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Abstract. In this paper, we investigate solutions of equations which are

linear (p, q)-difference equation of higher order by using (p, q)-derivative
and integral. We also derive the solution of equation in the case of second

order.
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1. Introduction

Quantum calculus(q-calculus) have been studied by many researchers. They
investigated some classical theory and several results and properties for q-calculus.
Several of them obtained various generalizations of operators based on q-calculus
(see[1-6]). After that, several authors introduced and researched many expan-
sions of positive linear operators, using q-integers. The recent research trend
treated the applications of q-calculus importantly in the field of number theory,
approximation theory, and physics. Some scholars have published papers in the
area, developing stage, related to approximation theory(see[3-5]).

Recently, (p, q)-calculus is introduced as the post quantum calculus of q-
calculus(see[7-13]). R. Chakrabarti and R. Jagannathan mentioned (p, q)-number
as two-parameter quantum in the area of physics. Wachs and White introduced
the (p, q)-number in the mathematics by certain combinatorial problems that is
irrelevant to the quantum group(see[13]). The (p, q)-integer was introduced to
generalize or integrate several forms of q-oscillator algebras in the theoretical
physics that are related with the representation of single-parameter quantum
algebras(see[9]).
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Katriel and Kibler defined the (p, q)-binomial coefficients and derived a (p, q)-
binomial theorem. Burban and Klimyk studied (p, q)-differentiation, (p, q)-
integration(see[11,12]). In [8], R. Jagannathan and K. S. Rao introduced the
(p, q)-extensions related to two parameter quantum algebras from q-identities.
P. N. Sadjang expressed two relevant polynomials of the (p, q)-derivative and
derived the formula of (p, q)-integration by part and two (p, q)-Taylor formulas
of polynomials(see[10]).

Throughout this paper, we use that 0 < q < p ≤ 1 and p, q ∈ C where C is
the set of complex numbers . At first, we introduce some basic notations about
(p, q)-calculus which is found in [7-13].

Definition 1.1. (1) For any n ∈ C and 0 < q < p ≤ 1, we define the (p, q)-
number by

[n]p,q =
pn − qn

p− q
. (1.1)

Note that the (p, q) number is reduced to q-number, limp→1[n]p,q = [n]q for q ̸= 1
.

(2) The (p, q)-binomial coefficients are defined by

[
n
k

]
p,q

=

[
n
]
p,q

![
k
]
p,q

!
[
n− k

]
p,q

!
,

0 ≤ k ≤ n where
[
n
]
p,q

! =
[
n
]
p,q

[
n− 1

]
p,q

· · ·
[
1
]
p,q

for n = 1, 2, · · · , and[
0
]
p,q

! = 1.

Definition 1.2. Let f be a function on the set of the complex numbers. We
define the (p, q)-derivative of the function f as follows

Dp,qf(x) =
f(px)− f(qx)

(p− q)x
, (x ̸= 0). (1.2)

Since Dp,qf(0) = f ′(0), it is provided that f is differentiable at 0.

From the Definition, we have

Dp,qf(x) = D1, pq
f(qx), Dp,qf(x) = D1, qp

f(px), Dp,qf(x) = Dp−1,q−1f(pqx)

(1.3)

Since Dp,qz
n = [n]p,qz

n−1, if t(x) =
∑n

k=0 akx
k, then

Dp,qt(x) =

n−1∑
k=0

ak+1[k + 1]p,qx
k.

The operator of (p, q)-difference equation, Dp,q, has the following properties.
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Theorem 1.3. The derivative of a product and the derivative of a ratio are
given by

Dp,q(f(x)g(x)) = f(px)Dp,qg(x) + g(qx)Dp,qf(x)

= g(px)Dp,qf(x) + f(qx)Dp,qg(x),

Dp,q

(
f(x)

g(x)

)
=

g(qx)Dp,qf(x)− f(qx)Dp,qg(x)

g(px)g(qx)

=
g(px)Dp,qf(x)− f(px)Dp,qg(x)

g(px)g(qx)
.

In [10], P. N. Sadjang introduced the definition of (p, q)-integral as below.

Definition 1.4. Let f be an arbitrary function. (p, q)-integral is defined∫
f(x)dp,qx = (p− q)x

∞∑
k=0

qk

pk+1
f

(
qk

pk+1
x

)
.

Theorem 1.5. The (p, q)-integration by parts is defined∫ b

a

f(px)Dp,qg(x)dp,qx = [f(x)g(x)]ba −
∫ b

a

g(qx)Dp,qf(x)dp,qx.

Definition 1.6. For z in complex number with |z| < 1, the (p, q)-exponential
functions are defined by

ep,q(z) =

∞∑
n=0

p(
n
2) zn

[n]p,q!
,

Ep,q(z) =

∞∑
n=0

q(
n
2) zn

[n]p,q!
.

Observe that Ep,q(x) = ep−1,q−1(x).

A general linear (p, q)-difference equations of first order is represented by

Dp,qy(x) = a(x)y(qx) + b(x), (1.4)

and a non homogeneous equation that is concerned with the corresponding ho-
mogeneous one has

Dp,qy(x) = a(x)y(qx). (1.5)

In [14], We investigated the general solution of linear (p, q)-difference equation
of first order and the system of the equation.

The purpose of this paper is to explore (p, q)-difference equations of higher
order and to find the solution of the equations. In section 2, we investigate
solutions about the system of linear (p, q)-differential equations of higher order in
various case. In section 3, we derive solutions about the systems of linear (p, q)-
difference equation of higher order with constant coefficients including simple
case. Add to that, we consider a simple example that is the second order (p, q)-
difference equations.



170 N.S. Jung, C.S. Ryoo

2. General theory on linear (p, q)-difference equations of higher order

In this section, we define the k-order linear non-homogeneous (p, q)-difference
equation and corresponding homogeneous equation which is derived from a cer-
tain equation. We also investigate the solution of the equation.

We consider the equation which is k-order nonconstant coefficients linear non-
homogeneous (p, q)-difference equation of order k and corresponding homoge-
neous equation as follows :

[D
(k)
1, pq

+ a1(x)D
(k−1)
1, pq

+ · · ·+ ak−1(x)D1, pq
+ ak(x)]y(x) = b(x), (2.1)

and

[D
(k)
1, pq

+ a1(x)D
(k−1)
1, pq

+ · · ·+ ak−1(x)D1, pq
+ ak(x)]y(x) = 0. (2.2)

A scalar equation of (2.1) and (2.2) are reduced to a system of the (1.4) and
(1.5) in [14]. Add that, It gives general theory for the system.

Assume that

z1(x) = y(x), z2(x) = D1, pq
y(x), · · · , zk(x) = D

(k−1)
1, pq

y(x). (2.3)

We obtain the result as follows :

D1, pq
z(qx) =


z2(qx)
z3(qx)

...
zk(qx)

−ak(qx)z1(qx)− ak−1(qx)z2(qx)− · · · − a1(qx)zk(qx) + b(qx)



=


0 1 · · · 0
0 0 · · · 0
...

...
...

0 0 · · · 1
−ak(qx) −ak−1(qx) · · · −a1(qx)




z1(qx)
z2(qx)

...
zk−1(qx)
zk(qx)

+


0
0
...
0

b(qx)

 .

From (1.3), the above matrix form is represented by

Dp,qz(x) = A(x)z(qx) +B(x), (2.4)

where

A(x) =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
0 0 0 · · · 1

−ak(qx) −ak−1(qx) −ak−2(qx) · · · −a1(qx)

 ,

z(x) = (z1(x), · · · , zk(x))t, and B(x) = (0, 0, · · · , 0, b(qx))t.
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Let the initial conditions be

y(x0) = y0, D1, pq
y(x0) = y1, D

(2)
1, pq

y(x0) = y2, · · · , D(k−1)
1, pq

y(x0) = yk−1.

Then we can consider the existence of a unique solution of (2.1). By (2.3), it
is equivalent to the existence of a unique solution of (2.4) under the constraints
(z1(x0), · · · , zk(x0))

t = (y0, y1, · · · , yk−1)
t. Consequently, like a fundamental

system of solutions y1(x), y2(x), . . . , yk(x) of (2.2), we can get a fundamental
system(
y1(x), D1, pq

y1(x), . . . , D
(k−1)
1, pq

y1(x)
)t

, · · · ,
(
yk(x), D1, pq

yk(x), . . . , D
(k−1)
1, pq

yk(x)
)t

of the corresponding homogeneous equation Dp,qz(x) = A(x)z(qx), including
the fundamental matrix

Φ(x) =


y1(x) · · · yk(x)

D1, pq
y1(x) · · · D1, pq

yk(x)
... · · ·

...

D
(k−1)
1, pq

y1(x) · · · D
(k−1)
1, pq

yk(x)

 . (2.5)

If
∑k

i=1 αiyi(x) = 0, then
∑k

i=1 αi D1, pq
yi(x) = 0, · · · ,

∑k
i=1 αiD

(k−1)
1, pq

yi(x) = 0.

From above result, we have αΦ(x) = 0 where Φ(x) is a fundamental matrix
and α = (α1, α2, · · · , αk)

t

Therefore, the fundamental matrix in (2.5) is non-singular, that is

det [Φ(x)] =

∣∣∣∣∣∣∣∣∣∣
y1(x) · · · yn(x)

D1, pq
y1(x) · · · D1, pq

yn(x)
... · · ·

...

D
(k−1)
1, pq

y1(x) · · · D
(k−1)
1, pq

yn(x)

∣∣∣∣∣∣∣∣∣∣
̸= 0

if and only if the fundamental solutions, yi(i = 1, 2, · · · , k) , are linear indepen-
dent.

If yi(x)(i = 1, 2, · · · , n) is a fundamental system of solution of the homoge-
neous (2.2), for the fundamental matrix Φ(x), then the general solution of the
system,

Φ(px)Dp,qC(x) = B(x), (2.6)

is found as below

z(x) = Φ(x)C(x), (2.7)

where C(x) = (C1(x), · · · , Ck(x))
t.
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From (2.4) and (2.7), we have

B(x) = C(qx)Dp,qΦ(x) + Φ(px)Dp,qC(x)−A(x)z(qx)

= Φ(px)Dp,qC(x).

Therefore, we get the result of (2.6) and the following equation,

Dp,qC(x) = Φ−1(px)B(x). (2.8)

By (2.8) and definition of (p, q)-derivative, we have

C(px) = C(qx) + (p− q)xΦ−1(px)B(x),

and by replacing px by x, ons has

C(x) = C(
q

p
x) + (1− q

p
)xΦ−1(x)B(

1

p
x). (2.9)

Theorem 2.1. Consider the equations Dp,qC(x) = Φ−1(px)B(x). Then we
obtain

C(x) = C

(
qN

pN
x

)
+

(
1− q

p

)
x

N−1∑
i=o

(
qi

pi

)
Φ−1

(
qi

pi
x

)
B

(
qi

pi+1
x

)

= C(x0) +

x∑
t=( q

p )
ix0

(1− q

p
)tΦ−1(t)B

(
1

p
t

)
.

Proof. By the recurrence relation of (2.9), we have

C(x) = C

(
qN

pN
x

)
+

(
1− q

p

)
x

N−1∑
i=o

(
qi

pi

)
Φ−1

(
qi

pi
x

)
B

(
qi

pi+1
x

)
.

If we put ( qp )
Nx = x0, then the above equation is represented by the following

result.

C(x) = C(x0) +

x∑
t=( q

p )
ix0

(
1− q

p

)
tΦ−1(t)B

(
1

p
t

)
.

. □

Corollary 2.2. If N → ∞ for 0 < q
p < 1, then ( qp )

N approaches 0.

Hence, we have

C(x) = C(0) + (p− q)x

∞∑
i=o

(
qi

pi+1

)
Φ−1

(
qi

pi
x

)
B

(
qi

pi+1
x

)
and the general solutions of (2.1) reads

y(x) =

n∑
i=1

Ci(x)yi(x).
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Note that for (p, q)-difference equation

[D
(k)
1, qp

+ a1(x)D
(k−1)
1, qp

+ · · ·+ ak−1(x)D1, qp
+ ak(x)]y(x) = b(x)

and

[D
(k)
1, qp

+ a1(x)D
(k−1)
1, qp

+ · · ·+ ak−1(x)D1, qp
+ ak(x)]y(x) = 0.

Suppose that

t1(x) = y(x), t2(x) = D1, qp
y(x), · · · , tk(x) = D

(k−1)
1, qp

y(x).

Then we also have as follows :

Dp,qz(x) = P (x)t(px) +Q(x), (2.10)

where

P (x) =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
0 0 0 · · · 1

−ak(px) −ak−1(px) −ak−2(px) · · · −a1(px)

 ,

t(x) = (t1(x), · · · , tk(x))t and Q(x) = (0, 0, · · · , 0, b(px))t.

Similar to (2.5), we can get a fundamental system(
y1(x), D1, qp

y1(x), . . . , D
(k−1)
1, qp

y1(x)
)t

, · · · ,
(
yk(x), D1, qp

yk(x), . . . , D
(k−1)
1, qp

yk(x)
)t

of the homogeneous equation of (2.10),

Dp,qt(x) = P (x)t(px),

where

Φ(x) =


y1(x) · · · yk(x)

D1, qp
y1(x) · · · D1, qp

yk(x)
... · · ·

...

D
(k−1)
1, qp

y1(x) · · · D
(k−1)
1, qp

yk(x)

 . (2.11)

If yi(x)(i = 1, 2, · · · , n) is a fundamental system of solution of the homo-
geneous equation (2.2), with the fundamental matrix Φ(x), then the general
solution of the system

Φ(qx)Dp,qR(x) = Q(x) (2.12)

is found as below

t(x) = Φ(x)R(x) (2.13)
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where R(x) = (R1(x), · · · , Rk(x))
t. By (2.10) and (2.13), we notice the result of

(2.12),
Q(x) = Dp,qt(x)− P (x)t(px)

= Φ(qx)Dp,qR(x).

From that, we get the following equation,

Dp,qR(x) = Φ−1(qx)Q(x). (2.14)

The (2.14) and the definition of (p, q)-derivative are gives

R(px) = R(qx) + (p− q)xΦ−1(qx)Q(x).

By replacing px by x, one has

R(x) = R(
q

p
x) + (1− q

p
)xΦ−1(

q

p
x)B(

1

p
x).

Theorem 2.3. Consider the equations Dp,qR(x) = Φ−1(qx)Q(x). Then we
obtain

R(x) = R

(
qN

pN
x

)
+

(
1− q

p

)
x

N−1∑
i=o

(
qi

pi

)
Φ−1

(
qi+1

pi+1
x

)
B

(
qi

pi+1
x

)

= R(x0) +

x∑
t=( q

p )
ix0

(1− q

p
)rΦ−1(r)B

(
1

p
r

)
.

Proof. The first part is proved by the recurrence relation of (2.9). If we put
( qp )

Nx = x0, then the above equation is represented by the second part. □

Corollary 2.4. If N → ∞ for 0 < q
p < 1, then ( qp )

N approaches 0.

Hence, we have

R(x) = R(0) + (1− q

p
)x

∞∑
i=o

(
qi

pi

)
Φ−1

(
qi+1

pi+1
x

)
B

(
qi

pi+1
x

)
and the general solutions of (2.1) reads

y(x) =

n∑
i=1

Ri(x)yi(x).

3. Linear (p, q)-difference equations of second order

In this section, we derive a general solutions of linear (p, q)-difference equation
of second order. We investigate linear (p, q)-difference equation with constant
coefficients and some example of the second order. Furthermore, we research the
equations which have the solution in series is concerned with analytic functions.
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Consider linear non homogeneous (p, q)-difference equation of order n with
constant coefficients,[

Dk
p,q + a1D

k−1
p,q + · · ·+ ak−1Dp,q + ak

]
y(x) = b(x) (3.1)

and the corresponding homogeneous equation,[
Dk

p,q + a1D
k−1
p,q + · · ·+ ak−1Dp,q + ak

]
y(x) = 0. (3.2)

Now, consider the equation, Dp,qy(x) = λy(x), then it’s solution read y(x) =
ep,q(λx). So, we obtain the characteristic equation of (3.2),

λk + a1λ
k−1 + · · ·+ ak−1λ+ ak = 0. (3.3)

Theorem 3.1. If the characteristic equation has k-distinct roots, λi(i = 1, 2, · · · , k),
then the solutions of (3.3) is obtained by yi(x) = ep,q(λix) for i = 1, 2, · · · , k.

Theorem 3.2. In the case of the characteristic equation has some roots that
are not distinct, then (3.3) admits as k-linear independent solutions. So, we can
write the solution of the (p, q)-defference equation by y(x) =

∑∞
n=0 cnx

n where
the coefficients cn, satisfies

m∑
i=0

[(
m

i

)
(−λ)i

(
i−1∏
k=0

p(n+i)−k − q(n+i)−k

p− q

)]
cn+i = 0

a homogeneous (p, q)-difference equation of order m.

Proof. To solve (3.1) and (3.2), it is enough to prove following equation, (Dp,q−
λ)my(x) = 0 that include the equation y(x) =

∑∞
n=0 cnx

n.

So, we obtain[(
m

0

)
Dm

p,q +

(
m

1

)
Dm−1

p,q (−λ) + · · ·+
(

m

m− 1

)
Dp,q(−λ)m−1 +

(
m

m

)
(−λ)m

]
×

∞∑
n=0

cnx
n = 0.

(3.4)
Using the definition of (p, q)-derivative operator, we get(
m

m

) ∞∑
n=0

(−λ)mcnx
n +

(
m

m− 1

) ∞∑
n=0

(−λ)m−1cn+1
pn+1 − qn+1

p− q
xn

+ · · ·+
(
m

0

) ∞∑
n=0

cn+m
(pn+m − qn+m) · · · (pn+1 − qn+1)

(p− q)m
xn = 0.
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From the above equation, we have the following result by comparison of coeffi-
cients

m∑
i=0

[(
m

i

)
(−λ)i

(
i−1∏
k=0

p(n+i)−k − q(n+i)−k

p− q

)]
cn+i = 0. (3.5)

□

Now, assume that all the coefficients ai(x) of (3.1) are the form ai(x) = xidi
where i = 0, · · · , k and di is constants. Then the equation is represented as
below formula

b(x) =

∞∑
n=0

dkcnx
n+k +

∞∑
n=0

dk−1cn+1
pn+1 − qn+1

p− q
xn+k−1 + · · ·

+

∞∑
n=0

d0cn+k
(pn+k − qn+k) · · · (pn+1 − qn+1)

(p− q)k
xn.

(3.6)

Example 3.1 Consider a equation [D
(2)
1, qp

− 5D1, qp
+ 6]y(x) = x2, that its

solution is a combination of exponential function. Find the general solution of
the second order linear difference equation.

Solution. We assume that

z1(x) = y(x), z2(x) = D1, pq
y(x).

Then we have

D1, pq
z(qx) =

(
0 1
−6 5

)(
z1(qx)
z2(qx)

)
+

(
0
x2

)
.

From (1.3), the above matrix form is represented by

Dp,qz(x) = A(x)z(qx) +B(x), (3.7)

where A(x) =

(
0 1
−6 5

)
, z(x) = (z1(x), z2(x))

t, and B(x) = (0, x2)t.

To solve the difference equation, we consider the characteristic equation of
that,

λ2 − 5λ+ 6 = 0, (3.8)

has solutions λ1 = 2 and λ2 = 3. So, we can write the particular solution of (3.7)
by y1(x) = e1, qp (2x) and y2(x) = e1, qp (3x). Let y1(x), y2(x) be a fundamental

system of solution of the homogeneous equation, [D
(2)
1, qp

− 5D1, qp
+ 6]y(x) = x2,

corresponding to the fundamental matrix Φ(x) where

Φ(x) =

(
e1, qp (2x) e1, qp (3x)

2e1, qp (2x) 3e1, qp (3x)

)
.
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The general solution of (3.7) is obtained as z(x) = Φ(x)C(x) where C(x) =
(c1(x), c2(x)). This leads to the general solution is y(x) = c1(x)e1, qp (2x) +

c2(x)e1, qp (3x), where

Φ(qx)

(
Dp,qc1(x)
Dp,qc2(x)

)
=

(
0
x2

)
.

So, we obtainDp,qc1(x) = −x2e1,( q
p )

−1(−2qx) andDp,qc2(x) = x2e1,( q
p )

−1(−3qx).

Using the (p, q)-integrations by parts, we have the general solution as below.

y(x) =− c1 e1, qp (2x) +

(
1

2p2
x2 +

p+ q

4p3
x+

p+ q

8p3

)
− p+ q

8p3
e1, qp (2x)

+ c2 e1, qp (3x)−
(

1

3p2
x2 +

p+ q

9p3
x+

p+ q

27p3

)
+

p+ q

27p3
e1, qp (3x)

where

c1(x) = −c1 + e1,( q
p )

−1(−2x)

(
1

2p2
x2 +

p+ q

4p3
x+

p+ q

8p3

)
− p+ q

8p3

and

c2(x) = c2 − e1,( q
p )

−1(−3x)

(
1

3p2
x2 +

p+ q

9p3
x+

p+ q

27p3

)
+

p+ q

27p3
.

Example 3.2 Consider another equation [D
(2)
1, pq

− 3D1, pq
+ 2]y(x) = x2, with

y(x) is expressed exponential function. The characteristic equation has solutions,
λ1 = 1 and λ2 = 2. This leads to the general solution of the equation is

y(x) = c1(x)e1, pq (x) + c2(x)e1, pq (2x), where Φ(px)

(
D1, pq

c1(x)

D1, pq
c2(x)

)
=

(
0
x2

)
and

Φ(x) =

(
e1, pq (x) e1, pq (2x)

2e1, pq (x) 3e1, pq (2x)

)
.

We also can get the general solution by the result of Dp,qc1(x) and Dp,qc2(x)
and the (p, q)-integrations by parts in the same method of example (3.1).

Example 3.3 Given a (p, q)-difference equation,

[D3
p,q − 3D2

p,q + 2Dp,q]y(x) = 4x, (3.9)

if the equation is differentiated three times, then we obtain the characteristic
equation, m4(m − 1)(m − 2) = 0 that has solutions, m1 = 0,m2 = 0,m3 =
0,m4 = 0,m5 = 1,m6 = 2.
Thus, the general solution of (3.9) is expressed by y(x) = yp(x) + c4 ep,q(x) +
c5 ep,q(2x) where yp(x) = c0+c1x+c2x

2+c3x
3. By substituting yp(x) into equa-

tion (3.9), we find the unknown coefficient ci, i = 0, · · · , 3. If initial conditions
are given, then we also get the other coefficients c5 and c6.
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Now, consider the second order case when the coefficients in (3.2) are analytic
functions.

Theorem 3.3. Let f(x), h(x) and y(x) be analytic functions at x = 0 (∈ C).
Linear homogeneous (p, q)-difference equation of second order,

[D2
p,q + f(x)Dp,q + h(x)]y(x) = 0,

with f(x) and h(x), allows two linear independent analytic solution at x = 0.

Proof. Since f(x) and h(x) are analytic functions at x = 0, we can expressed
the function in series as below :

f(x) =
∞∑

n=0

fnx
n, h(x) =

∞∑
n=0

hnx
n (3.10)

where fn = fn(0)
n! and hn = hn(0)

n! .
If the function y(x) is analytic at x = 0, then we can write

y(x) =

∞∑
n=0

anx
n. (3.11)

By using (3.10) and (3.11), we obtain

D2
p,q

∞∑
n=0

anx
n +

∞∑
n=0

fnx
nDp,q

∞∑
n=0

anx
n +

∞∑
n=0

hnx
n

∞∑
n=0

anx
n = 0. (3.12)

From the calculation of (3.12), we get

∞∑
n=0

an+2
(pn+2 − qn+2)(pn+1 − qn+1)

(p− q)2
xn +

∞∑
n=0

n∑
k=0

fn−kak+1
(pk+1 − qk+1)

(p− q)
xn

+

∞∑
n=0

n∑
k=0

hn−kakx
n = 0

(3.13)
and

an+2
(pn+2 − qn+2)(pn+1 − qn+1)

(p− q)2

= −
n∑

k=0

(fn−kak+1
(pk+1 − qk+1)

(p− q)
+

n∑
k=0

hn−kak, n = 0, 1, 2, . . . .

So, the coefficient an, n = 2, 3 . . . is determined by (3.13). Since the coefficient
a0 and a1 are arbitrary complex numbers, we obtain two linear independent
analytic solutions. □
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