DOI QR코드

DOI QR Code

VAGUE p-IDEALS AND VAGUE a-IDEALS IN BCI-ALGEBRAS

  • Hwang, Yun Sun (Department of Mathematics Education Dongguk University) ;
  • Ahn, Sun Shin (Department of Mathematics Education Dongguk University)
  • Received : 2012.12.02
  • Accepted : 2013.07.08
  • Published : 2013.08.15

Abstract

The notion of vague $p$-ideals and vague $a$-ideals of BCI-algebras is introduced, and several properties of them are investigated. We show that a vague set of a BCI-algebra is a vague $a$-ideal if and only if it is both a vague $q$-ideal and a vague $p$-ideal.

Keywords

References

  1. S. S. Ahn, Y. U. Cho, and C. H. Park, Vague quick ideals of BCK=BCI-algebras, Honam Math. J. 30 (2008), 65-74. https://doi.org/10.5831/HMJ.2008.30.1.065
  2. R. Biswas, Vague groups, Internat. J. Comput. Cognition 4 (2006), no. 2, 20-23.
  3. W. L. Gau and D. J. Buehrer, Vague sets, IEEE Transactions on Systems, Man and Cybernetics 23 (1993), 610-614. https://doi.org/10.1109/21.229476
  4. Y. Huang, BCI-algebras, Science Press, Beijing, 2006.
  5. Y. S. Hwang and S. S. Ahn, Vague q-ideals of BCI-algebras, Honam Math. J. 34 (2012), no. 4, 549-557. https://doi.org/10.5831/HMJ.2012.34.4.549
  6. Y. B. Jun and C. H. Park, Vague ideals of subtraction algebras, Int. Math. Forum 2 (2007), no. 59, 2919-2926. https://doi.org/10.12988/imf.2007.07266
  7. Y. B. Jun and K. J. Lee, Positive implicative vague ideal in BCK-algebras, Annals of Fuzzy Mathematics and Informatics, 1 (2011), 1-9.
  8. K. J. Lee, K. S. So, and K. S. Bang, Vague BCK/BCI-algebras, J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math., 15 (2008), 297-308.
  9. Y. Y. Liu, J. Meng, X. H. Zhang, and Z. C. Yue, q-ideals and a-ideals in BCI-algebras, Southeast Asian Bull. Math. 24 (2004), 243-253.
  10. C. H. Park, Vague deductive systems of subtraction algebras, J. Appl. Math. Comput. 26 (2008), 427-436.
  11. L. A. Zadeh, Fuzzy sets, Inform. Control 8 (1965), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X