• Title/Summary/Keyword: Q-algebra

Search Result 76, Processing Time 0.022 seconds

Duality of Paranormed Spaces of Matrices Defining Linear Operators from 𝑙p into 𝑙q

  • Kamonrat Kamjornkittikoon
    • Kyungpook Mathematical Journal
    • /
    • v.63 no.2
    • /
    • pp.235-250
    • /
    • 2023
  • Let 1 ≤ p, q < ∞ be fixed, and let R = [rjk] be an infinite scalar matrix such that 1 ≤ rjk < ∞ and supj,k rjk < ∞. Let 𝓑(𝑙p, 𝑙q) be the set of all bounded linear operator from 𝑙p into 𝑙q. For a fixed Banach algebra 𝐁 with identity, we define a new vector space SRp,q(𝐁) of infinite matrices over 𝐁 and a paranorm G on SRp,q(𝐁) as follows: let $$S^R_{p,q}({\mathbf{B}})=\{A:A^{[R]}{\in}{\mathcal{B}}(l_p,l_q)\}$$ and $G(A)={\parallel}A^{[R]}{\parallel}^{\frac{1}{M}}_{p,q}$, where $A^{[R]}=[{\parallel}a_{jk}{\parallel}^{r_{jk}}]$ and M = max{1, supj,k rjk}. The existance of SRp,q(𝐁) equipped with the paranorm G(·) including its completeness are studied. We also provide characterizations of β -dual of the paranormed space.

HYPER K-SUBALGEBRAS BASED ON FUZZY POINTS

  • Kang, Min-Su
    • Communications of the Korean Mathematical Society
    • /
    • v.26 no.3
    • /
    • pp.385-403
    • /
    • 2011
  • Generalizations of the notion of fuzzy hyper K-subalgebras are considered. The concept of fuzzy hyper K-subalgebras of type (${\alpha},{\beta}$) where ${\alpha}$, ${\beta}$ ${\in}$ {${\in}$, q, ${\in}{\vee}q$, ${\in}{\wedge}q$} and ${\alpha}{\neq}{\in}{\wedge}q$. Relations between each types are investigated, and many related properties are discussed. In particular, the notion of (${\in}$, ${\in}{\vee}q$)-fuzzy hyper K-subalgebras is dealt with, and characterizations of (${\in}$, ${\in}{\vee}q$)-fuzzy hyper K-subalgebras are established. Conditions for an (${\in}$, ${\in}{\vee}q$)-fuzzy hyper K-subalgebra to be an (${\in}$, ${\in}$)-fuzzy hyper K-subalgebra are provided. An (${\in}$, ${\in}{\vee}q$)-fuzzy hyper K-subalgebra by using a collection of hyper K-subalgebras is established. Finally the implication-based fuzzy hyper K-subalgebras are discussed.

NOTE ON GOOD IDEALS IN GORENSTEIN LOCAL RINGS

  • Kim, Mee-Kyoung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.39 no.3
    • /
    • pp.479-484
    • /
    • 2002
  • Let I be an ideal in a Gorenstein local ring A with the maximal ideal m and d = dim A. Then we say that I is a good ideal in A, if I contains a reduction $Q=(a_1,a_2,...,a_d)$ generated by d elements in A and $G(I)=\bigoplus_{n\geq0}I^n/I^{n+1}$ of I is a Gorenstein ring with a(G(I)) = 1-d, where a(G(I)) denotes the a-invariant of G(I). Let S = A[Q/a$_1$] and P = mS. In this paper, we show that the following conditions are equivalent. (1) $I^2$ = QI and I = Q:I. (2) $I^2S$ = $a_1$IS and IS = $a_1$S:sIS. (3) $I^2$Sp = $a_1$ISp and ISp = $a_1$Sp :sp ISp. We denote by $X_A(Q)$ the set of good ideals I in $X_A(Q)$ such that I contains Q as a reduction. As a Corollary of this result, we show that $I\inX_A(Q)\Leftrightarrow\IS_P\inX_{SP}(Qp)$.

BOOLEAN RANK INEQUALITIES AND THEIR EXTREME PRESERVERS

  • Song, Seok-Zun;Kang, Mun-Hwan
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.5_6
    • /
    • pp.1525-1532
    • /
    • 2011
  • The $m{\times}n$ Boolean matrix A is said to be of Boolean rank r if there exist $m{\times}r$ Boolean matrix B and $r{\times}n$ Boolean matrix C such that A = BC and r is the smallest positive integer that such a factorization exists. We consider the the sets of matrix ordered pairs which satisfy extremal properties with respect to Boolean rank inequalities of matrices over nonbinary Boolean algebra. We characterize linear operators that preserve these sets of matrix ordered pairs as the form of $T(X)=PXP^T$ with some permutation matrix P.

FOURIER-YEH-FEYNMAN TRANSFORM AND CONVOLUTION ON YEH-WIENER SPACE

  • Kim, Byoung Soo;Yang, Young Kyun
    • Korean Journal of Mathematics
    • /
    • v.16 no.3
    • /
    • pp.335-348
    • /
    • 2008
  • We define Fourier-Yeh-Feynman transform and convolution product on the Yeh-Wiener space, and establish the existence of Fourier-Yeh-Feynman transform and convolution product for functionals in a Banach algebra $\mathcal{S}(Q)$. Also we obtain Parseval's relation for those functionals.

  • PDF

SAMELSON PRODUCTS IN FUNCTION SPACES

  • GATSINZI, JEAN-BAPTISTE;KWASHIRA, RUGARE
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.4
    • /
    • pp.1297-1303
    • /
    • 2015
  • We study Samelson products on models of function spaces. Given a map $f:X{\rightarrow}Y$ between 1-connected spaces and its Quillen model ${\mathbb{L}}(f):{\mathbb{L}}(V){\rightarrow}{\mathbb{L}}(W)$, there is an isomorphism of graded vector spaces ${\Theta}:H_*(Hom_{TV}(TV{\otimes}({\mathbb{Q}}{\oplus}sV),{\mathbb{L}}(W))){\rightarrow}H_*({\mathbb{L}}(W){\oplus}Der({\mathbb{L}}(V),{\mathbb{L}}(W)))$. We define a Samelson product on $H_*(Hom_{TV}(TV{\otimes}({\mathbb{Q}}{\oplus}sV),{\mathbb{L}}(W)))$.