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PROPERTIES ON ¢-DIFFERENCE RICCATI EQUATION

ZH1-BO HUANG AND RAN-RAN ZHANG

ABSTRACT. In this paper, we investigate a certain type of g-difference
Riccati equation in the complex plane. We prove that g-difference Riccati
equation possesses a one parameter family of meromorphic solutions if it
has three distinct meromorphic solutions. Furthermore, we find that all
meromorphic solutions of g-difference Riccati equation and corresponding
second order linear g-difference equation can be expressed by g-gamma
function if this g-difference Riccati equation admits two distinct rational
solutions and ¢ € C such that 0 < |¢g| < 1. The growth and value
distribution of differences of meromorphic solutions of g-difference Riccati
equation are also treated.

1. Introduction

Let ¢ € C such that 0 < |g] < 1. It is well known that g-gamma function
I'y(x) is defined by

Ly(x) = M(l — gt

(4% 0o ’
where (a;¢)oo = [[1ep (1 - aqk) . Here we take the principal vales of ¢ and
(1 —¢)*. Thus, I'y(x) is a meromorphic function with poles at « = —n +

2mik/log q, where k and n are non-negative integers, see [1]. Define
ve(2) = (1= q)" 'Ty(x), 2=4q",

and v4(0) := (¢; ¢)o, we obtain that v4(z) is a meromorphic function of zero
order with no zeros, having its poles at {q*k};io.
We easily conclude that the first order linear ¢-difference equation

h(gz) = (1 = 2)h(2)
is solved by the function 4(z).
We then consider a general first order linear ¢-difference equation

(L.1) h(gz) = a(2)h(z),
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where a(z) is a rational function. If a(z) = a is a constant, equation (1.1)
is solvable in terms of rational functions if and only if log, a is an integer. If
a(z) is a nonconstant rational function, let «;, i = 1,2,...,n and §;, j =
1,2,...,m be the zeros and poles of a(z), respectively, repeated according to
their multiplicities. Then a(z) can be written in the form

afz) = c(1—z/ar)(1—z/ag) - (1 — z/o)

where ¢ # 0 is a complex number depending on a(z). Thus, equation (1.1) is
solved by

— log, cVa(z/an)vg(z/az) - - yg(2/an)
(12) ME) = B (e B) a2 )

which is meromorphic if and only if log, ¢ is an integer.
In this paper, we are concerned with the g¢-difference Riccati equation

(19 flas) = T,

and second order linear ¢-difference equation

A(z)

—oy(z) =0,

(¢—1)z )

where ¢ € C\{0}, |q] # 1, A(z) is a meromorphic function. Here, for a mero-
morphic function y(z), the g-difference operator A, is defined by A,y(z) =

% and APy (2) = A, (Aly(2)), n=1,2,... [1, p. 488].

Throughout this paper, we assume that the reader is familiar with the fun-
damental results and the standard notations of Nevanlinna’s value distribution
theory of meromorphic function, see, e.g., [14].

Recently, a number of papers, see e.g. [6,7,10,12,13,15,17,19,20,22], focused
on complex difference equations and difference analogues of Nevanlinna theory.
g-difference counterparts are also investigated [3,19,23]. But there are only few
papers concerning with the properties of meromorphic solutions of ¢-difference
equations, see e.g. [16,18,21,24].

The remainder of the paper is organized as follows. A system of solutions
of ¢g-difference Riccati equation (1.3) is stated in Section 2. Section 3 contains
the relationships between g-difference equations and g-gamma function. The
growth and value distribution of differences on solutions of g-difference Riccati
equation (1.3) is investigated in Section 4.

(1.4) AZy(2) +

2. A system of solutions of g-difference Riccati equation

Let f1, f2, f3 be distinct meromorphic solutions of differential Riccati equa-
tion

’

(2.1) w (2) +w(2)* + A(z) = 0.
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Then (2.1) possesses a one parameter family of meromorphic solutions (f;)cec,
see e.g., [2, pp. 371-373].
Ishizaki extended this property to the difference Riccati equation
f(z)” + Az)
f(z) -1

and obtained the following difference analogue of this property as follows.

(2.2) Af(z)+ =0,

Theorem 2.A ([17, Proposition 2.1]). Suppose that (2.2) possesses three dis-
tinct meromorphic solutions f1(z), f2(2) and f3(z). Then any meromorphic
solution f(z) of (2.2) can be represented by

03 o) - HERE) ~ BEAE - AERERE + AEHERE)
f1(2) = f3(2) = f2(2)Q(2) + f3(2)Q(2) ’

where Q(z) is a periodic function of period 1. Conversely, if for any periodic
function Q(z) of period 1, we define a function f(z) by (2.3), then f(z) is a

meromorphic solution of (2.2).

We then extend this property to the ¢-difference Riccati equation (1.3) and
obtained a g-difference analogue as follows.

Theorem 2.1. Suppose that (1.3) possesses three distinct meromorphic solu-
tions f1(2), f2(z) and f3(z). Then a meromorphic solution f(z) of (1.3) can
be represented by

24)  f(z) = N1(2)fs(2) = [1(2) f2(2) + [1(2) f2(2)9(2) — fa(2) f3(2)9(2)
f3(2) = f2(2) = f3(2)8(2) + f1(2)¢(2) ’
where ¢(z) is a meromorphic function satisfying ¢(qz) = ¢(z). Conversely,
if for any meromorphic function ¢(z) satisfying ¢(qz) = ¢(z), we define a
function f(z) by (2.4), then f(z) is a meromorphic solution of (1.3).

Proof. Using a similar proof of Theorem 2 in [16]. Let h;(2), j = 1,2,3,4 be
distinct meromorphic functions. We define a cross ratio of h;(2), j = 1,2,3,4
by
ha(z) —hi(2)  hs(z) — ha(2)
ha(z) = ha(z) * hs(2) = ha(2)
)
)

=~

R(hy,ho, hs, hy; 2) =

We first show that f(z), distinct from f1(z), f2(z) and f3(2), is a meromor-
phic solution of (1.3) if and only if R(qz) = R(z), where R(z)=R(f1, fo, f3, [; 2)-
Thus, we conclude from (1.3) that

Rigz) = flaz) — filaz) . fs(qz) — fi(gz)
f(qz) = fa(q2) ~ fs(q2) = fa(q?)
(=D A+ ()= f1 (2)] [(g=1)2A@)+1][fs (2)—f1(2)]
_ I-@DHEM-DAE)] | == Dzfe1- (=D (=)
[(-DARHFE-LE)] DA+ (=)

[-@Dzf@M-(a-Dzf(a)]  [T-(@-Dzfa(@1-(e-Dzf2(2)]
_fE - fi(2) | f3(2) = [i(z) _ R(2)
f(z) = fa(z) * f3(2) = fa(2) '
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On the other hand, if R(¢z) = R(z), then

f( z) _ A(Z)+f1(z) A(z)+f3(2) AR+ fi1(2)
q ——Dz1(2) . I-(¢-Dzf3(2) _ 1-(q-D2/1(2)
Flgz) — A(Z)+fz(Z) CTAR+RGE) AR+ RE)

—(q-Dzf2(2) T (¢-Dzf3(2)  I-(q-Dz/2(2)

(g
flz) - f1( ) f3(2) = f1(2)
f(2) = fa(2) ~ f3(2) = fa(2)’

and so,
A)+1(2) [(q=1)2A(2)=1](f3(2)— f1(2))
Fle2) — 5203 . T-@Dh @l - DA (]
Fgz) — AGTRE [t D:AE-U(hE) )
(2.5) %) = T=(g=D2f2()  TT-(@=DzfRN1—(a-D2f2(2)]
f(z) = [1(2) | f3(2) — f1(2)

T IR - RE) G - RE)

We then conclude from (2.5) that f(gz) = %, which shows that
f(2) satisfies (1.3). '

Thus, for any meromorphic function ¢(z) satisfying ¢(¢z) = ¢(z), we define
f(z) by

R(f1, fos f3, 3 2) = &(2).

Then f(z) is represented by (2.4), and also satisfies (1.3). The proof of Theorem
2.1 is completed. i

It is difficult for us to detect the properties of meromorphic solutions since
the parameter function @(z) in Theorem 2.A and ¢(z) in Theorem 2.1 appear
more than one time. Furthermore, we note that f(z) # f2(z) in Theorem 2.1.
This shows that the representation of (2.4) cannot represent all meromorphic
solutions of ¢-difference Riccati equation (1.3). Thus, we can use a new method
used in [8, Theorem 8.3.4], and prove a family of solutions of g-difference Riccati
equation (1.3).

Theorem 2.2. Let ¢ € C\{0}, |q| # 1, and A(z) be a meromorphic function

with A(z) # —ﬁ. If g-difference Riccati equation (1.3) possesses three

distinct meromorphic solutions fo(z), fi1(z) and fo(z), then all meromorphic
solutions of q-difference Riccati equation (1.3) constitute a one parameter family

)
_ (W) = fo(2))(f2(2) = fo(2)) ;
20 {0 10~ G R A )
where ¢(z) is any constant in C, or any non-zero meromorphic function with
9(qz) = ¢(2); as () =0, f(2) = f1(2); as ¢(2) = —1, f(2) = fa(2).

In particular, if ¢(2) is any constant in C, we obtain:

Corollary 2.1. Let g € C\{0}, |q| # 1, and A(z) be a meromorphic function
with A(z) # —ﬁ. If q-difference Riccati equation (1.3) possesses three dis-

tinct rational solutions fo(z), f1(2) and fo(2), then g-difference Riccati equation
(1.3) has infinitely many rational solutions.
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We now list some preliminaries to prove Theorem 2.2.

Lemma 2.1. Let ¢ € C\{0}, |q| # 1, and A(z) be a meromorphic function
with A(z) # —ﬁ. If f(z) is a meromorphic solution of q-difference Riccati
equation (1.3), then

1—(¢g—1)zf(2) Z0 and 1+ (¢ — 1)zf(gz) Z 0.
Proof. If 1 — (¢ — 1)zf(z) = 0, then f(z) = ﬁ. Now substituting f(z) =

ﬁ into (1.3), and noting that A(z) # *ﬁ» we conclude that
1 ARt @ (g D2AR)+1
(@=Dgz  1-(¢—1z o5 0
This yields that ¢ = 0 or ¢ = 1, a contradiction.
If 1+ (¢g—1)zf(gz) =0, then f(qz) = —ﬁ and f(z) = —ﬁ. Now
substituting these into (1.3), we deduce that A(z) = —ﬁ, a contradiction.

O

Lemma 2.2. Let g € C\{0}, |q| # 1, A1(2) and Ao(z) be nonzero meromorphic
functions. If q-difference equation

(2.7) A1(2)y(gz) + Ao(2)y(z) =0

has a mnonzero meromorphic solution yo(z), then all meromorphic solutions of
(2.7) constitute a one parameter family

{y(z) = ¢(2)yo(2)},
where ¢(2) is any constant in C, or any nonzero meromorphic function with

#(qz) = ¢(2).

Proof. Since yo(z) is a nonzero meromorphic solution of (2.7), we easily con-
clude that y(z) = &(z)yo(z) is also a meromorphic solution of (2.7) for any
constant ¢(z) in C, or any non-zero meromorphic function with ¢(gz) = ¢(z).

On the other hand, if y(z) is also a meromorphic solution of (2.7), we con-
clude from (2.7) that

y(ez) _ y(z)

yo(gz) — yolz)
Set ¢(z) = ;’0((22). Then ¢(z) is a constant in C, or a nonzero meromorphic
function with ¢(gz) = ¢(z). This shows that y(z) = ¢(2)yo(z). O

We now give the proof of Theorem 2.2.

Proof of Theorem 2.2. Since fo(z), f1(z) and f2(z) are three distinct meromor-
1

phic solutions of g-difference Riccati equation (1.3), we set
1
2.8 uj(2) = ————7—,j=1,2.

Obviously, u1(z) # u2(z) and f;(z) = ﬁ + fo(2), j=1,2.
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Now, substituting f;(z) = ﬁ + fo(2), 7 =1,2 into (1.3), and noting that

fo(z) is also a meromorphic solution of (1.3), we conclude that
[1+ (¢ = )zfo(g2)]u;(qz) — [1 = (¢ = 1)zfo(2)]u;(2) + (¢ — 1)z = 0.
Set
a1(2) =14 (g —1)zfo(gz) and ap(z) = (¢ — 1)z fo(z) — 1.

Then we deduce from Lemma 2.1 that a1 (z) # 0 and ag(z) # 0, and u,(2), j =
1,2 are two distinct meromorphic solutions of g-difference equation
(2.9) a1(2)u(gz) + ap(z)u(z) + (g — 1)z = 0.

Thus, ug(z) = u1(z) — u2(2) is a nonzero meromorphic solution of g-difference
equation

(2.10) a1 (2)u(gz) + ao(2)u(z) = 0,

which is a corresponding linear homogeneous ¢-difference equation of (2.9).
Therefore, we deduce from Lemma 2.2 that all meromorphic solutions of
(2.10) constitute a one parameter family

H(y(2)) = {y(2) = ¢(2)uo(2)},

where ¢(z) is any constant in C, or any non-zero meromorphic function with
¢(gz) = ¢(z). This yields that g-difference equation (2.9) has a general solution

u(z) = y(z) + u1(2) = ¢(2)uo(z) + ua(2)

= ¢(2)[ur(2) —ua(2)] + ua(2)

0()f() - A=) 1 .
[f1(2) = fo(2)][f2(2) — fo(2)] ~ fi(2) = fo(z)

We now suppose that f(z)(Z£ fo(z)) is a meromorphic solution of (1.3),
and conclude from the argumentation of (2.9) that u(z) = m is also a

(2.11)

meromorphic solution of (2.9). Thus, we deduce from (2.11) that there exists a
constant ¢(z) in C, or any non-zero meromorphic function ¢(z) with ¢(gz) =
¢(z) such that

1 ¢(2)[f2(2) = f1(2)] 1

f(2) = fo(2)  [fi(2) = fo(2)][f2(2) — fo(2)] * f1(2) = folz)

Therefore, we obtain that

[f1(2) = fo(2)][f2(2) — fo(2)]
0(2)[f2(2) = f1(2)] + [f2(2) — fo(2)]
where ¢(z) is any constant in C, or any non-zero meromorphic function with

#(qz) = ¢(z). This shows that any meromorphic solution f(z)(# fo(z)) of
(1.3) has the form (2.12).

(2.12) f(z) = + fo(2),
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We then affirm that any meromorphic function f(z)(£ fo(z)) denoted by
(2.12) must be a meromorphic solution of (1.3). In fact, we conclude from
(2.11) and (2.12) that

(2.13) f(z) = —

u(z)
where u(z) satisfies the g-difference equation (2.9). Thus, we further conclude

from (2.9), (1.3) and the assumption that fy(z) is a meromorphic solution of
(1.3), that

+ fO(z)a

1
m + fo(qz)
o (2)

BETIO R TR e

1+ (¢ —1)2fo(g2)
]

T (a— D2h(e) — - D 0
@14) 1+ [1— (g = Defo(2)lu2)fola2)
[1—=(g=1Dzfo()]u(z) - (¢ - 1)z
1+ [1=(¢—1)zfo(2)]u(z) - T2 (5
[1 —(g=Dzfo(2)]u(z) - (¢ = 1)z
L1 [AR) + o))
[1- (q— Dzfo(2)]u(z) — (¢ — 1)z
On the other hand, we can obtain from (2.13) that
AR +fz) AR+ gt k)
ez 0TV -0z [+ ()]
_ 1+ [A(2) + fo(2)]u(2)
[1—=(g—Dzfo(2)u(z) = (¢ 1)z’
Therefore, we deduce from (2.14) and (2.15) that
A(z) + f(2)
1-(g=1)zf(2)’

which shows that meromorphic function f(2)(£ fo(z)) denoted by (2.12) is a
meromorphic solution of (1.3). The proof of Theorem 2.2 is completed. |

5 A(z)+fo(z)

flgz) =

If ¢-difference Riccati equation (1.3) possesses a rational solution fo(z) such
that fo(z) /4 0 as z — oo, we further obtain:

Theorem 2.3. Let g € C\{0}, |q| # 1, and A(z) be a meromorphic function.
If q-difference Riccati equation (1.3) possesses a rational solution fo(z) such
that fo(z) 4 0 as z — oo, then g-difference Riccati equation (1.3) has at most
two rational solutions.
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Proof. Contrary to the assumption, we suppose that (1.3) has three distinct
rational solutions fo(2), f1(2) and fa(z), where fo(2) /4 0 as z — oo.
Set

1 N
10 Aoy o R A

Obviously, u1(z) and wuz(z) are rational functions with wu;(z) # wuz(z), and
fi(2) = iy + fol2), 5 =1,2.

Now, substituting f;(z) = m + fo(z), 7 =1,2 into (1.3), and noting that
fo(z) is also a rational solution of (1.3), we conclude that

(14 (g = D)zfolg2)u;(g2) = [1 = (¢ = Dzfo(2)]u;(2) + (¢ = 1)z =0, j =1,2.

This shows that uq(z) and us(z) are two distinct rational solutions of ¢-differ-
ence equation

(2.16)  [1+4 (g —1)zfo(g2)]u(gz) — [1 = (¢ = Dzfo(2)]u(2) + (¢ = 1)z =0,

and ug(z) = u1(2) — ug(2) is a nonzero rational solution of

(2.17) (14 (g = 1V)zfolg2)Ju(gz) = [1 = (¢ = Dz fo(2)]u(z) = 0.
Since fo(2)(#4 0,z — 00) and ug(z) are both rational functions, we can set
_ Pl and ug(z) = U(z)

where P(z),Q(2),U(z) and V(z) are nonzero polynomials with deg P(z) >
deg Q(z).

Now substituting fo(z) = % and ug(z) = ggz)
that

into (2.17), we conclude

~—

Q(2)Q(q2)U(q2)V (2) + (¢ — 1)2P(q2)Q(2)U(qz)V (2)
- Q(2)Q(q2)U(2)V(gz) + (¢ — 1)2P(2)Q(q2)U(2)V (¢gz) = 0.
We can obtain that

deg{Q(2)Q(q2)U(q2)V (2)} = deg{Q(2)Q(q2)U(2)V (q2)}
< deg{(q —1)2P(q2)Q(2)U(q2)V (2)}
= deg{(q — 1)2P(2)Q(q2)U(2)V (¢2)},
and at most one of the coefficient of power zde8{Q(2)Q@=)U@=)V(2)} and the
coefficient of power zdeg{(a=1)zP(a2)Q(2)U(a2)V(2)} ig zero. These all show that
the degree of left hand side of (2.18) is great than 1, and yield a contradiction.

Thus, (1.3) has at most two rational solutions. The proof of Theorem 2.3 is
completed. O

(2.18)

We now present two examples to show that Theorem 2.3 remain valid.
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Example 2.1. Let ¢ = 1

5

g-difference Riccati equation
1 3 2

(2.19) f<>:z + 62 —|;7z+f(z)

of type (1.3), and fo(2) =22+4 — oo as z — co. Suppose that f1(2)(Z fo(2))
is another rational solution of (2.19). Set u;(z) = m Then we conclude

Then ration function fo(z) = 2z + 4 solves the

that u(z) satisfies the g-difference equation
z
2

According to the proof of Theorem 2.2, we note that all meromorphic so-
lutions f(z) (except exceptional solution fy(z)) of (2.19) and all solutions
u(z) = m of (2.20) are one-one corresponding.

However, the g-difference equation, which is the corresponding homogeneous
difference equation of (2.20),

(2.21) (22 + 4z — 2)u (%) 12022+ 22 + Du(z) = 0,

(2.20) (22 + 4z — 2)u ( ) +2(2% + 22+ Du(z) + 2 =0.

has no nonzero rational solution. Otherwise, suppose that u(z) = 58 is a

nonzero rational solution of (2.21), where P(z) and Q(z) are nonzero poly-
nomials with degree deg P(z) = p and degQ(z) = ¢ respectively. Then we
conclude from (2.21) that

(2.22) (22 + 4z — 2)P (g) Q(2) +2(z2 + 22 + 1)P(2)Q (g) —0.

We can easily deduce that the degree of left hand side of (2.22) is great than
2 since P(z) and Q(z) are nonzero polynomials, and yields a contradiction.
Hence, we obtain that (2.19) has at most two rational solutions fo(z) = 2z +4
and fi(z) = #(2) + 2z +4.

Example 2.2. Let ¢ = $ and A(z) = 2=+DE4D) - Phep the ration function

2 2(22—32—2)
fo(z) = ij& solves the g-difference Riccati equation
1 Alz) + f(2)
2.23 2| =—""
22 () =T
of type (1.3), and fo(z) = Z_i — 1 as z — oo. Suppose that fi(z)(Z fo(2)) is

another rational solution of (2.23). Set u;(z) = m Then we conclude
that u(z) satisfies the g-difference equation

(2.24) (2* —322 -8z —4)u (%) + (224322 + 4z +du(2) +2(22 +32+2) = 0.

By using similar calculation of Example 2.1, the g-difference equation, which
is the corresponding homogeneous difference equation of (2.24),

(2.25) (2% =322 — 82z — 4)u (g) + (224322 + 42+ 4)u(z) =0,
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has no nonzero rational solution. Thus, we obtain that (2.23) has at most two
rational solutions fy(z) = z;} and f1(z) = ull(z) + 2:

3. Relationships between g-difference equation and g-gamma
function

In this section, we focus on the relationships between ¢-difference equation
and g-gamma function, and firstly obtain the following result.

Theorem 3.1. Let ¢ € C with 0 < |¢q| < 1. Suppose that q-difference Riccati
equation (1.3) possesses two distinct rational solutions f1(z) and fa(z). Then
all meromorphic solutions of q-difference Riccati equation (1.3) are concerned
with g-gamma function.

Proof. Since fi(z) and fz(z) are two distinct rational solutions of (1.3), we
construct a Mobius translation

(3.1) f(Z) — fl(z)h(z) + fg(Z)

h(z) +1
Substituting (3.1) into (1.3), we conclude that
1= (g—=1)zfi(2)

which is type of (1.1). Thus, the meromorphic solution h(z) of (3.2) has the
form (1.2), which is concerned with ¢g-gamma function. The proof of Theorem
3.1 is completed. ([

Now, we give an example to give a presentation for Theorem 3.1.
Example 3.1. Let ¢ = —1, A(2) = f(Z_H?ﬁ in (1.3). Then the functions
-2
z+1

satisfy the ¢-difference Riccati equation (1.3). Then, by using the transforma-
tion (3.1), we can switch g-difference Riccati equation (1.3) into the type (3.2)
and conclude that

and fo(z) =

(33) ) = =7

h (—12) - Hh(z),

(3.4) h(z) = — =
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We then conclude from (3.1) and (3.4) that

which is concerned with g-gamma function.

We second show that solutions of second order ¢-difference equation (1.4) are
also concerning with g-gamma function. Thus, we investigate the passage be-
tween g-difference Riccati equation (1.3) and second order g-difference equation
(1.4), and obtain the following result.

Theorem 3.2. The passage between g-difference Riccati equation (1.3) and
second order q-difference equation (1.4) is
Agy(z y(gz) —y(z
y(2) (¢ = 1)zy(2)
Proof. We first prove that f(z) defined as (3.5) is a meromorphic solution of
(1.3) if y(2) is a nontrivial meromorphic solution of (1.4). In fact, we conclude
from (3.5) that

AGy(2) = Bq(Agy(2))

—fla2)ly(2) = (¢ = Dzf (2)y(2)] + f(2)y(2)
(¢—1)z
_ —f@2y(x)[1 - (¢ = Dzf(2)] + f(2)y(2)
(¢=1)z '
Thus, we deduce from (1.4) and (3.6) that
—fla2)y(2)[1 = (¢ = Dzf(2)] + f(2)y(2) = —A(2)y(2),
which implies the desired form of equation (1.3).

We second prove that a meromorphic function y(z) satisfying (3.5) is a
meromorphic solution of (1.4) if f(z) defined as (3.5) is a meromorphic solution
of (1.3).

In fact, we conclude from (3.6) and (1.3) that

_ —fg2)y()[1 = (¢ = D=f ()] + F(2)y(2)
Agytz) = (¢—1)z
| AAHE G (- 1)27(2)] + FE(:)
- (q—1)z
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which implies the desired form of (1.4). O
Thus, we deduce from Theorems 3.1 and 3.2 that:

Theorem 3.3. Let ¢ € C with 0 < |g| < 1. Suppose that q-difference Ric-
cati equation (1.3) possesses two distinct rational solutions fi1(z) and fa(z).
Then all meromorphic solutions of second order q-difference equation (1.4) are
concerned with g-gamma function.

4. Value distribution of solutions of g-difference Riccati equations

If g(z) is a transcendental meromorphic solution of equation

(4.1) 9(qz) = R(z,9(2)),
where ¢ € C, |¢| > 1, and the coefficients of R(z,¢g(z)) are small functions rela-
tive to g(z), Gundersen et al. [11] showed that the order of growth of equation
(4.1) is equal to log deg,(R)/ log |q|, where deg (R) is the degree of irreducible
rational function R(z, g(z)) in g(z), which means that all transcendental mero-
morphic solutions of ¢-difference Riccati equation (1.3) have zero order when
qeC,|q > 1.

On the other hand, second order ¢-difference equation (1.4) is equivalent to
the second order linear g-difference equation

(42) v (0*2) — (a+ Dy(gz) + a1 + (¢ — 1)zA(2)]y(2) = 0.

Bergweiler et al. [4] pointed out that all transcendental meromorphic solu-
tions of equation (4.2) satisfy T'(r, f) = O((logr)?) if ¢ € C and 0 < |q| < 1.
This indicates that all transcendental meromorphic solutions of equation (1.4)
satisfy T'(r, f) = O((logr)?) if ¢ € C and 0 < |g| < 1. Since (3.5) is a pas-
sage between (1.3) and (1.4), we deduce that all transcendental meromorphic
solutions of g¢-difference Riccati equation (1.3) are of zero order if ¢ € C and
0 < |g| < 1. Thus, we obtain the following result.

Theorem 4.1. All transcendental meromorphic solutions of q-difference Ric-
cati equation (1.3) are of zero order for all ¢ € C\{0} and |q| # 1.

Bergweiler et al. [5] first investigated the existence of zeros of A.f(z) =

f(z+¢) — f(2) and A;(fz()z), where ¢ € C\{0}, and obtained many profound
results (see [5, Theorem 1.2-Theorem 1.4 and Theorem 1.6]). Chen and Shon
[9] then extended these results of [5] and proved a number of results concerned
with the existence of zeros and fixed points of A.f(z) = f(z + ¢) — f(2) and
A;(fz()z), where ¢ € C\{0} (see [9, Theorem 1-Theorem 6]). Zhang and Chen [22]
further considered the difference Riccati equation
p(z + Dw(z) +q(2)
w(z) +p(2)
where p(z) and ¢(z) are small functions relative to f(z), and obtained the
following results.

(4.3) fz+1) =

)
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Theorem 4.A ([22, Theorem 1.1]). Let p(z), q(z) be meromorphic functions of
finite order, and let [p(z+1)f(2)+q(2)]/[f(2) +p(2)] be an irreducible function
in f(z). Suppose that f(z) is an admissible finite order meromorphic solution

of (4.3). Set Af(z) = f(z+1) — f(2). Then
) A (s ) = o(aF:) = o), A (w7t ) = (5) = o)
(i) I q() £0, then A (3) = A(f) = o (f);

(iii) If p(z) = p is a constant and q(z) = s(z)?, where s(z) is a non-constant
rational function, then f(z) has no Borel exceptional value and A(Af(z)) =

A(&2) = o(y).

‘We now consider the value distribution of differences of transcendental mero-
morphic solutions of ¢-difference Riccati equation (1.3) as follows.

Theorem 4.2. Let A(z) be a non-constant rational function, ¢ € C\{0} and
lg| # 1. Suppose that f(z) is a transcendental meromorphic solution of q-

difference Riccati equation (1.3). Set Ay f(z) = Hez)=f(z)

(g—1)z
(1) If A(z) # —ﬁ, then Agf(z) and A;(];()Z) have infinitely many poles;
(2) If A(2) = —(q—1)2zs(2)?%, where s(z) is a non-constant rational function,
then A, f(z) = f(‘g;:{f) and A}’(fz()z) have infinitely many zeros.

Remark 4.1. The similar result of Theorem 4.2(2) has been obtained in [18].
For the completeness, we list it again.

In order to prove Theorem 4.2, we need some lemmas.

Lemma 4.1 ([3, Theorem 1.2]). Let f(z) be a non-constant zero-order mero-
morphic function, and q € C\{0}. Then

o 403) e

on a set of logarithmic density 1.

Lemma 4.2 ([19, Theorem 2.5]). Let f(z) be a transcendental meromorphic
solution of order zero of a q-difference equation of the form

Uq(zaf)Pq(Zaf) = Qq(zaf)a

where Ug(z, f)Py(z, f) and Qq(2, f) are g-difference polynomials such that the
total degree degUy(z, f) = n in f(z) and its q-shifts, deg Qq(z, f) < n. More-
over, we assume that Uy(z, f) contains just one term of mazimal total degree
in f(2) and its q-shifts. Then

m(r, Py(z, f)) = o(T(r, f))

on a set of logarithmic density 1.
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Lemma 4.3 ([3, Theorem 2.2]). Let f(z) be a nonconstant zero order mero-
morphic solution of
P(Z) f) = 07

where P(z, f) is a q-difference polynomial in f(z). If P(z,«) # 0 for a small
function «(z) relative to f(z), then

m (n f_l(l> — o(T(r, f))

on a set of logarithmic density 1.

Proof of Theorem 4.2. (1) Since f(z) is a transcendental meromorphic solution
of ¢-difference Riccati equation (1.3), we deduce from (1.3) that

(4.4) (¢ —1)zf(q2)f(2) = f(q2) — f(2) — A(2).
Thus, we conclude from Lemma 4.1, Lemma 4.2 and (4.4) that
f(2)
m(r. ) < m (1 LY i, 1(02) + o )
=o(T(r, f))
on a set of logarithmic density 1, and so
(4.5) N(r, f) =T(r, f) +o(T(r, f)),

m(r,Agf(2)) <m (T, A;{Z()Z)

=o(T(r, f))

on a set of logarithmic density 1.
We further conclude from (1.3) that

1 AR+ (g Daf(2)?
o S U VR e PR VBT )
Thus, we apply Valiron-Mohon’ko Theorem to (4.7) and get that
(4.8) T(r,Aqf(2)) = 2T(r, f) + o(T(r, ).
We then obtain from (4.6) and (4.8) that
N(r,Aqf(2)) = 2T(r, f) + o(T(r, [))

on a set of logarithmic density 1, and so A, f(z) has infinitely many poles.
We note that

(4.6) ) +m(r, f(2)) +o(T(r, f))

N ( Af{())) > N(r,Agf(2) —~ N(r, f)
= T(r, f) + o(T(r )

on a set of logarithmic density 1, and so AJ%(J;()Z) has infinitely many poles.
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(2) Let
(4.9) P(z, f) = (¢ —1)2f(2)f(az) — f(qz) + f(2) + A(2).
We then affirm that P(z,s(z)) # 0 or P(z,—s(z)) #Z 0. Otherwise, if P(z, s(z))
=0 and P(z,—s(z)) =0, we can obtain from (4.9) that
s(qz) = s(2).

This is impossible since s(z) is a non-constant rational function. Without loss
of generality, we assume that P(z,s(z)) # 0. Thus, we obtain from Lemma
4.3, (1.3) and (4.9) that

m(r e ) =T

on a set of logarithmic density 1, and so

1
(4.10) N <r, f(z)—s(z)) =T(r, f)+o(T(r, f))

on a set of logarithmic density 1.
Since A(z) = —(q — 1)zs(2)?, we can conclude from (1.3) and (4.7) that

(4.11) A f(z) = [f(z)ltiilzﬂ[{)(j;(—z;(z)] .

If f(z0) — s(20) = 1 — (¢ — 1)z0f(20) = 0, then (¢ — 1)z05(20) = 0. If f(20) —
s(z0) = 0 and f(z0) + s(z0) = oo, then s(zg) = oo. Thus, we deduce from
(4.10) and (4.11) that

N ( Ajlf<>> - ( e ﬁfzi[})éf(f)s(@])

1
= ( OE s<z>>
= T(r. f) + o(T(r. f))

on a set of logarithmic density 1. This shows that ﬁ(z) has infinitely many
q

Z€r0S.
We now obtain from (4.11) that

(4.12) Agf(2) _ [f(2) +5(2)][f(2) — s(2)]

f(2) [1—=(g—=1D)zf(2)]f(2)
By combining (4.5) and (4.12), and using similar method that m has infin-

itely many zeros, we can conclude that Af%z()z) has infinitely many zeros. The

proof of Theorem 4.2 is completed. O
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