q,ω, we have

‖eA(t, τ)‖ ≤ β(τ)e−α(t, τ) for all t ≥ τ, t ∈ [s]q,ω,

for some function β : I → R+.

Theorem 3.10. The following statements are equivalent.

(i) CP (0) is q, ω-uniformly exponentially stable.
(ii) There exists α > 0 such that for any s ∈ I, we have

‖eA(t, τ)‖ ≤ βe−α(t, τ) for all t ≥ τ, t, τ ∈ [s]q,ω,

for some constant β > 0.

Theorem 3.11. The following statements are equivalent.

(i) CP (0) is q, ω-h-stable.
(ii) There exists a function β : I → R+ such that for any s ∈ I, τ ∈ [s]q,ω,

we have

‖eA(t, τ)‖ ≤ β(τ)h(t)h−1(τ) for all t ≥ τ, t ∈ [s]q,ω.

Theorem 3.12. The following statements are equivalent.

(i) CP (0) is q, ω-uniformly h-stable.
(ii) There exists a constant β > 0 such that for any s ∈ I, τ ∈ [s]q,ω, we

have

‖eA(t, τ)‖ ≤ βh(t)h−1(τ) for all t ≥ τ, t ∈ [s]q,ω.

Theorem 3.13. Assume that there exists a constant α > 0, and there are
functions γ : I → R+ which is continuous at θ, and β : I → R+ such that for
any s ∈ I and for any τ ∈ [s]q,ω,the following conditions hold

(i)

‖eA(t, τ)‖ ≤ γ(τ)e−α(t, τ) for all t ≥ τ, t ∈ [s]q,ω.
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(ii) ∫ t

τ

γ(µ(s))e−α(τ, µ(s))‖f(s)‖dq,ωs < β(τ), t ≥ τ, t ∈ [s]q,ω.

Then CP (f) is q, ω-exponentially stable and every solution x(t) with an initial
value xτ satisfies the following inequality

‖x(t)‖ ≤ γ(τ)
(
‖xτ‖+ β(τ)

)
e−α(t, τ), t, τ ∈ [s]q,ω,

for every s ∈ I.

Proof. Let x(t) be a solution of CP (f) with an initial value xτ . Then, we have

‖x(t)‖ ≤ ‖eA(t, τ)‖
(
‖xτ‖+

∫ t

τ

‖f(s)‖‖eA(τ, µ(s))‖dq,ωs
)

≤ γ(τ)e−α(t, τ)
[
‖xτ‖+

∫ t

τ

‖f(s)‖γ(µ(s))e−α(τ, µ(s))‖dq,ωs
]

≤ γ(τ)(‖xτ‖+ β(τ))e−α(t, τ), t, τ ∈ [s]q,ω.

Therefore, Equation CP (f) is q, ω-exponentially stable. �

Theorem 3.14. Assume that there exists α > 0, and there are constants
γ, β > 0, such that for any s ∈ I and for any τ ∈ [s]q,ω, the following conditions
hold

(i)

‖eA(t, τ)‖ ≤ γe−α(t, τ) for all t ≥ τ, t ∈ [s]q,ω.

(ii) ∫ t

τ

e−α(τ, µ(s))‖f(s)‖dq,ωs < β, t ≥ τ, t ∈ [s]q,ω.

Then CP (f) is q, ω-uniformly exponentially stable and every solution x(t) with
an initial value xτ satisfies the following inequality

‖x(t)‖ ≤ γ
(
‖xτ‖+ β

)
e−α(t, τ), τ, t ∈ [s]q,ω,

for every s ∈ I.

Proof. The proof is similar to the proof of Theorem 3.13 and will be omitted.
�

The following results concerning h-stability and h-unifom stability are more
general than Theorems 3.13 and 3.14.

Theorem 3.15. Assume that there exists γ : I → R+ continuous at θ and
β : I → R+ such that for any s ∈ I and for any τ ∈ [s]q,ω,the following
conditions hold

(i)

‖eA(t, τ)‖ ≤ γ(τ)h(t)h−1(τ) for all t ≥ τ, t ∈ [s]q,ω.
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(ii) ∫ t

τ

γ(µ(s))h(τ)h−1(µ(s))‖f(s)‖dq,ωs < β(τ), t ∈ [s]q,ω, t ≥ τ.

Then CP (f) is q, ω-h-stable and every solution x(t) with an initial value xτ
satisfies the following inequality

‖x(t)‖ ≤ γ(τ)
(
‖xτ‖+ β(τ)

)
h(t)h−1(τ), t, τ ∈ [s]q,ω,

for every s ∈ I.

Proof. Let x(t) be a solution of CP (f) with initial value xτ , τ ∈ [s]q,ω. Then,
we have

‖x(t)‖ ≤ ‖eA(t, τ)‖
(
‖xτ‖+

∫ t

τ

‖f(s)‖‖eA(τ, µ(s))‖dq,ωs
)

≤ γ(τ)h(t)h−1(τ)
[
‖xτ‖+

∫ t

τ

‖f(s)‖γ(µ(s))h(τ)h−1(µ(s))dq,ωs
]

≤ γ(τ)
(
‖xτ‖+ β(τ)

)
h(t)h−1(τ), t ∈ [s]q,ω.

Therefore, Equation CP (f) is q, ω-h-stable. �

Theorem 3.16. Assume that the following conditions hold.

(i) There exists a constant γ > 0, such that

‖eA(t, τ)‖ ≤ γh(t)h−1(τ).

(ii) There exists a constant β > 0, such that∫ t

τ

‖f(s)‖h(µ(s))h−1(τ)dq,ωs < β for all t ≥ τ.

Then CP (f) is uniform q, ω-h-stable and every solution x(t) with initial value
xτ satisfies the following inequality

‖x(t)‖ ≤ γ
(
‖xτ‖+ β

)
h(t)h−1(τ).

Proof. The proof is similar to the proof of Theorem 3.15 and will be omitted.
�

4. Second order Hahn difference equations

In this section, we study the stability of the second order Hahn difference
equations of the form

(8) D2
q,ωx(t) +A(t)Dq,ωx(t) +R(t)x(t) = 0, t ∈ I

and

(9) D2
q,ωx(t) +A(t)Dq,ωx(t) +R(t)x(t) = f(t), t ∈ I
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with initial conditions Dq,ωx(τ) = x1τ and x(τ) = x0τ , where A,R, f : I → X
are continuous at θ. Let z : I → X be a particular solution of the corresponding
Riccati equation

(10) Dq,ωz(t)−F(t)z(t) = R(t), t ∈ I,

where F(t) = z(µ(t))−A(t).
We need the following lemma. The proof is simple and will be omitted.

Lemma 4.1. If x is a solution of Equation (9) or (8), then g(t) = Dq,ωx(t) +
z(t)x(t) is a solution of

(11) Dq,ωg(t)−F(t)g(t)− f(t) = 0

or

(12) Dq,ωg(t)−F(t)g(t) = 0

respectively.

Now we study the different kinds of stability for Equation (9), and the results
can be applied on Equation (8) by replacing f(t) with zero.

Theorem 4.2. If the functions ‖eF (t, τ)‖, ‖e−z(t, τ)‖, and
∫ t
τ
‖e−z(t, µ(s))‖dq,ωs

are bounded for every τ ∈ I, then Equation (9) is stable.

Proof. We denote by L=supt≥τ ‖e−z(t, τ)‖, K=supt≥τ
∫ t
τ
‖e−z(t, µ(s))‖dq,ωs,

and M = supt≥τ ‖eF (t, τ)‖. From Theorem 3.1, Dq,ωg −Fg − f = 0 is stable,
since {‖eF (t, τ)‖ : t ≥ τ} is bounded. Then for every ε > 0, there is δ1(ε, τ) > 0
such that for any two solutions g(t) = g(t, τ, gτ ) and ĝ(t) = ĝ(t, τ, ĝτ ) with
initial values gτ and ĝτ , respectively, we have

‖gτ − ĝτ‖ < δ1 =⇒ ‖g(t)− ĝ(t)‖ < ε

2K
.

Choose δ > 0 such that

δ ≤ min
( δ1

max
(
‖z(τ)‖, 1

) , ε
2L

)
.

Let x(t) = x(t, τ, x0τ , x1τ ) and x̂(t) = x̂(t, τ, x̂0τ , x̂1τ ) be two solutions of Equa-

tion (9) with initial values X(τ) = (x0τ , x1τ ) and X̂(τ) = (x̂0τ , x̂1τ ) such that

‖X(τ)− X̂(τ)‖ < δ.

Hence,

g(t) = Dq,ωx(t) + z(t)x(t) and ĝ(t) = Dq,ωx̂(t) + z(t)x̂(t)

are solutions of Equation (11) corresponding respectively to the initial condi-
tions

gτ = Dq,ωx(τ) + z(τ)x(τ) and ĝτ = Dq,ωx̂(τ) + z(τ)x̂(τ).
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We see that ‖gτ − ĝτ‖ < δ1. Consequently, ‖g(t) − ĝ(t)‖ < ε
2K , ∀t ≥ τ, t ∈ I.

The solutions x(t) and x̂(t) of Equation (9) are given by

x(t) = e−z(t, τ)
(
x0τ +

∫ t

τ

e−z(τ, µ(s))g(s)dq,ωs
)

and

x̂(t) = e−z(t, τ)
(
x̂0τ +

∫ t

τ

e−z(τ, µ(s))ĝ(s)dq,ωs
)
.

This implies that ‖x(t)− x̂(t)‖ ≤ ε. Therefore, Equation (9) is stable. �

Similarly, we can prove the following theorem.

Theorem 4.3. If the functions ‖eF (t, τ)‖, ‖e−z(t, τ)‖ and
∫ t
τ
‖e−z(t, µ(s))‖dq,ωs

are uniformly bounded with respect to τ ∈ I, then Equation (9) is uniformly
stable.

Now, we establish the characterizations of the q, ω-exponential stability and
the uniform q, ω-exponential stability.

Theorem 4.4. Assume there exist constants α > 0 and α1 > 0, and there are
functions γ : I → R+ which is continuous at θ, and β, L : I → R+ such that
for any s ∈ I and for any τ ∈ [s]q,ω, the following conditions hold

(i)

‖eF (t, τ)‖ ≤ γ(τ)e−α(t, τ)

and

‖e−z(t, τ)‖ ≤ γ(τ)e−α1
(t, τ), t ∈ [s]q,ω for all t ≥ τ.

(ii) ∫ t

τ

γ(µ(s))e−α(τ, µ(s))‖f(s)‖dq,ωs < β(τ), t ∈ [s]q,ω, t ≥ τ ;

and∫ t

τ

γ(µ(s))e−α1
(τ, µ(s))e−α(s, τ)dq,ωs < L(τ), t ∈ [s]q,ω, t ≥ τ.

Then Equation (9) is q, ω-exponentially stable.

Proof. From Theorem 3.13, Dq,ωg − Fg − f = 0 is q, ω-exponentially stable.
Then any solution g(t) = g(t, τ, gτ ) with initial value gτ , satisfies

‖g(t)‖ ≤ γ(τ)e−α(t, τ)
[
‖gτ‖+ β(τ)

]
for all t ≥ τ, t ∈ [s]q,ω.

Set

γ1(τ, r) = γ(τ)
[
‖r‖+ β(τ)

]
.

This gives

‖g(t)‖ ≤ γ1(τ, ‖gτ‖)e−α(t, τ).
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Let x(t) be a solution of Equation (9) with initial value X(τ) = (x0τ , x1τ ).
Then g(t) = Dq,ωx(t)+z(t)x(t) is a solution of Equation (11) with initial value
g(τ) = x1τ + z(τ)x0τ . The solution x(t) is given by

x(t) = e−z(t, τ)
[
x0τ +

∫ t

τ

e−z(τ, µ(s))g(s)dq,ωs
]
.

Hence

‖x(t)‖ ≤ γ(τ)e−α1(t, τ)
[
‖X(τ)‖

+

∫ t

τ

γ(µ(s))e−α1
(τ, µ(s))γ1(τ, ‖gτ‖)e−α(s, τ)dq,ωs

]
≤ γ(τ)e−α1(t, τ)

[
‖X(τ)‖+ Lγ1(τ, ‖gτ‖)

]
.

Therefore, Equation (9) is q, ω-exponentially stable. �

Theorem 4.5. Assume there exist positive numbers α, α1, γ, β and L such
that for any s ∈ I and for any τ ∈ [s]q,ω, the following conditions hold

(i)

‖eF (t, τ)‖ ≤ γe−α(t, τ)

and

‖e−z(t, τ)‖ ≤ γe−α1
(t, τ) for all t ≥ τ, t ∈ [s]q,ω.

(ii) ∫ t

τ

γe−α(τ, µ(s))‖f(s)‖dq,ωs < β, t ∈ [s]q,ω, t ≥ τ ;

and∫ t

τ

γe−α1
(τ, µ(s))e−α(s, τ)dq,ωs < L, t ∈ [s]q,ω, t ≥ τ.

Then Equation (9) is q, ω-uniformly exponentially stable.

Proof. The proof is similar to the proof of Theorem 4.4, and will be omitted. �

Theorem 4.6. Assume that there exist two positive bounded functions h, h1 :
I → R, and there are functions γ, β, L : I → R+ such that γ is continuous at
θ. If for any s ∈ I and for any τ ∈ [s]q,ω, the following conditions

(i)

‖eF (t, τ)‖ ≤ γ(τ)h(t)h−1(τ)

and

‖e−z(t, τ)‖ ≤ γ(τ)h1(t)h−11 (τ) for all t ≥ τ, t ∈ [s]q,ω.
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(ii) ∫ t

τ

γ(µ(s))h(τ)h−1(µ(s))‖f(s)‖dq,ωs < β(τ), t ∈ [s]q,ω;

and∫ t

τ

γ(µ(s))h1(τ)h−11 (µ(s))h(s)h−1(τ)dq,ωs < L(τ), t ∈ [s]q,ω,

hold, then Equation (9) is q, ω-h-stable.

Proof. The equation Dq,ωg−Fg− f = 0 is q, ω-h-stable, by Theorem 3.15 and
any solution g(t) = g(t, τ, gτ ) with initial value gτ , satisfies

‖g(t)‖ ≤ γ(τ)h(t)h−1(τ)
[
‖gτ‖+ β(τ)

]
for all t ≥ τ, t ∈ [s]q,ω.

Set

γ1(τ, r) = γ(τ)
[
‖r‖+ β(τ)

]
.

This gives
‖g(t)‖ ≤ γ1(τ, ‖gτ‖)h(t)h−1(τ).

Let x(t) be a solution of Equation (9) with initial value X(τ) = (x0τ , x1τ ).
Then g(t) = Dq,ωx(t)+z(t)x(t) is a solution of Equation (11) with initial value
g(τ) = x1τ + z(τ)x0τ . The solution x(t) is given by

x(t) = e−z(t, τ)
[
x0τ +

∫ t

τ

e−z(τ, µ(s))g(s)dq,ωs
]
.

Hence

‖x(t)‖ ≤ γ(τ)h1(t)h−11 (τ)
[
‖X(τ)‖

+

∫ t

τ

γ(µ(s))h1(τ)h−11 (µ(s))γ1(τ, ‖gτ‖)h(s)h−1(τ)dq,ωs
]

≤ γ(τ)h1(t)h−11 (τ)
[
‖X(τ)‖+ L(τ)γ1(τ, ‖gτ‖)

]
.

Therefore, Equation (9) is q, ω-h-stable. �

Theorem 4.7. Assume there exist positive bounded functions h, h1 : I → R
and there are positive constants γ, β and L such that for any s ∈ I and for any
τ ∈ [s]q,ω, the following conditions hold

(i)

‖eF (t, τ)‖ ≤ γh(t)h−1(τ) and ‖e−z(t, τ)‖ ≤ γh1(t)h−11 (τ), t ∈ [s]q,ω.

(ii) ∫ t

τ

γh(τ)h−1(µ(s))‖f(s)‖dq,ωs < β, t ∈ [s]q,ω;

and ∫ t

τ

γh1(τ)h−11 (µ(s))h(s)h−1(τ)dq,ωs < L, t ∈ [s]q,ω.
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Then Equation (9) is uniform q, ω-h-stable.

Proof. The proof is similar to the proof of Theorem 4.6 and will be omitted. �
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