SAMELSON PRODUCTS IN FUNCTION SPACES

Jean-Baptiste Gatsinzi and Rugare Kwashira

Abstract

We study Samelson products on models of function spaces Given a map $f: X \longrightarrow Y$ between 1-connected spaces and its Quillen model $\mathbb{L}(f): \mathbb{L}(V) \longrightarrow \mathbb{L}(W)$, there is an isomorphism of graded vector spaces $\Theta: H_{*}\left(\operatorname{Hom}_{T V}(T V \otimes(\mathbb{Q} \oplus s V), \mathbb{L}(W))\right) \longrightarrow H_{*}(\mathbb{L}(W) \oplus$ $\operatorname{Der}(\mathbb{L}(V), \mathbb{L}(W)))$. We define a Samelson product on $H_{*}\left(\operatorname{Hom}_{T V}(T V \otimes\right.$ $(\mathbb{Q} \oplus s V), \mathbb{L}(W)))$.

1. Introduction

Throughout this paper, spaces are assumed to be 1-connected finite CWcomplexes. Given a map $f: X \longrightarrow Y$ between 1-connected spaces and its Quillen model $\mathbb{L}(f): \mathbb{L}(V) \longrightarrow \mathbb{L}(W)$, let $\operatorname{map}(X, Y ; f)$ and $\operatorname{map}_{*}(X, Y ; f)$ denote the path component containing f in the space of base point-free and base point-preserving functions respectively. Lupton-Smith [3] extended the notion of derivation of a differential graded Lie algebra to a derivation with respect to a map of differential graded Lie algebras. They proved the following vector space isomorphisms:

$$
\pi_{n}(\operatorname{map}(X, Y ; f)) \otimes \mathbb{Q} \stackrel{\cong}{\cong} H_{n}(s \mathbb{L}(W) \oplus \operatorname{Der}(\mathbb{L}(V), \mathbb{L}(W) ; f)),
$$

and

$$
\pi_{n}\left(\operatorname{map}_{*}(X, Y ; f)\right) \otimes \mathbb{Q} \xrightarrow{\cong} H_{n}(\operatorname{Der}(\mathbb{L}(V), \mathbb{L}(W)) ; f) .
$$

The authors in their paper [2] established an isomorphism

$$
\pi_{n-1}(\operatorname{map}(X, Y ; f)) \otimes \mathbb{Q} \cong H_{n}\left(\operatorname{Hom}_{T V}(T V \otimes(\mathbb{Q} \oplus s V), \mathbb{L}(W))\right)
$$

Lupton-Smith [4] have expressed the Whitehead product on

$$
H_{*}(s \mathbb{L}(W) \oplus \operatorname{Der}(\mathbb{L}(V), \mathbb{L}(W))
$$

We study the Samelson product in the homology of $\operatorname{Hom}(P, \mathbb{L}(W))$ where $P=$ $(T V \otimes(\mathbb{Q} \oplus s V), D)$ is the acyclic TV-differential module with a differential defined as follows:

$$
D v=d v \otimes 1, \quad D s v=v \otimes 1-S(d v \otimes 1)
$$

Received September 2, 2014.
2010 Mathematics Subject Classification. 55P62, 55Q15.
Key words and phrases. Lie model, Lie algebra of derivations, Samelson product.
and S is the \mathbb{Q}-graded vector spaces map of (degree 1) defined by

$$
\left\{\begin{array}{l}
S(v \otimes 1)=1 \otimes s v, \quad S(1 \otimes(\mathbb{Q} \oplus s V))=0 \\
S(a x)=(-1)^{|a|} a S(x), \quad \forall a \in T(V), x \in \mathbb{Q} \oplus s V, \quad|x|>0 \\
S(1 \otimes x)=0
\end{array}\right.
$$

2. Preliminaries

Let (L, d) be a differential graded Lie algebra. Given a map $\phi:\left(L, d_{L}\right) \longrightarrow$ $\left(K, d_{K}\right)$ of differential graded Lie algebras, define a ϕ-derivation of degree p to be a linear map $\theta: L \longrightarrow K$ that increases degree by p and satisfies $\theta([x, y])=[\theta(x), \phi(y)]+(-1)^{p|x|}[\phi(x), \theta(y)]$ for $x, y \in L$. Consider the vector space of ϕ-derivations $\operatorname{Der}_{n}(L, K ; \phi)$ which are derivations that increase degree by some positive number n. When $n=1$, we restrict to derivations θ such that $d_{K} \circ \theta+\theta \circ d_{L}=0$. The differential D is defined by $D(\theta)=d_{K} \circ \theta-(-1)^{|\theta|} \theta \circ d_{L}$. Following [5, p. 46], if $\phi: A \longrightarrow B$ is a morphism of chain complexes, the mapping cone of ϕ is defined by $\operatorname{Cone}(\phi)=s A \oplus B$ with the differential $d(s a, b)=\left(-s d_{A}(a), \phi(a)+d_{B}(b)\right)$.

Let (L, d) be a differential graded Lie algebra. Consider the adjoint mapping $\operatorname{ad}: L \longrightarrow \operatorname{Der} L$, defined by $(\operatorname{ad} x)(y)=[x, y]$. We have Cone $(\operatorname{ad})=s L \oplus \operatorname{Der} L$ where $(s L \oplus \operatorname{Der}(L), D)$ is a differential graded Lie algebra with the bracket defined as follows [6]:

$$
\left\{\begin{array}{l}
{[s x, s y]=0} \\
{[s x, \theta]=(-1)^{|x||\theta|} s \theta(x)} \\
{\left[s x_{1}+\theta_{1}, s x_{2}+\theta_{2}\right]=(-1)^{\left|\theta_{1}\right|} s \theta_{1}\left(x_{2}\right)-(-1)^{\left|\theta_{2}\right|\left|x_{1}\right|} s \theta_{2}\left(x_{1}\right)+\left[\theta_{1}, \theta_{2}\right]}
\end{array}\right.
$$

The differential is defined by $D(s x)=-s \delta x+\operatorname{ad} x$. Note that $s x+\theta$ is a cycle if and only if $d(x)=0$ and $[d, \theta]+\operatorname{ad} x=0$.

If $L=(\mathbb{L}(V), d)$, there is a differential isomorphism of degree 1

$$
\Phi: \operatorname{Hom}_{T V}(T V \otimes(\mathbb{Q} \oplus s V, L)) \longrightarrow s L \oplus \operatorname{Der} L
$$

defined by $\Phi(f)=s f(1)+(-1)^{|f|} \theta$ where $\theta(v)=f(s v)$ [1]. This gives a bracket (of degree 1) on $\left.\operatorname{Hom}_{T V}(T V \otimes \mathbb{Q} \oplus s V, \mathbb{L}(V))\right)$ defined on generators as follows: For $f, g \in \operatorname{Hom}(P, \mathbb{L}(V)), f(1), g(1) \in \mathbb{L}(V)$, and $f(s v) \in \mathbb{L}(V) \subset T(V)$, then

$$
\begin{aligned}
\{f, g\}(s v) & =-(-1)^{|f|}\left[f(S(g(s v)))-(-1)^{(|f|+1)(|g|+1)} f(S(g(s v)))\right] \\
\{f, g\}(1) & =f(S(g(1)))-(-1)^{|f||g|} g(S(f(1)))
\end{aligned}
$$

3. Whitehead product in differential graded Lie algebras

Let L be a differential graded Lie algebra and $s L$ the suspension on L. A bilinear pairing on $s L$ is defined by $[s x, s y]=(-1)^{|x|} s[x, y]$ where $x, y \in L$. A Whitehead product denoted by $[,]_{W}$ is a bilinear pairing satisfying the following identities:
(1) $\left|[\alpha, \beta]_{W}\right|=|\alpha|+|\beta|-1$,
(2) $[\alpha, \beta]_{W}=(-1)^{|\alpha||\beta|}[\beta, \alpha]_{W}$ and
(3) $\left[\alpha,[\beta, \gamma]_{W}\right]_{W}=(-1)^{|\alpha|+1}\left[[\alpha, \beta]_{W}, \gamma\right]_{W}+(-1)^{(|\alpha|+1)(|\beta|+1)}\left[\beta,[\alpha, \gamma]_{W}\right]_{W}$ for $\alpha, \beta, \gamma \in s L$.

Lupton-Smith [4] defined a pairing on a differential graded Lie algebra L by $\{x, y\}=(-1)^{|x|+1}\left[x, d_{L}(y)\right]$, which induces a Whitehead product on the homotopy of L. For $\Phi:\left(L, d_{L}\right) \longrightarrow\left(K, d_{K}\right)$ they defined a pairing on its mapping cone $\left(\operatorname{Cone}(\Phi), \delta_{\Phi}\right)$ which induces a Whitehead product [, $]_{W}$ on $H_{*}\left(\operatorname{Cone}(\Phi), \delta_{\Phi}\right)$. The product is defined explicitly as follows:
Let $a, b \in L ;|a|=p-1,|b|=q-1$,

$$
[[(a, \alpha),(b, \beta)]]=\left((-1)^{p}[a, b],\{\alpha, \beta\}\right)=\left((-1)^{p}[a, b],(-1)^{p+1}\left[\alpha, d_{K} \beta\right]\right)
$$

for $(a, \alpha) \in \operatorname{Cone}_{p}(\Phi),(b, \beta) \in \operatorname{Cone}_{q}(\Phi)$ where $\alpha \in K_{p}, \beta \in K_{q}$.
4. Samelson product on $H_{*}\left(\operatorname{Hom}_{T V}(T V \otimes(\mathbb{Q} \oplus s V), \mathbb{L}(W))\right)$

Let $f: X \longrightarrow Y$ be a map, $\Phi: \mathbb{L}(V) \longrightarrow \mathbb{L}(W)$ its Quillen model. Consider the map $\operatorname{ad}_{\Phi}: \mathbb{L}(W) \longrightarrow \operatorname{Der}(\mathbb{L}(V), \mathbb{L}(W), \Phi)$. The mapping cone of ad_{Φ} is $(s \mathbb{L}(W) \oplus \operatorname{Der}(\mathbb{L}(V), \mathbb{L}(W)), D)$ where $D(\theta)=\delta_{W} \theta-(-1)^{|\theta|} \theta \delta_{V}$ and $D(s x)=$ $-s \delta_{V} x+\operatorname{ad}_{\Phi}(x)$. If $(s a, \theta),\left(s b, \theta^{\prime}\right)$ are cycles of degree p and q respectively, Lupton-Smith [4] defined a Whitehead product

$$
H_{p} \otimes H_{q} \longrightarrow H_{p+q-1}, \quad \text { where } H_{p}=H_{p}(s \mathbb{L}(W) \oplus \operatorname{Der}(\mathbb{L}(V), \mathbb{L}(W) ; \Phi))
$$

and showed that it corresponds to the Whitehead product on

$$
\pi_{*}(\operatorname{map}(X, Y ; f)) \otimes \mathbb{Q}
$$

We define on $H_{*}\left(\operatorname{Hom}_{T V}(T V \otimes(\mathbb{Q} \oplus s V), \mathbb{L}(W))\right)$ a Samelson product $H_{p-1} \otimes$ $H_{q-1} \longrightarrow H_{p+q-2}$, that models the Samelson product on $\pi_{*}(\Omega \operatorname{map}(X, Y ; f)) \otimes$ \mathbb{Q}.

Our approach follows Lupton-Smith [4]. Let $(\mathbb{L}(V), d)$ be a free differential graded Lie algebra.

Define $\mathbb{L}(V)(a, b)=\left(\mathbb{L}\left(V, a, b, V^{a}, V^{b}\right), \delta\right)$ where $|a|=p-1,|b|=q-$ $1, V^{a}=s^{p} V, V^{b}=s^{q} V$ with the differential

$$
\begin{aligned}
& \delta v=d v, \delta a=\delta b=0 \\
& \delta\left(v^{a}\right)=(-1)^{p-1}[a, v]+(-1)^{p} S_{a}(d v), \\
& \delta\left(v^{b}\right)=(-1)^{q-1}[b, v]+(-1)^{q} S_{b}(d v),
\end{aligned}
$$

where S_{a} is the unique derivation of degree p of $\operatorname{Der}(\mathbb{L}(V), \mathbb{L}(V)(a, b) ; \lambda)$ such that $S_{a}(v)=v^{a}$ and zero on other generators and λ is the canonical inclusion λ : $\mathbb{L}(V) \longrightarrow \mathbb{L}(V)(a, b)$. Also, $S_{b} \in \operatorname{Der}(\mathbb{L}(V), \mathbb{L}(V)(a, b) ; \lambda)$ is similarly defined.

Consider the chain complex $\left(\operatorname{Der}(\mathbb{L}(V), \mathbb{L}(V)(a, b) ; \lambda), D_{\lambda}\right)$, with the differential defined in $\S 2$. Moreover

$$
D_{\lambda}\left(S_{a}\right)=(-1)^{p-1} \operatorname{ad}_{\lambda} a, \quad D_{\lambda}\left(S_{b}\right)=(-1)^{q-1} \operatorname{ad}_{\lambda} b .
$$

Consider $\operatorname{ad}_{\lambda}: \mathbb{L}(V)(a, b) \longrightarrow \operatorname{Der}(\mathbb{L}(V), \mathbb{L}(V)(a, b) ; \lambda)$ and the mapping cone of ad_{λ},

$$
\left.\operatorname{Cone}\left(\operatorname{ad}_{\lambda}\right)=(s \mathbb{L}(V)(a, b)) \oplus \operatorname{Der}(\mathbb{L}(V), \mathbb{L}(V)(a, b)), D\right),
$$

where $D(\theta)=D_{\lambda}(\theta)$ for $\theta \in \operatorname{Der}(\mathbb{L}(V), \mathbb{L}(V)(a, b))$ and $D(s x)=-s \delta x+$ $\operatorname{ad}_{\lambda} x$ for $x \in \mathbb{L}(V)(a, b)$. We have $D\left((-1)^{|x|} s x-S_{x}\right)=(-1)^{|x|}(-s \delta x+$ $\left.\operatorname{ad}_{\lambda} x\right)-(-1)^{|x|} \operatorname{ad}_{\lambda} x=0$ for $x=a, b$. In the complex $\left(\operatorname{Hom}_{T V}(T V \otimes(\mathbb{Q} \oplus\right.$ $s V), \mathbb{L}(V)(a, b), D)$, we consider ϕ_{a} and ϕ_{b} defined by

$$
\begin{cases}\phi_{a}(1)=-(-1)^{|a|} a ; & \phi_{a}(s v)=(-1)^{|a|} S_{a}(v) \\ \phi_{b}(1)=-(-1)^{|b|} b ; & \phi_{b}(s v)=(-1)^{|b|} S_{b}(v)\end{cases}
$$

or in a condensed form $\phi_{x}(1)=-(-1)^{|x|} x ; \phi_{x}(s v)=(-1)^{x} S_{x}(v), x=a, b$.
Proposition 1. ϕ_{a} and ϕ_{b} are cycles of degrees $p-1$ and $q-1$ respectively.
Proof. It can be easily verified that $\left(D \phi_{x}\right)(1)=0$ for $x=a, b$. For $\left(D \phi_{x}\right)(s v)$ we have

$$
\begin{aligned}
\left(D \phi_{x}\right)(s v)= & \delta \phi_{x}(s v)-(-1)^{|x|} \phi_{x}(d(s v)) \\
= & \delta\left((-1)^{|x|} S_{x}(v)\right)-(-1)^{|x|} \phi_{x}(v \otimes 1-s(d v \otimes 1)) \\
= & (-1)^{|x|}\left((-1)^{|x|}[x, v]-(-1)^{|x|} S_{x}(d v)\right)-(-1)^{|x|}(-1)^{|x||v|}\left[v, \phi_{x}(1)\right] \\
& +(-1)^{|x|} \phi_{x}(s(d v \otimes 1)) \\
= & {[x, v]-(-1)^{|x|} S_{x}(d v)+(-1)^{|x||v|}[v, x]+(-1)^{|x|} \phi_{x}(s(d v \otimes 1)) } \\
= & 0
\end{aligned}
$$

Define $\theta_{a}, \theta_{b} \in \operatorname{Der}(\mathbb{L}(V)(a, b))$ such that

$$
\begin{cases}\theta_{a}(v)=v^{a} ; & \text { zero otherwise }, \\ \theta_{b}(v)=v^{b} ; & \text { zero otherwise. }\end{cases}
$$

We have $\left[\delta, \theta_{x}\right]=(-1)^{|x|} \operatorname{ad} x ; x=a, b$.
Observe that $S_{a}=\theta_{a}$ and $S_{b}=\theta_{b}$ if restricted to $\mathbb{L}(V)$. We define a universal Samelson product $\left[\phi_{a}, \phi_{b}\right]$ in $\left(\operatorname{Hom}_{T V}(T V \otimes(\mathbb{Q} \oplus s V), \mathbb{L}(V)(a, b), D)\right.$ as follows:

$$
\begin{aligned}
{\left[\phi_{a}, \phi_{b}\right](1) } & =(-1)^{|b|+1}\left[\phi_{a}(1), \phi_{b}(1)\right] \\
& =(-1)^{q}[a, b], \\
{\left[\phi_{a}, \phi_{b}\right](s v) } & =-(-1)^{|a|+1}\left[\theta_{a},\left[\delta, \theta_{b}\right]\right](v) \\
& =-(-1)^{p}\left[\theta_{a},\left[\delta, \theta_{b}\right]\right](v) .
\end{aligned}
$$

Proposition 2. $\Upsilon=\left[\phi_{a}, \phi_{b}\right]$ is a cycle of degree $p+q-2$.
Proof. There is a differential isomorphism of chain complexes
$F: \operatorname{Hom}_{T V}(T V \otimes(\mathbb{Q} \oplus s V), \mathbb{L}(V)(a, b)) \longrightarrow s \mathbb{L}(V)(a, b) \oplus \operatorname{Der}(\mathbb{L}(V), \mathbb{L}(V)(a, b))$ defined by $F(f)=s f(1)+(-1)^{|f|} \theta$ with $\theta(v)=f(s v)$ see [1, Theorem 1$]$. This is an isomorphism of degree $1(D F=-F D)$. In particular

$$
\begin{aligned}
F\left(\left[\phi_{a}, \phi_{b}\right]\right) & =(-1)^{p+q} s\left[\phi_{a}, \phi_{b}\right](1)-(-1)^{p+q}(-1)^{p}\left[\theta_{a},\left[\delta, \theta_{b}\right]\right] \circ \lambda \\
& =(-1)^{p} s[a, b]-(-1)^{q}\left[\theta_{a},\left[\delta, \theta_{b}\right]\right] \circ \lambda .
\end{aligned}
$$

In order to check that Υ is a cycle, we need only to show that $(-1)^{p} s[a, b]-$ $(-1)^{q}\left[\theta_{a},\left[\delta, \theta_{b}\right]\right] \circ \lambda$ is a cycle in $s \mathbb{L}(V)(a, b) \oplus \operatorname{Der}(\mathbb{L}(V), \mathbb{L}(V)(a, b))$. Indeed

$$
\begin{aligned}
& D\left((-1)^{p} s[a, b]-(-1)^{q}\left[\theta_{a},\left[\delta, \theta_{b}\right]\right] \circ \lambda\right) \\
= & -(-1)^{p} s \delta[a, b]+(-1)^{p} \operatorname{ad}_{\lambda}[a, b]-(-1)^{q}\left[\delta,\left[\theta_{a},\left[\delta, \theta_{b}\right]\right]\right] \circ \lambda \\
= & (-1)^{p} \operatorname{ad}_{\lambda}[a, b]-(-1)^{q}\left[\left[\delta, \theta_{a}\right],\left[\delta, \theta_{b}\right]\right] \circ \lambda \\
= & (-1)^{p} \operatorname{ad}_{\lambda}[a, b]-(-1)^{p}[\operatorname{ad} a, \operatorname{ad} b] \circ \lambda \\
= & (-1)^{p} \operatorname{ad}_{\lambda}[a, b]-(-1)^{p} \operatorname{ad}_{\lambda}[a, b] \\
= & 0 .
\end{aligned}
$$

We are now ready to define Samelson's products in $H_{*}(\operatorname{Hom}(T V \otimes \mathbb{Q} \oplus$ $s V), \mathbb{L}(W))$). Recall that $f: X \longrightarrow Y$ has a Quillen model $\Phi: \mathbb{L}(V) \longrightarrow \mathbb{L}(W)$. Let α, β be cycles of respective degrees $p-1, q-1$ in $\operatorname{Hom}_{T V}(T V \otimes(\mathbb{Q} \oplus$ $s V), \mathbb{L}(W))$. Define $\Psi_{\alpha, \beta}: \mathbb{L}(V)(a, b) \longrightarrow \mathbb{L}(W)$ by:

$$
\begin{array}{ll}
\Psi_{\alpha, \beta}(a)=\alpha(1), & \Psi_{\alpha, \beta}(b)=\beta(1), \\
\Psi_{\alpha, \beta}(v)=\Phi(v), & \Psi_{\alpha, \beta}\left(v^{a}\right)=\alpha(s v), \Psi_{\alpha, \beta}\left(v^{b}\right)=\beta(s v) .
\end{array}
$$

Theorem 3. (1) The composition

$$
T V \otimes(\mathbb{Q} \oplus s V) \xrightarrow{\left[\phi_{a}, \phi_{b}\right]} \mathbb{L}(V)(a, b) \xrightarrow{\Psi_{\alpha, \beta} \beta} \mathbb{L}(W)
$$

defines a Samelson product on $H_{*}\left(\operatorname{Hom}_{T V}(T V \otimes(\mathbb{Q} \oplus s V), \mathbb{L}(W))\right)$.
(2) It is explicitly defined on the generators by

$$
\begin{aligned}
{[\alpha, \beta](1)=} & (-1)^{|\beta|+1}[\alpha(1), \beta(1)] \\
{[\alpha, \beta](s v)=} & (-1)^{|\alpha|+1}[\alpha(1), \beta(s v)]+(-1)^{(|\beta|+1)|\alpha|}[\beta(1), \alpha(s v)] \\
& +(-1)^{|\beta||\alpha|} \Psi_{\alpha, \beta}\left(\theta_{b} \theta_{a}(d v)\right),
\end{aligned}
$$

where $\theta_{a}, \theta_{b} \in \operatorname{Der}(\mathbb{L}(V)(a, b))$.
Proof. The first assertion is a direct consequence of the isomorphism

$$
\operatorname{Hom}_{T V}(T V \otimes(\mathbb{Q} \oplus s V), \mathbb{L}(W)) \cong s \mathbb{L}(W) \oplus \operatorname{Der}(\mathbb{L}(V), \mathbb{L}(W))
$$

and [4, Theorem 3.6.]. For the second assertion consider α, β cycles of respective degrees $p-1$ and $q-1$ in $\operatorname{Hom}_{T V}(T V \otimes(\mathbb{Q} \oplus s V), \mathbb{L}(W))$ and ϕ_{a}, ϕ_{b} corresponding cycles in $\operatorname{Hom}_{T V}(T V \otimes(\mathbb{Q} \oplus s V), \mathbb{L}(V)(a, b))$ (see Proposition 1), we have

$$
\begin{aligned}
& {\left[\phi_{a}, \phi_{b}\right](s v) } \\
= & -(-1)^{p}\left[\theta_{a},\left[\delta, \theta_{b}\right]\right](v) \\
= & -(-1)^{p}\left(\theta_{a}\left[\delta, \theta_{b}\right](v)-(-1)^{p(q-1)}\left[\delta, \theta_{b}\right]\left(\theta_{a}(v)\right)\right) \\
= & -(-1)^{p}\left[\theta_{a}\left((-1)^{q-1}[b, v]\right)-(-1)^{p(q-1)}\left(\delta \theta_{b} \theta_{a}(v)-(-1)^{q} \theta_{b} \delta \theta_{a}(v)\right)\right] \\
= & -(-1)^{p}(-1)^{q-1}(-1)^{p(q-1)}\left[b, \theta_{a}(v)\right]
\end{aligned}
$$

$$
\begin{aligned}
& -(-1)^{p}(-1)^{p(q-1)}(-1)^{q}\left[\theta_{b}\left((-1)^{p-1}[a, v]+(-1)^{p} S_{a}(d v)\right)\right] \\
= & -(-1)^{p}(-1)^{q-1}(-1)^{p(q-1)}\left[b, \theta_{a}(v)\right] \\
& -(-1)^{p}(-1)^{p(q-1)}(-1)^{q}(-1)^{p-1}(-1)^{q(p-1)}\left[a, \theta_{b}(v)\right] \\
& -(-1)^{p}(-1)^{p(q-1)}(-1)^{q}(-1)^{p} \theta_{b}\left(S_{a}(d v)\right) \\
= & (-1)^{q(p+1)}\left[b, \theta_{a}(v)\right]+(-1)^{p}\left[a, \theta_{b}(v)\right]+(-1)^{p q+p+q+1} \theta_{b}\left(\theta_{a}(d v)\right) \\
= & (-1)^{q(p+1)}\left[b, \theta_{a}(v)\right]+(-1)^{p}\left[a, \theta_{b}(v)\right]+(-1)^{(p+1)(q+1)} \theta_{b}\left(\theta_{a}(d v)\right) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\Psi_{\alpha, \beta}\left(\left[\phi_{a}, \phi_{b}\right](s v)\right)= & (-1)^{q(p+1)}[\beta(1), \alpha(s v)]+(-1)^{p}[\alpha(1), \beta(s v)] \\
& +(-1)^{(p+1)(q+1)} \Psi_{\alpha, \beta} \theta_{b}\left(\theta_{a}(d v)\right) .
\end{aligned}
$$

Thus

$$
\begin{aligned}
{[\alpha, \beta](s v)=} & (-1)^{|\alpha|+1}[\alpha(1), \beta(s v)]+(-1)^{(|\beta|+1)|\alpha|}[\beta(1), \alpha(s v)] \\
& +(-1)^{|\beta||\alpha|} \Psi_{\alpha, \beta}\left(\theta_{b} \theta_{a}(d v)\right) .
\end{aligned}
$$

Corollary 4. If $f: X \longrightarrow Y$ is null homotopic, then

$$
\begin{aligned}
{[\alpha, \beta](1) } & =(-1)^{|\beta|+1}[\alpha(1), \beta(1)] \text { and } \\
{[\alpha, \beta](s v) } & =(-1)^{|\alpha|+1}[\alpha(1), \beta(s v)]+(-1)^{(|\beta|+1)|\alpha|}[\beta(1), \alpha(s v)]
\end{aligned}
$$

In particular $H_{*}(\mathbb{L}(W))$ is a sub Lie algebra of $H_{*}(\operatorname{Hom}(T V \otimes(\mathbb{Q} \oplus s V)), \mathbb{L}(W))$.
Proof. Let x be a cycle in $(\mathbb{L}(W), \delta)$. Define $\alpha_{x} \in \operatorname{Hom}_{T V}(T V \otimes(\mathbb{Q} \oplus s V), \mathbb{L}(W))$ by $\alpha_{x}(1)=x$ and $\alpha_{x}(s v)=0$. Clearly α_{x} is a cycle in $\operatorname{Hom}_{T V}(T V \otimes(\mathbb{Q} \oplus$ $s V), \mathbb{L}(W))$. Moreover, if x is a boundary in $\mathbb{L}(W)$, so is α_{x}. Therefore there is a map:

$$
\mathrm{I}: H_{*}(\mathbb{L}(W), \delta) \longrightarrow H_{*}\left(\operatorname{Hom}_{T V}(T V \otimes(\mathbb{Q} \oplus s V), \mathbb{L}(W))\right)
$$

If α_{x} is a boundary, then there is $\gamma \in \operatorname{Hom}_{T V}(T V \otimes(\mathbb{Q} \oplus s V), \mathbb{L}(W))$ such that $\alpha=D \gamma$. In particular $x=\alpha(1)=(D \gamma)(1)=\delta \gamma(1)$. Therefore x is a boundary.

References

[1] J.-B. Gatsinzi, The homotopy Lie algebra of classifying spaces, J. Pure Appl. Algebra 120 (1997), no. 3, 281-289.
[2] J.-B. Gatsinzi and R. Kwashira, Rational homotopy groups of function spaces, Homotopy Theory of Function Spaces and Related Topics (Y. Felix, G. Lupton and B. Smith, eds.), Contemporary Mathematics, 519, pp. 105-114, American Mathematical Society, Providence, 2010.
[3] G. Lupton and B. Smith, Rationalized evaluation subgroups of a map II: Quillen models and the adjoint maps, J. Pure Appl. Algebra 209 (2007), no. 1, 173-188.
[4] , Whitehead products in function spaces: Quillen model formulae, J. Math. Soc. Japan 62 (2010), no. 1, 49-81.
[5] S. Maclane, Homology, Classics in Mathematics, Springer-Verlag, Berlin, Heidelberg, New York, 1995.
[6] D. Tanré, Homotopie rationnelle: Modèles de Chen, Sullivan, Lecture Notes in Math., 1025, Springer-Verlag, Berlin, 1983.

Jean-Baptiste Gatsinzi
University of Namibia
340 Mandume Ndemufayo Avenue
Private Bag 13301
Pionierspark, Windhoek, Namibia
E-mail address: jgatsinzi@unam.na
Rugare Kwashira
School of Mathematics
Faculty of Science
University of the Witwatersrand
Private Bag X3, Wits, 2050
South Africa
E-mail address: Rugare.Kwashira@wits.ac.za

