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PROPERTIES ON q-DIFFERENCE RICCATI EQUATION

Zhi-Bo Huang and Ran-Ran Zhang

Abstract. In this paper, we investigate a certain type of q-difference

Riccati equation in the complex plane. We prove that q-difference Riccati

equation possesses a one parameter family of meromorphic solutions if it
has three distinct meromorphic solutions. Furthermore, we find that all

meromorphic solutions of q-difference Riccati equation and corresponding
second order linear q-difference equation can be expressed by q-gamma

function if this q-difference Riccati equation admits two distinct rational

solutions and q ∈ C such that 0 < |q| < 1. The growth and value
distribution of differences of meromorphic solutions of q-difference Riccati

equation are also treated.

1. Introduction

Let q ∈ C such that 0 < |q| < 1. It is well known that q-gamma function
Γq(x) is defined by

Γq(x) :=
(q; q)∞
(qx; q)∞

(1− q)1−x,

where (a; q)∞ =
∏∞

k=0

(
1− aqk

)
. Here we take the principal vales of qx and

(1 − q)x. Thus, Γq(x) is a meromorphic function with poles at x = −n ±
2πik/ log q, where k and n are non-negative integers, see [1]. Define

γq(z) := (1− q)x−1Γq(x), z = qx,

and γq(0) := (q; q)∞, we obtain that γq(z) is a meromorphic function of zero

order with no zeros, having its poles at
{
q−k

}∞
k=0

.
We easily conclude that the first order linear q-difference equation

h(qz) = (1− z)h(z)

is solved by the function γq(z).
We then consider a general first order linear q-difference equation

(1.1) h(qz) = a(z)h(z),
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where a(z) is a rational function. If a(z) ≡ a is a constant, equation (1.1)
is solvable in terms of rational functions if and only if logq a is an integer. If
a(z) is a nonconstant rational function, let αi, i = 1, 2, . . . , n and βj , j =
1, 2, . . . ,m be the zeros and poles of a(z), respectively, repeated according to
their multiplicities. Then a(z) can be written in the form

a(z) =
c(1− z/α1)(1− z/α2) · · · (1− z/αn)

(1− z/β1)(1− z/β2) · · · (1− z/βm)
,

where c 6= 0 is a complex number depending on a(z). Thus, equation (1.1) is
solved by

(1.2) h(z) = zlogq c γq(z/α1)γq(z/α2) · · · γq(z/αn)

γq(z/β1)γq(z/β2) · · · γq(z/βm)
,

which is meromorphic if and only if logq c is an integer.
In this paper, we are concerned with the q-difference Riccati equation

(1.3) f(qz) =
A(z) + f(z)

1− (q − 1)zf(z)
,

and second order linear q-difference equation

(1.4) ∆2
qy(z) +

A(z)

(q − 1)z
y(z) = 0,

where q ∈ C\{0}, |q| 6= 1, A(z) is a meromorphic function. Here, for a mero-
morphic function y(z), the q-difference operator ∆q is defined by ∆qy(z) =
y(qz)−y(z)

(q−1)z and ∆n+1
q y(z) = ∆q

(
∆n

q y(z)
)
, n = 1, 2, . . . [1, p. 488].

Throughout this paper, we assume that the reader is familiar with the fun-
damental results and the standard notations of Nevanlinna’s value distribution
theory of meromorphic function, see, e.g., [14].

Recently, a number of papers, see e.g. [6,7,10,12,13,15,17,19,20,22], focused
on complex difference equations and difference analogues of Nevanlinna theory.
q-difference counterparts are also investigated [3,19,23]. But there are only few
papers concerning with the properties of meromorphic solutions of q-difference
equations, see e.g. [16, 18,21,24].

The remainder of the paper is organized as follows. A system of solutions
of q-difference Riccati equation (1.3) is stated in Section 2. Section 3 contains
the relationships between q-difference equations and q-gamma function. The
growth and value distribution of differences on solutions of q-difference Riccati
equation (1.3) is investigated in Section 4.

2. A system of solutions of q-difference Riccati equation

Let f1, f2, f3 be distinct meromorphic solutions of differential Riccati equa-
tion

(2.1) w
′
(z) + w(z)2 +A(z) = 0.
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Then (2.1) possesses a one parameter family of meromorphic solutions (fc)c∈C,
see e.g., [2, pp. 371–373].

Ishizaki extended this property to the difference Riccati equation

(2.2) ∆f(z) +
f(z)2 +A(z)

f(z)− 1
= 0,

and obtained the following difference analogue of this property as follows.

Theorem 2.A ([17, Proposition 2.1]). Suppose that (2.2) possesses three dis-
tinct meromorphic solutions f1(z), f2(z) and f3(z). Then any meromorphic
solution f(z) of (2.2) can be represented by

f(z) =
f1(z)f2(z)− f2(z)f3(z)− f1(z)f2(z)Q(z) + f1(z)f3(z)Q(z)

f1(z)− f3(z)− f2(z)Q(z) + f3(z)Q(z)
,(2.3)

where Q(z) is a periodic function of period 1. Conversely, if for any periodic
function Q(z) of period 1, we define a function f(z) by (2.3), then f(z) is a
meromorphic solution of (2.2).

We then extend this property to the q-difference Riccati equation (1.3) and
obtained a q-difference analogue as follows.

Theorem 2.1. Suppose that (1.3) possesses three distinct meromorphic solu-
tions f1(z), f2(z) and f3(z). Then a meromorphic solution f(z) of (1.3) can
be represented by

(2.4) f(z) =
f1(z)f3(z)− f1(z)f2(z) + f1(z)f2(z)φ(z)− f2(z)f3(z)φ(z)

f3(z)− f2(z)− f3(z)φ(z) + f1(z)φ(z)
,

where φ(z) is a meromorphic function satisfying φ(qz) = φ(z). Conversely,
if for any meromorphic function φ(z) satisfying φ(qz) = φ(z), we define a
function f(z) by (2.4), then f(z) is a meromorphic solution of (1.3).

Proof. Using a similar proof of Theorem 2 in [16]. Let hj(z), j = 1, 2, 3, 4 be
distinct meromorphic functions. We define a cross ratio of hj(z), j = 1, 2, 3, 4
by

R(h1, h2, h3, h4; z) :=
h4(z)− h1(z)

h4(z)− h2(z)
:
h3(z)− h1(z)

h3(z)− h2(z)
.

We first show that f(z), distinct from f1(z), f2(z) and f3(z), is a meromor-
phic solution of (1.3) if and only if R(qz)=R(z), where R(z)=R(f1, f2, f3, f ; z).
Thus, we conclude from (1.3) that

R(qz) =
f(qz)− f1(qz)

f(qz)− f2(qz)
:
f3(qz)− f1(qz)

f3(qz)− f2(qz)

=

[(q−1)zA(z)+1][f(z)−f1(z)]
[1−(q−1)zf(z)][1−(q−1)zf1(z)]

[(q−1)zA(z)+1][f(z)−f2(z)]
[1−(q−1)zf(z)][1−(q−1)zf2(z)]

:

[(q−1)zA(z)+1][f3(z)−f1(z)]
[1−(q−1)zf3(z)][1−(q−1)zf1(z)]

[(q−1)zA(z)+1][f3(z)−f2(z)]
[1−(q−1)zf3(z)][1−(q−1)zf2(z)]

=
f(z)− f1(z)

f(z)− f2(z)
:
f3(z)− f1(z)

f3(z)− f2(z)
= R(z).
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On the other hand, if R(qz) = R(z), then

f(qz)− A(z)+f1(z)
1−(q−1)zf1(z)

f(qz)− A(z)+f2(z)
1−(q−1)zf2(z)

:

A(z)+f3(z)
1−(q−1)zf3(z) −

A(z)+f1(z)
1−(q−1)zf1(z)

A(z)+f3(z)
1−(q−1)zf3(z) −

A(z)+f2(z)
1−(q−1)zf2(z)

=
f(z)− f1(z)

f(z)− f2(z)
:
f3(z)− f1(z)

f3(z)− f2(z)
,

and so,

f(qz)− A(z)+f1(z)
1−(q−1)zf1(z)

f(qz)− A(z)+f2(z)
1−(q−1)zf2(z)

:

[(q−1)zA(z)−1](f3(z)−f1(z))
[1−(q−1)zf3(z)][1−(q−1)zf1(z)]

[(q−1)zA(z)−1](f3(z)−f2(z))
[1−(q−1)zf3(z)][1−(q−1)zf2(z)]

=
f(z)− f1(z)

f(z)− f2(z)
:
f3(z)− f1(z)

f3(z)− f2(z)
.

(2.5)

We then conclude from (2.5) that f(qz) = A(z)+f(z)
1−(q−1)zf(z) , which shows that

f(z) satisfies (1.3).
Thus, for any meromorphic function φ(z) satisfying φ(qz) = φ(z), we define

f(z) by
R(f1, f2, f3, f ; z) = φ(z).

Then f(z) is represented by (2.4), and also satisfies (1.3). The proof of Theorem
2.1 is completed. �

It is difficult for us to detect the properties of meromorphic solutions since
the parameter function Q(z) in Theorem 2.A and φ(z) in Theorem 2.1 appear
more than one time. Furthermore, we note that f(z) 6= f2(z) in Theorem 2.1.
This shows that the representation of (2.4) cannot represent all meromorphic
solutions of q-difference Riccati equation (1.3). Thus, we can use a new method
used in [8, Theorem 8.3.4], and prove a family of solutions of q-difference Riccati
equation (1.3).

Theorem 2.2. Let q ∈ C\{0}, |q| 6= 1, and A(z) be a meromorphic function
with A(z) 6= − 1

(q−1)z . If q-difference Riccati equation (1.3) possesses three

distinct meromorphic solutions f0(z), f1(z) and f2(z), then all meromorphic
solutions of q-difference Riccati equation (1.3) constitute a one parameter family

(2.6)

{
f0(z), f(z) =

(f1(z)− f0(z))(f2(z)− f0(z))

φ(z)(f2(z)− f1(z)) + (f2(z)− f0(z))
+ f0(z)

}
,

where φ(z) is any constant in C, or any non-zero meromorphic function with
φ(qz) = φ(z); as φ(z) ≡ 0, f(z) = f1(z); as φ(z) ≡ −1, f(z) = f2(z).

In particular, if φ(z) is any constant in C, we obtain:

Corollary 2.1. Let q ∈ C\{0}, |q| 6= 1, and A(z) be a meromorphic function
with A(z) 6= − 1

(q−1)z . If q-difference Riccati equation (1.3) possesses three dis-

tinct rational solutions f0(z), f1(z) and f2(z), then q-difference Riccati equation
(1.3) has infinitely many rational solutions.
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We now list some preliminaries to prove Theorem 2.2.

Lemma 2.1. Let q ∈ C\{0}, |q| 6= 1, and A(z) be a meromorphic function
with A(z) 6= − 1

(q−1)z . If f(z) is a meromorphic solution of q-difference Riccati

equation (1.3), then

1− (q − 1)zf(z) 6≡ 0 and 1 + (q − 1)zf(qz) 6≡ 0.

Proof. If 1 − (q − 1)zf(z) ≡ 0, then f(z) = 1
(q−1)z . Now substituting f(z) =

1
(q−1)z into (1.3), and noting that A(z) 6= − 1

(q−1)z , we conclude that

1

(q − 1)qz
=

A(z) + 1
(q−1)z

1− (q − 1)z · 1
(q−1)z

=
(q − 1)zA(z) + 1

0
=∞.

This yields that q = 0 or q = 1, a contradiction.
If 1 + (q − 1)zf(qz) ≡ 0, then f(qz) = − 1

(q−1)z and f(z) = − q
(q−1)z . Now

substituting these into (1.3), we deduce that A(z) = − 1
(q−1)z , a contradiction.

�

Lemma 2.2. Let q ∈ C\{0}, |q| 6= 1, A1(z) and A0(z) be nonzero meromorphic
functions. If q-difference equation

(2.7) A1(z)y(qz) +A0(z)y(z) = 0

has a nonzero meromorphic solution y0(z), then all meromorphic solutions of
(2.7) constitute a one parameter family

{y(z) = φ(z)y0(z)},
where φ(z) is any constant in C, or any nonzero meromorphic function with
φ(qz) = φ(z).

Proof. Since y0(z) is a nonzero meromorphic solution of (2.7), we easily con-
clude that y(z) = φ(z)y0(z) is also a meromorphic solution of (2.7) for any
constant φ(z) in C, or any non-zero meromorphic function with φ(qz) = φ(z).

On the other hand, if y(z) is also a meromorphic solution of (2.7), we con-
clude from (2.7) that

y(qz)

y0(qz)
≡ y(z)

y0(z)
.

Set φ(z) = y(z)
y0(z) . Then φ(z) is a constant in C, or a nonzero meromorphic

function with φ(qz) = φ(z). This shows that y(z) = φ(z)y0(z). �

We now give the proof of Theorem 2.2.

Proof of Theorem 2.2. Since f0(z), f1(z) and f2(z) are three distinct meromor-
phic solutions of q-difference Riccati equation (1.3), we set

(2.8) uj(z) =
1

fj(z)− f0(z)
, j = 1, 2.

Obviously, u1(z) 6≡ u2(z) and fj(z) = 1
uj(z) + f0(z), j = 1, 2.
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Now, substituting fj(z) = 1
uj(z) + f0(z), j = 1, 2 into (1.3), and noting that

f0(z) is also a meromorphic solution of (1.3), we conclude that

[1 + (q − 1)zf0(qz)]uj(qz)− [1− (q − 1)zf0(z)]uj(z) + (q − 1)z = 0.

Set

α1(z) = 1 + (q − 1)zf0(qz) and α0(z) = (q − 1)zf0(z)− 1.

Then we deduce from Lemma 2.1 that α1(z) 6≡ 0 and α0(z) 6≡ 0, and uj(z), j =
1, 2 are two distinct meromorphic solutions of q-difference equation

(2.9) α1(z)u(qz) + α0(z)u(z) + (q − 1)z = 0.

Thus, u0(z) = u1(z)− u2(z) is a nonzero meromorphic solution of q-difference
equation

(2.10) α1(z)u(qz) + α0(z)u(z) = 0,

which is a corresponding linear homogeneous q-difference equation of (2.9).
Therefore, we deduce from Lemma 2.2 that all meromorphic solutions of

(2.10) constitute a one parameter family

H(y(z)) = {y(z) = φ(z)u0(z)},

where φ(z) is any constant in C, or any non-zero meromorphic function with
φ(qz) = φ(z). This yields that q-difference equation (2.9) has a general solution

u(z) = y(z) + u1(z) = φ(z)u0(z) + u1(z)

= φ(z)[u1(z)− u2(z)] + u1(z)

=
φ(z)[f2(z)− f1(z)]

[f1(z)− f0(z)][f2(z)− f0(z)]
+

1

f1(z)− f0(z)
.

(2.11)

We now suppose that f(z)( 6≡ f0(z)) is a meromorphic solution of (1.3),
and conclude from the argumentation of (2.9) that u(z) = 1

f(z)−f0(z) is also a

meromorphic solution of (2.9). Thus, we deduce from (2.11) that there exists a
constant φ(z) in C, or any non-zero meromorphic function φ(z) with φ(qz) =
φ(z) such that

1

f(z)− f0(z)
=

φ(z)[f2(z)− f1(z)]

[f1(z)− f0(z)][f2(z)− f0(z)]
+

1

f1(z)− f0(z)
.

Therefore, we obtain that

(2.12) f(z) =
[f1(z)− f0(z)][f2(z)− f0(z)]

φ(z)[f2(z)− f1(z)] + [f2(z)− f0(z)]
+ f0(z),

where φ(z) is any constant in C, or any non-zero meromorphic function with
φ(qz) = φ(z). This shows that any meromorphic solution f(z)( 6≡ f0(z)) of
(1.3) has the form (2.12).
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We then affirm that any meromorphic function f(z)( 6≡ f0(z)) denoted by
(2.12) must be a meromorphic solution of (1.3). In fact, we conclude from
(2.11) and (2.12) that

(2.13) f(z) =
1

u(z)
+ f0(z),

where u(z) satisfies the q-difference equation (2.9). Thus, we further conclude
from (2.9), (1.3) and the assumption that f0(z) is a meromorphic solution of
(1.3), that

f(qz) =
1

u(qz)
+ f0(qz)

=
α1(z)

−α0(z)u(z)− (q − 1)z
+ f0(qz)

=
1 + (q − 1)zf0(qz)

[1− (q − 1)zf0(z)]u(z)− (q − 1)z
+ f0(qz)

=
1 + [1− (q − 1)zf0(z)]u(z)f0(qz)

[1− (q − 1)zf0(z)]u(z)− (q − 1)z

=
1 + [1− (q − 1)zf0(z)]u(z) · A(z)+f0(z)

1−(q−1)zf0(z)

[1− (q − 1)zf0(z)]u(z)− (q − 1)z

=
1 + [A(z) + f0(z)]u(z)

[1− (q − 1)zf0(z)]u(z)− (q − 1)z
.

(2.14)

On the other hand, we can obtain from (2.13) that

A(z) + f(z)

1− (q − 1)zf(z)
=

A(z) + 1
u(z) + f0(z)

1− (q − 1)z
[

1
u(z) + f0(z)

]
=

1 + [A(z) + f0(z)]u(z)

[1− (q − 1)zf0(z)]u(z)− (q − 1)z
.

(2.15)

Therefore, we deduce from (2.14) and (2.15) that

f(qz) =
A(z) + f(z)

1− (q − 1)zf(z)
,

which shows that meromorphic function f(z)( 6≡ f0(z)) denoted by (2.12) is a
meromorphic solution of (1.3). The proof of Theorem 2.2 is completed. �

If q-difference Riccati equation (1.3) possesses a rational solution f0(z) such
that f0(z) 6→ 0 as z →∞, we further obtain:

Theorem 2.3. Let q ∈ C\{0}, |q| 6= 1, and A(z) be a meromorphic function.
If q-difference Riccati equation (1.3) possesses a rational solution f0(z) such
that f0(z) 6→ 0 as z →∞, then q-difference Riccati equation (1.3) has at most
two rational solutions.
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Proof. Contrary to the assumption, we suppose that (1.3) has three distinct
rational solutions f0(z), f1(z) and f2(z), where f0(z) 6→ 0 as z →∞.

Set

uj(z) =
1

fj(z)− f0(z)
, j = 1, 2.

Obviously, u1(z) and u2(z) are rational functions with u1(z) 6≡ u2(z), and
fj(z) = 1

uj(z) + f0(z), j = 1, 2.

Now, substituting fj(z) = 1
uj(z) + f0(z), j = 1, 2 into (1.3), and noting that

f0(z) is also a rational solution of (1.3), we conclude that

[1 + (q − 1)zf0(qz)]uj(qz)− [1− (q − 1)zf0(z)]uj(z) + (q − 1)z = 0, j = 1, 2.

This shows that u1(z) and u2(z) are two distinct rational solutions of q-differ-
ence equation

(2.16) [1 + (q − 1)zf0(qz)]u(qz)− [1− (q − 1)zf0(z)]u(z) + (q − 1)z = 0,

and u0(z) = u1(z)− u2(z) is a nonzero rational solution of

(2.17) [1 + (q − 1)zf0(qz)]u(qz)− [1− (q − 1)zf0(z)]u(z) = 0.

Since f0(z)(6→ 0, z →∞) and u0(z) are both rational functions, we can set

f0(z) =
P (z)

Q(z)
and u0(z) =

U(z)

V (z)
,

where P (z), Q(z), U(z) and V (z) are nonzero polynomials with degP (z) ≥
degQ(z).

Now substituting f0(z) = P (z)
Q(z) and u0(z) = U(z)

V (z) into (2.17), we conclude

that

Q(z)Q(qz)U(qz)V (z) + (q − 1)zP (qz)Q(z)U(qz)V (z)

−Q(z)Q(qz)U(z)V (qz) + (q − 1)zP (z)Q(qz)U(z)V (qz) = 0.
(2.18)

We can obtain that

deg{Q(z)Q(qz)U(qz)V (z)} = deg{Q(z)Q(qz)U(z)V (qz)}
< deg{(q − 1)zP (qz)Q(z)U(qz)V (z)}
= deg{(q − 1)zP (z)Q(qz)U(z)V (qz)},

and at most one of the coefficient of power zdeg{Q(z)Q(qz)U(qz)V (z)} and the
coefficient of power zdeg{(q−1)zP (qz)Q(z)U(qz)V (z)} is zero. These all show that
the degree of left hand side of (2.18) is great than 1, and yield a contradiction.

Thus, (1.3) has at most two rational solutions. The proof of Theorem 2.3 is
completed. �

We now present two examples to show that Theorem 2.3 remain valid.
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Example 2.1. Let q = 1
2 . Then ration function f0(z) = 2z + 4 solves the

q-difference Riccati equation

(2.19) f

(
1

2
z

)
=
z3 + 6z2 + 7z + f(z)

1 + z
2f(z)

of type (1.3), and f0(z) = 2z+ 4→∞ as z →∞. Suppose that f1(z)(6≡ f0(z))
is another rational solution of (2.19). Set u1(z) = 1

f1(z)−f0(z) . Then we conclude

that u1(z) satisfies the q-difference equation

(2.20) (z2 + 4z − 2)u
(z

2

)
+ 2(z2 + 2z + 1)u(z) + z = 0.

According to the proof of Theorem 2.2, we note that all meromorphic so-
lutions f(z) (except exceptional solution f0(z)) of (2.19) and all solutions
u(z) = 1

f(z)−f0(z) of (2.20) are one-one corresponding.

However, the q-difference equation, which is the corresponding homogeneous
difference equation of (2.20),

(2.21) (z2 + 4z − 2)u
(z

2

)
+ 2(z2 + 2z + 1)u(z) = 0,

has no nonzero rational solution. Otherwise, suppose that u(z) = P (z)
Q(z) is a

nonzero rational solution of (2.21), where P (z) and Q(z) are nonzero poly-
nomials with degree degP (z) = p and degQ(z) = q respectively. Then we
conclude from (2.21) that

(2.22) (z2 + 4z − 2)P
(z

2

)
Q(z) + 2(z2 + 2z + 1)P (z)Q

(z
2

)
= 0.

We can easily deduce that the degree of left hand side of (2.22) is great than
2 since P (z) and Q(z) are nonzero polynomials, and yields a contradiction.
Hence, we obtain that (2.19) has at most two rational solutions f0(z) = 2z+ 4
and f1(z) = 1

u1(z) + 2z + 4.

Example 2.2. Let q = 1
2 and A(z) = 2(z+1)(z+2)

z(z2−3z−2) . Then the ration function

f0(z) = z−1
z+1 solves the q-difference Riccati equation

(2.23) f

(
1

2
z

)
=
A(z) + f(z)

1 + z
2f(z)

of type (1.3), and f0(z) = z−1
z+1 → 1 as z →∞. Suppose that f1(z)( 6≡ f0(z)) is

another rational solution of (2.23). Set u1(z) = 1
f1(z)−f0(z) . Then we conclude

that u1(z) satisfies the q-difference equation

(2.24) (z3−3z2−8z−4)u
(z

2

)
+ (z3 + 3z2 + 4z+ 4)u(z) + z(z2 + 3z+ 2) = 0.

By using similar calculation of Example 2.1, the q-difference equation, which
is the corresponding homogeneous difference equation of (2.24),

(2.25) (z3 − 3z2 − 8z − 4)u
(z

2

)
+ (z3 + 3z2 + 4z + 4)u(z) = 0,
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has no nonzero rational solution. Thus, we obtain that (2.23) has at most two
rational solutions f0(z) = z−1

z+1 and f1(z) = 1
u1(z) + z−1

z+1 .

3. Relationships between q-difference equation and q-gamma
function

In this section, we focus on the relationships between q-difference equation
and q-gamma function, and firstly obtain the following result.

Theorem 3.1. Let q ∈ C with 0 < |q| < 1. Suppose that q-difference Riccati
equation (1.3) possesses two distinct rational solutions f1(z) and f2(z). Then
all meromorphic solutions of q-difference Riccati equation (1.3) are concerned
with q-gamma function.

Proof. Since f1(z) and f2(z) are two distinct rational solutions of (1.3), we
construct a Möbius translation

f(z) =
f1(z)h(z) + f2(z)

h(z) + 1
.(3.1)

Substituting (3.1) into (1.3), we conclude that

h(qz) =
1− (q − 1)zf1(z)

1− (q − 1)zf2(z)
h(z),(3.2)

which is type of (1.1). Thus, the meromorphic solution h(z) of (3.2) has the
form (1.2), which is concerned with q-gamma function. The proof of Theorem
3.1 is completed. �

Now, we give an example to give a presentation for Theorem 3.1.

Example 3.1. Let q = − 1
2 , A(z) = − 6z

(z+1)(z−2) in (1.3). Then the functions

f1(z) =
1

z + 1
and f2(z) =

−2

z + 1
(3.3)

satisfy the q-difference Riccati equation (1.3). Then, by using the transforma-
tion (3.1), we can switch q-difference Riccati equation (1.3) into the type (3.2)
and conclude that

h

(
−1

2
z

)
=

(
1− z

− 2
3

)
(

1− z
1
2

) h(z),

which is type of (1.1), and so

h(z) =
γ− 1

2

(
z
− 2

3

)
γ− 1

2

(
z
1
2

) =
γ− 1

2

(
− 3z

2

)
γ− 1

2
(2z)

.(3.4)
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We then conclude from (3.1) and (3.4) that

f(z) =
γ− 1

2

(
− 3z

2

)
− 2γ− 1

2
(2z)

(z + 1)
(
γ− 1

2

(
− 3z

2

)
+ γ− 1

2
(2z)

) ,
which is concerned with q-gamma function.

We second show that solutions of second order q-difference equation (1.4) are
also concerning with q-gamma function. Thus, we investigate the passage be-
tween q-difference Riccati equation (1.3) and second order q-difference equation
(1.4), and obtain the following result.

Theorem 3.2. The passage between q-difference Riccati equation (1.3) and
second order q-difference equation (1.4) is

(3.5) f(z) = −∆qy(z)

y(z)
= −y(qz)− y(z)

(q − 1)zy(z)
.

Proof. We first prove that f(z) defined as (3.5) is a meromorphic solution of
(1.3) if y(z) is a nontrivial meromorphic solution of (1.4). In fact, we conclude
from (3.5) that

∆2
qy(z) = ∆q(∆qy(z))

= ∆q(−f(z)y(z))

=
−f(qz)y(qz) + f(z)y(z)

(q − 1)z

=
−f(qz)[y(z)− (q − 1)zf(z)y(z)] + f(z)y(z)

(q − 1)z

=
−f(qz)y(z)[1− (q − 1)zf(z)] + f(z)y(z)

(q − 1)z
.

(3.6)

Thus, we deduce from (1.4) and (3.6) that

−f(qz)y(z)[1− (q − 1)zf(z)] + f(z)y(z) = −A(z)y(z),

which implies the desired form of equation (1.3).
We second prove that a meromorphic function y(z) satisfying (3.5) is a

meromorphic solution of (1.4) if f(z) defined as (3.5) is a meromorphic solution
of (1.3).

In fact, we conclude from (3.6) and (1.3) that

∆2
qy(z) =

−f(qz)y(z)[1− (q − 1)zf(z)] + f(z)y(z)

(q − 1)z

=
− A(z)+f(z)

1−(q−1)zf(z)y(z)[1− (q − 1)zf(z)] + f(z)y(z)

(q − 1)z

= − A(z)

(q − 1)z
y(z),
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which implies the desired form of (1.4). �

Thus, we deduce from Theorems 3.1 and 3.2 that:

Theorem 3.3. Let q ∈ C with 0 < |q| < 1. Suppose that q-difference Ric-
cati equation (1.3) possesses two distinct rational solutions f1(z) and f2(z).
Then all meromorphic solutions of second order q-difference equation (1.4) are
concerned with q-gamma function.

4. Value distribution of solutions of q-difference Riccati equations

If g(z) is a transcendental meromorphic solution of equation

(4.1) g(qz) = R(z, g(z)),

where q ∈ C, |q| > 1, and the coefficients of R(z, g(z)) are small functions rela-
tive to g(z), Gundersen et al. [11] showed that the order of growth of equation
(4.1) is equal to log degg(R)/ log |q|, where degg(R) is the degree of irreducible
rational function R(z, g(z)) in g(z), which means that all transcendental mero-
morphic solutions of q-difference Riccati equation (1.3) have zero order when
q ∈ C, |q| > 1.

On the other hand, second order q-difference equation (1.4) is equivalent to
the second order linear q-difference equation

(4.2) y
(
q2z
)
− (q + 1)y(qz) + q[1 + (q − 1)zA(z)]y(z) = 0.

Bergweiler et al. [4] pointed out that all transcendental meromorphic solu-
tions of equation (4.2) satisfy T (r, f) = O((log r)2) if q ∈ C and 0 < |q| < 1.
This indicates that all transcendental meromorphic solutions of equation (1.4)
satisfy T (r, f) = O((log r)2) if q ∈ C and 0 < |q| < 1. Since (3.5) is a pas-
sage between (1.3) and (1.4), we deduce that all transcendental meromorphic
solutions of q-difference Riccati equation (1.3) are of zero order if q ∈ C and
0 < |q| < 1. Thus, we obtain the following result.

Theorem 4.1. All transcendental meromorphic solutions of q-difference Ric-
cati equation (1.3) are of zero order for all q ∈ C\{0} and |q| 6= 1.

Bergweiler et al. [5] first investigated the existence of zeros of ∆cf(z) =

f(z + c) − f(z) and ∆cf(z)
f(z) , where c ∈ C\{0}, and obtained many profound

results (see [5, Theorem 1.2-Theorem 1.4 and Theorem 1.6]). Chen and Shon
[9] then extended these results of [5] and proved a number of results concerned
with the existence of zeros and fixed points of ∆cf(z) = f(z + c) − f(z) and
∆cf(z)
f(z) , where c ∈ C\{0} (see [9, Theorem 1-Theorem 6]). Zhang and Chen [22]

further considered the difference Riccati equation

(4.3) f(z + 1) =
p(z + 1)w(z) + q(z)

w(z) + p(z)
,

where p(z) and q(z) are small functions relative to f(z), and obtained the
following results.
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Theorem 4.A ([22, Theorem 1.1]). Let p(z), q(z) be meromorphic functions of
finite order, and let [p(z+1)f(z)+q(z)]/[f(z)+p(z)] be an irreducible function
in f(z). Suppose that f(z) is an admissible finite order meromorphic solution
of (4.3). Set ∆f(z) = f(z + 1)− f(z). Then

(i) λ
(

1
∆f(z)

)
= σ(∆f(z)) = σ(f), λ

(
1

∆f(z)/f(z)

)
= σ

(
∆f(z)
f(z)

)
= σ(f);

(ii) If q(z) 6≡ 0, then λ
(

1
f

)
= λ(f) = σ(f);

(iii) If p(z) ≡ p is a constant and q(z) ≡ s(z)2, where s(z) is a non-constant
rational function, then f(z) has no Borel exceptional value and λ(∆f(z)) =

λ
(

∆f(z)
f

)
= σ(f).

We now consider the value distribution of differences of transcendental mero-
morphic solutions of q-difference Riccati equation (1.3) as follows.

Theorem 4.2. Let A(z) be a non-constant rational function, q ∈ C\{0} and
|q| 6= 1. Suppose that f(z) is a transcendental meromorphic solution of q-

difference Riccati equation (1.3). Set ∆qf(z) = f(qz)−f(z)
(q−1)z .

(1) If A(z) 6= − 1
(q−1)z , then ∆qf(z) and

∆qf(z)
f(z) have infinitely many poles;

(2) If A(z) = −(q−1)zs(z)2, where s(z) is a non-constant rational function,

then ∆qf(z) = f(qz)−f(z)
(q−1)z and

∆qf(z)
f(z) have infinitely many zeros.

Remark 4.1. The similar result of Theorem 4.2(2) has been obtained in [18].
For the completeness, we list it again.

In order to prove Theorem 4.2, we need some lemmas.

Lemma 4.1 ([3, Theorem 1.2]). Let f(z) be a non-constant zero-order mero-
morphic function, and q ∈ C\{0}. Then

m

(
r,
f(qz)

f(z)

)
= o(T (r, f))

on a set of logarithmic density 1.

Lemma 4.2 ([19, Theorem 2.5]). Let f(z) be a transcendental meromorphic
solution of order zero of a q-difference equation of the form

Uq(z, f)Pq(z, f) = Qq(z, f),

where Uq(z, f)Pq(z, f) and Qq(z, f) are q-difference polynomials such that the
total degree degUq(z, f) = n in f(z) and its q-shifts, degQq(z, f) ≤ n. More-
over, we assume that Uq(z, f) contains just one term of maximal total degree
in f(z) and its q-shifts. Then

m(r, Pq(z, f)) = o(T (r, f))

on a set of logarithmic density 1.
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Lemma 4.3 ([3, Theorem 2.2]). Let f(z) be a nonconstant zero order mero-
morphic solution of

P (z, f) = 0,

where P (z, f) is a q-difference polynomial in f(z). If P (z, α) 6≡ 0 for a small
function α(z) relative to f(z), then

m

(
r,

1

f − α

)
= o(T (r, f))

on a set of logarithmic density 1.

Proof of Theorem 4.2. (1) Since f(z) is a transcendental meromorphic solution
of q-difference Riccati equation (1.3), we deduce from (1.3) that

(4.4) (q − 1)zf(qz)f(z) = f(qz)− f(z)−A(z).

Thus, we conclude from Lemma 4.1, Lemma 4.2 and (4.4) that

m(r, f) ≤ m
(
r,
f(z)

f(qz)

)
+m(r, f(qz)) + o(T (r, f))

= o(T (r, f))

on a set of logarithmic density 1, and so

(4.5) N(r, f) = T (r, f) + o(T (r, f)),

(4.6)
m(r,∆qf(z)) ≤ m

(
r,

∆qf(z)

f(z)

)
+m(r, f(z)) + o(T (r, f))

= o(T (r, f))

on a set of logarithmic density 1.
We further conclude from (1.3) that

(4.7) ∆qf(z) =
1

(q − 1)z
· A(z) + (q − 1)zf(z)2

1− (q − 1)zf(z)
.

Thus, we apply Valiron-Mohon’ko Theorem to (4.7) and get that

(4.8) T (r,∆qf(z)) = 2T (r, f) + o(T (r, f)).

We then obtain from (4.6) and (4.8) that

N(r,∆qf(z)) = 2T (r, f) + o(T (r, f))

on a set of logarithmic density 1, and so ∆qf(z) has infinitely many poles.
We note that

N

(
r,

∆qf(z)

f(z)

)
≥ N(r,∆qf(z))−N(r, f)

= T (r, f) + o(T (r, f))

on a set of logarithmic density 1, and so
∆qf(z)
f(z) has infinitely many poles.
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(2) Let

(4.9) P (z, f) = (q − 1)zf(z)f(qz)− f(qz) + f(z) +A(z).

We then affirm that P (z, s(z)) 6≡ 0 or P (z,−s(z)) 6≡ 0. Otherwise, if P (z, s(z))
≡ 0 and P (z,−s(z)) ≡ 0, we can obtain from (4.9) that

s(qz) = s(z).

This is impossible since s(z) is a non-constant rational function. Without loss
of generality, we assume that P (z, s(z)) 6≡ 0. Thus, we obtain from Lemma
4.3, (1.3) and (4.9) that

m

(
r,

1

f(z)− s(z)

)
= o(T (r, f))

on a set of logarithmic density 1, and so

(4.10) N

(
r,

1

f(z)− s(z)

)
= T (r, f) + o(T (r, f))

on a set of logarithmic density 1.
Since A(z) = −(q − 1)zs(z)2, we can conclude from (1.3) and (4.7) that

(4.11) ∆qf(z) =
[f(z) + s(z)][f(z)− s(z)]

1− (q − 1)zf(z)
.

If f(z0) − s(z0) = 1 − (q − 1)z0f(z0) = 0, then (q − 1)z0s(z0) = 0. If f(z0) −
s(z0) = 0 and f(z0) + s(z0) = ∞, then s(z0) = ∞. Thus, we deduce from
(4.10) and (4.11) that

N

(
r,

1

∆qf(z)

)
= N

(
r,

1− (q − 1)zf(z)

[f(z) + s(z)][f(z)− s(z)]

)
≥ N

(
r,

1

f(z)− s(z)

)
= T (r, f) + o(T (r, f))

on a set of logarithmic density 1. This shows that 1
∆qf(z) has infinitely many

zeros.
We now obtain from (4.11) that

(4.12)
∆qf(z)

f(z)
=

[f(z) + s(z)][f(z)− s(z)]
[1− (q − 1)zf(z)]f(z)

.

By combining (4.5) and (4.12), and using similar method that 1
∆qf(z) has infin-

itely many zeros, we can conclude that
∆qf(z)
f(z) has infinitely many zeros. The

proof of Theorem 4.2 is completed. �
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solutions of generalized Schröder equations, Aequationes Math. 63 (2002), no. 1-2, 110–

135.

[12] R. G. Halburd and R. J. Korhonen, Difference analogue of the lemma on the logarithmic
derivative with applications to difference equations, J. Math. Anal. Appl. 314 (2006),

no. 2, 477–487.

[13] , Nevanlinna theory for the difference operator, Ann. Acad. Sci. Fenn. Math. 31
(2006), no. 2, 463–478.

[14] W. K. Hayman, Meromorphic Functions, Oxford Mathematical Monographs, Clarendon
Press, Oxford, 1964.

[15] J. Heittokangas, R. Korhonen, I. Laine, J. Rieppo, and K. Tohge, Complex difference

equations of Malmquist type, Comput. Methods Funct. Theory 1 (2001), no. 1, [On table
of contents: 2002], 27–39.

[16] Z.-B. Huang, On q-difference Riccati equations and second-order linear q-difference

equations, J. Complex Anal. 2013, Art. ID 938579, 10 pp.
[17] K. Ishizaki, On difference Riccati equations and second order linear difference equations,

Aequationes Math. 81 (2011), no. 1-2, 185–198.

[18] Y. Jiang and Z. Chen, On solutions of q-difference Riccati equations with rational coef-
ficients, Appl. Anal. Discrete Math. 7 (2013), no. 2, 314–326.

[19] I. Laine and C.-C. Yang, Clunie theorems for difference and q-difference polynomials,

J. Lond. Math. Soc. (2) 76 (2007), no. 3, 556–566.
[20] J. Wang, Growth and poles of meromorphic solutions of some difference equations, J.

Math. Anal. Appl. 379 (2011), no. 1, 367–377.
[21] Z.-T. Wen, Finite logarithmic order solutions of linear q-difference equations, Bull.

Korean Math. Soc. 51 (2014), no. 1, 83–98.



PROPERTIES ON q-DIFFERENCE RICCATI EQUATION 1771

[22] R. Zhang and Z. Chen, On meromorphic solutions of Riccati and linear difference equa-

tions, Acta Math. Sci. Ser. B Engl. Ed. 33 (2013), no. 5, 1243–1254.

[23] J. Zhang and R. Korhonen, On the Nevanlinna characteristic of f(qz) and its applica-
tions, J. Math. Anal. Appl. 369 (2010), no. 2, 537–544.

[24] X. Zheng and Z. Chen, On properties of q-difference equations, Acta Math. Sci. Ser. B
Engl. Ed. 32 (2012), no. 2, 724–734.

Zhi-Bo Huang

School of Mathematical Sciences

South China Normal University
Guangzhou, 510631, P. R. China

Email address: huangzhibo@scnu.edu.cn; zhibo.huang@ucl.ac.uk

Ran-Ran Zhang

Department of Mathematics

Guangdong University of Education
Guangzhou, 510303, P. R. China

Email address: zhangranran@gdei.edu.cn




