VAGUE p-IDEALS AND VAGUE a-IDEALS IN $B C I$-ALGEBRAS

Yun Sun Hwang* and Sun Shin Ahn**

Abstract

The notion of vague p-ideals and vague a-ideals of $B C I$-algebras is introduced, and several properties of them are investigated. We show that a vague set of a $B C I$-algebra is a vague a-ideal if and only if it is both a vague q-ideal and a vague p-ideal.

1. Introduction

Several authors from time to time have made a number of generalizations of Zadeh's fuzzy set theory [11]. Of these, the notion of vague set theory introduced by Gau and Buehrer [3] is of interest to us. Using the vague set in the sense of Gau and Buehrer, Biswas [2] studied vague groups. Jun and Park $[6,10]$ studied vague ideals and vague deductive systems in subtraction algebras. In [8], the concept of vague $B C K / B C I$ algebras is discussed. S. S. Ahn, Y. U. Cho and C. H. Park [1] studied vague quick ideals of $B C K / B C I$-algebras. Y. B. Jun and K. J. Lee ([7]) introduced the notion of positive implicative vague ideals in $B C K-$ algebras. They established relations between a vague ideal and a positive implicative ideals. In [5], the notion of vague q-ideal of $B C I$-algebras was introduced and several properties of them were investigated.

In this paper, we also use the notion of vague set in the sense of Gau and Buehrer to discuss the vague theory in $B C I$-algebras. We introduce the notion of vague p-ideal and q-ideal of $B C I$-algebras and investigate several properties of them. We show that a vague set of a $B C I$-algebra is a vague a-ideal if and only if it is both a vague q-ideal and a vague p-ideal.

[^0]
2. Preliminaries

We review some definitions and properties that will be useful in our results.

By a BCI-algebra we mean an algebra $(X, *, 0)$ of type $(2,0)$ satisfying the following conditions:
(a1) $(\forall x, y, z \in X)(((x * y) *(x * z)) *(z * y)=0)$,
(a2) $(\forall x, y \in X)((x *(x * y)) * y=0)$,
(a3) $(\forall x \in X)(x * x=0)$,
(a4) $(\forall x, y \in X)(x * y=0, y * x=0 \Rightarrow x=y)$.
In any $B C I$-algebra X we can define a partial order " \leq " by putting $x \leq y$ if and only if $x * y=0$.

A $B C I$-algebra X has the following properties:
(b1) $(\forall x \in X)(x * 0=x)$.
(b2) $(\forall x, y, z \in X)((x * y) * z=(x * z) * y)$.
(b3) $(\forall x, y \in X)(0 *(x * y)=(0 * x) *(0 * y))$.
(b4) $(\forall x, y \in X)(x *(x *(x * y))=x * y)$.
(b5) $(\forall x, y, z \in X)(x \leq y \Rightarrow x * z \leq y * z, z * y \leq z * x)$.
(b6) $(\forall x, y, z \in X)((x * z) *(y * z) \leq x * y)$.
(b7) $(\forall x, y, z \in X)(0 *(0 *((x * z) *(y * z)))=(0 * y) *(0 * x))$.
(b8) $(\forall x, y \in X)(0 *(0 *(x * y))=(0 * y) *(0 * x))$.
A non-empty subset S of a $B C I$-algebra X is called a subalgebra of X if $x * y \in S$ whenever $x, y \in S$. A non-empty subset A of a $B C I$-algebra X is called an ideal of X if it satisfies:
(c1) $0 \in A$,
(c2) $(\forall x \in A)(\forall y \in X)(y * x \in A \Rightarrow y \in A)$.
Note that every ideal A of a $B C I$-algebra X satisfies:

$$
(\forall x \in A)(\forall y \in X)(y \leq x \Rightarrow y \in A)
$$

A non-empty subset A of a $B C I$-algebra X is called a q-ideal of X if it satisfies (c1) and
(c3) $(\forall x, y, z \in X)(x *(y * z) \in A, y \in A \Rightarrow x * z \in A)$.
A non-empty subset A of a $B C I$-algebra X is called a p-ideal of X if it satisfies (c1) and
(c4) $(\forall x, y, z \in X)((x * z) *(y * z) \in A, y \in A \Rightarrow x \in A)$.
A non-empty subset A of a $B C I$-algebra X is called a a-ideal of X if it satisfies (c1) and
(c5) $(\forall x, y, z \in X)((x * z) *(0 * y) \in A, z \in A \Rightarrow y * x \in A)$.

Note that any q-ideal(p-ideal, a-ideal) is an ideal, but the converse is not true in general.

We refer the reader to the book [4] for further information regarding $B C I$-algebras.

Definition 2.1. [2] A vague set A in the universe of discourse U is characterized by two membership functions given by:

1. A true membership function

$$
t_{A}: U \rightarrow[0,1]
$$

and
2. A false membership function

$$
f_{A}: U \rightarrow[0,1]
$$

where $t_{A}(u)$ is a lower bound on the grade of membership of u derived from the "evidence for u ", $f_{A}(u)$ is a lower bound on the negation of u derived from the "evidence against u ", and

$$
t_{A}(u)+f_{A}(u) \leq 1
$$

Thus the grade of membership of u in the vague set A is bounded by a subinterval $\left[t_{A}(u), 1-f_{A}(u)\right]$ of $[0,1]$. This indicates that if the actual grade of membership of u is $\mu(u)$, then

$$
t_{A}(u) \leq \mu(u) \leq 1-f_{A}(u)
$$

The vague set A is written as

$$
A=\left\{\left\langle u,\left[t_{A}(u), f_{A}(u)\right]\right\rangle \mid u \in U\right\}
$$

where the interval $\left[t_{A}(u), 1-f_{A}(u)\right]$ is called the vague value of u in A, denoted by $V_{A}(u)$.

For $\alpha, \beta \in[0,1]$ we now define (α, β)-cut and α-cut of a vague set. Recall that if $I_{1}=\left[a_{1}, b_{1}\right]$ and $I_{2}=\left[a_{2}, b_{2}\right]$ are two subintervals of $[0,1]$, we can define a relation by $I_{1} \succeq I_{2}$ if and only if $a_{1} \geq a_{2}$ and $b_{1} \geq b_{2}([2])$.

Definition 2.2. [2] Let A be a vague set of a universe X with the true-membership function t_{A} and the false-membership function f_{A}. The (α, β)-cut of the vague set A is a crisp subset $A_{(\alpha, \beta)}$ of the set X given by

$$
A_{(\alpha, \beta)}=\left\{x \in X \mid V_{A}(x) \succeq[\alpha, \beta]\right\}
$$

Clearly $A_{(0,0)}=X$. The (α, β)-cuts of the vague set A are also called vague-cuts of A.

Definition 2.3. [2] The α-cut of the vague set A is a crisp subset A_{α} of the set X given by $A_{\alpha}=A_{(\alpha, \alpha)}$.

Note that $A_{0}=X$, and if $\alpha \geq \beta$ then $A_{\alpha} \subseteq A_{\beta}$ and $A_{(\alpha, \beta)}=A_{\alpha}$.
Equivalently, we can define the α-cut as

$$
A_{\alpha}=\left\{x \in X \mid t_{A}(x) \geq \alpha\right\} .
$$

3. Vague p-ideals

For our discussion, we shall use the following notations on interval arithmetic:

Let $I[0,1]$ denote the family of all closed subintervals of $[0,1]$. We define the term "imax" to mean the maximum of two intervals as

$$
\operatorname{imax}\left(I_{1}, I_{2}\right):=\left[\max \left(a_{1}, a_{2}\right), \max \left(b_{1}, b_{2}\right)\right],
$$

where $I_{1}=\left[a_{1}, b_{1}\right], I_{2}=\left[a_{2}, b_{2}\right] \in I[0,1]$. Similarly we define "imin". The concepts of "imax" and "imin" could be extended to define "isup" and "iinf" of infinite number of elements of $I[0,1]$.

It is obvious that $L=\{I[0,1]$, isup, $\operatorname{iinf}, \succeq\}$ is a lattice with universal bounds $[0,0]$ and $[1,1]$ (see [2]).

In what follows let X denote a $B C I$-algebra unless specified otherwise.

Definition 3.1. [8] A vague set A of a $B C I$-algebra X is called a vague BCI-algebra of X if the following condition is true:
(d0) $(\forall x \in X)\left(V_{A}(x * y) \succeq \operatorname{imin}\left\{V_{A}(x), V_{A}(y)\right\}\right)$.
that is,

$$
\begin{aligned}
& t_{A}(x * y) \geq \min \left\{t_{A}(x), t_{A}(y)\right\}, \\
& 1-f_{A}(x * y) \geq \min \left\{1-f_{A}(x), 1-f_{A}(y)\right\}
\end{aligned}
$$

for all $x, y \in X$.
Definition 3.2. [8] A vague set A of X is called a vague ideal of a $B C I$-algebra X if the following conditions are true:
(d1) $(\forall x \in X)\left(V_{A}(0) \succeq V_{A}(x)\right)$,
(d2) $(\forall x, y \in X)\left(V_{A}(x) \succeq \operatorname{imin}\left\{V_{A}(x * y), V_{A}(y)\right\}\right)$.
that is,

$$
\begin{aligned}
& \quad t_{A}(0) \geq t_{A}(x), 1-f_{A}(0) \geq 1-f_{A}(x), \\
& \text { and } t_{A}(x) \geq \min \left\{t_{A}(x * y), t_{A}(y)\right\} \\
& \quad 1-f_{A}(x) \geq \min \left\{1-f_{A}(x * y), 1-f_{A}(y)\right\}
\end{aligned}
$$

for all $x, y \in X$.

Proposition 3.3. [8] Every vague ideal of a BCI-algebra X satisfies the following properties:
(i) $(\forall x, y \in X)\left(x \leq y \Rightarrow V_{A}(x) \succeq V_{A}(y)\right)$,
(ii) $(\forall x, y, z \in X)\left(V_{A}(x * z) \succeq \operatorname{imin}\left\{V_{A}((x * y) * z), V_{A}(y)\right\}\right)$.

Definition 3.4. [5] A vague set A of X is called a vague q-ideal of X if it satisfies (d1) and
(d3) $(\forall x, y, z \in X)\left(V_{A}(x * z) \succeq \operatorname{imin}\left\{V_{A}(x *(y * z)), V_{A}(y)\right\}\right)$.
that is,

$$
\begin{aligned}
& t_{A}(x * z) \geq \min \left\{t_{A}(x *(y * z)), t_{A}(y)\right\} \\
& 1-f_{A}(x * z) \geq \min \left\{1-f_{A}(x *(y * z)), 1-f_{A}(y)\right\}
\end{aligned}
$$

for all $x, y, z \in X$.
Definition 3.5. A vague set A of X is called a vague p-ideal of a $B C I$-algebra X if it satisfies (d1) and
$(\mathrm{d} 4)(\forall x, y, z \in X)\left(V_{A}(x) \succeq \operatorname{imin}\left\{V_{A}((x * z) *(y * z)), V_{A}(y)\right\}\right)$.
that is,

$$
\begin{aligned}
& t_{A}(x) \geq \min \left\{t_{A}((x * z) *(y * z)), t_{A}(y)\right\} \\
& 1-f_{A}(x) \geq \min \left\{1-f_{A}((x * z) *(y * z)), 1-f_{A}(y)\right\}
\end{aligned}
$$

for all $x, y, z \in X$.
Example 3.6. Let $X:=\{0, a, b, c\}$ be a $B C I$-algebra([9]) in which the *-operation is given by the following table:

$*$	0	a	b	c
0	0	a	b	c
a	a	0	c	b
b	b	c	0	a
c	c	b	a	0

Let A be the vague set in X defined as follows:

$$
A=\{\langle 0,[0.7,0.2]\rangle,\langle a,[0.7,0.2]\rangle,\langle b,[0.5,0.4]\rangle,\langle c,[0.5,0.4]\rangle\}
$$

It is routine to verify that A is a vague p-ideal of X.
Theorem 3.7. Every vague p-ideal of a $B C I$-algebra X is a vague ideal of X.

Proof. Let A be a vague p-ideal of X. Putting $z:=0$ in (d4), for any $x, y \in X$ we have

$$
\begin{aligned}
V_{A}(x) & \succeq \operatorname{imin}\left\{V_{A}((x * 0) *(y * 0)), V_{A}(y)\right\} \\
& =\operatorname{imin}\left\{V_{A}(x * y), V_{A}(y)\right\}
\end{aligned}
$$

Hence (d2) holds. Thus A is a vague ideal of a $B C I$-algebra X.
The converse of Theorem 3.7 is not true in general as seen the following example.

Example 3.8. Let $X:=\{0, a, 1,2,3\}$ be a $B C I$-algebra([9]) in which the $*$-operation is given by the following table:

$*$	0	a	1	2	3
0	0	0	3	2	1
a	a	0	3	2	1
1	1	1	0	3	2
2	2	2	1	0	3
3	3	3	2	1	0

Let B be the vague set in X defined as follows:
$B=\{\langle 0,[0.8,0.2]\rangle,\langle a,[0.7,0.3]\rangle,\langle 1,[0.5,0.4]\rangle,\langle 2,[0.5,0.4]\rangle .\langle 3,[0.5,0.4]\rangle\}$.
It is routine to verify that B is a vague ideal of X. But it is not a vague p-ideal of X, since $V_{B}(a) \nsucceq \operatorname{imin}\left\{V_{B}((a * 1) *(0 * 1)), V_{B}(0)\right\}$.

Lemma 3.9. Let A be a vague ideal of X. Then $V_{A}(0 *(0 * x)) \succeq V_{A}(x)$ for all $x \in X$.

Proof. Let A be a vague ideal of X. For any $x \in X$, we have

$$
\begin{aligned}
V_{A}(0 *(0 * x)) & \succeq \operatorname{imin}\left\{V_{A}((0 *(0 * x)) * x), V_{A}(x)\right\} \\
& =\operatorname{imin}\left\{V_{A}((0 * x) *(0 * x)), V_{A}(x)\right\} \\
& =\operatorname{imin}\left\{V_{A}(0), V_{A}(x)\right\}=V_{A}(x) .
\end{aligned}
$$

This completes the proof.
Proposition 3.10. Let A be a vague ideal of a $B C I$-algebra X. If A satisfies $V_{A}(x * y) \succeq V_{A}((x * z) *(y * z))$ for all $x, y, z \in X$, then A is a vague p-ideal of a $B C I$-algebra X.

Proof. For any $x, y, z \in X$, we have

$$
\begin{aligned}
V_{A}(x) & \succeq \operatorname{imin}\left\{V_{A}(x * y), V_{A}(y)\right\} \\
& \succeq \operatorname{imin}\left\{V_{A}((x * z) *(y * z)), V_{A}(y)\right\}
\end{aligned}
$$

Hence (d4) holds. Thus A is a vague p-ideal of X.
Theorem 3.11. A vague ideal A of a $B C I$-algebra X is a vague p-ideal of X if and only if
$(*)(\forall x \in X)\left(V_{A}(x) \succeq V_{A}(0 *(0 * x))\right.$.

Proof. Assume that a vague ideal A of X is a vague p-ideal. Putting $z:=x$ and $y:=0$ in (d4), for any $x \in X$ we have

$$
\begin{aligned}
V_{A}(x) & \succeq \operatorname{imin}\left\{V_{A}((x * x) *(0 * x)), V_{A}(0)\right\} \\
& =\operatorname{imin}\left\{V_{A}(0 *(0 * x)), V_{A}(0)\right\} \\
& =V_{A}(0 *(0 * x))
\end{aligned}
$$

Conversely, suppose that a vague ideal A of a $B C I$-algebra X satisfies $(*)$. Using Lemma 3.9, (b7), (b8) and $(*)$, for any $x, y, z \in X$ we have

$$
\begin{aligned}
V_{A}((x * z) *(y * z)) & \preceq V_{A}(0 *(0 *((x * z) *(y * z)))) \\
& =V_{A}((0 * y) *(0 * x)) \\
& =V_{A}(0 *(0 *(x * y))) \\
& \preceq V_{A}(x * y) .
\end{aligned}
$$

By Proposition $3.10, A$ is a vague p-ideal of X.

4. Vague a-ideals

Definition 4.1. A vague set A of X is called a vague a-ideal of a $B C I$-algebra X if it satisfies (d1) and
$(\mathrm{d} 5)(\forall x, y, z \in X)\left(V_{A}(y * x) \succeq \operatorname{imin}\left\{V_{A}((x * z) *(0 * y)), V_{A}(z)\right\}\right)$. that is,

$$
\begin{aligned}
& t_{A}(y * x) \geq \min \left\{t_{A}((x * z) *(0 * y)), t_{A}(z)\right\} \\
& 1-f_{A}(y * x) \geq \min \left\{1-f_{A}((x * z) *(0 * y)), 1-f_{A}(z)\right\}
\end{aligned}
$$

for all $x, y, z \in X$.
Example 4.2. Consider $X=\{0, a, b, c\}$ as in Example 3.6. Let C be the vague set in X defined as follows:

$$
C=\{\langle 0,[0.7,0.1]\rangle,\langle a,[0.7,0.1]\rangle,\langle b,[0.5,0.3]\rangle,\langle c,[0.5,0.3]\rangle\}
$$

It is routine to verify that C is a vague a-ideal of X.
Theorem 4.3. Every vague a-ideal of a $B C I$-algebra X is both a vague ideal of X and a vague $B C I$-algebra of X.

Proof. Let A be any vague a-ideal of a $B C I$-algebra X. Putting $z=y=0$ in $(\mathrm{d} 5)$, for any $x \in X$ we have

$$
\begin{align*}
V_{A}(0 * x) & \succeq \operatorname{imin}\left\{V_{A}((x * 0) *(0 * 0)), V_{A}(0)\right\} \\
& =\operatorname{imin}\left\{V_{A}(x), V_{A}(0)\right\} \\
& =V_{A}(x) . \tag{4.1}
\end{align*}
$$

Taking $x=z=0$ in (d5), for any $y \in X$ we have

$$
\begin{align*}
V_{A}(y)=V_{A}(y * 0) & \succeq \operatorname{imin}\left\{V_{A}((0 * 0) *(0 * y)), V_{A}(0)\right\} \\
& =\operatorname{imin}\left\{V_{A}(0 *(0 * y)), V_{A}(0)\right\} \\
& =V_{A}(0 *(0 * y)) . \tag{4.2}
\end{align*}
$$

Putting $y=0$ in (d5), for any $x, z \in X$ we have

$$
\begin{align*}
V_{A}(0 * x) & \succeq \operatorname{imin}\left\{V_{A}((x * z) *(0 * 0)), V_{A}(z)\right\} \\
& =\operatorname{imin}\left\{V_{A}(x * z), V_{A}(z)\right\} . \tag{4.3}
\end{align*}
$$

Using (4.2) and (4.1), we have

$$
V_{A}(x) \succeq V_{A}(0 *(0 * x)) \succeq V_{A}(0 * x)
$$

Hence $V_{A}(x) \succeq \operatorname{imin}\left\{V_{A}(x * z), V_{A}(z)\right\}$ and so (d2) holds. Thus A is a vague ideal of X.

Using (d2), we have
$(* *)(\forall x, y \in X)\left(V_{A}(x * y) \succeq \operatorname{imin}\left\{V_{A}((x * y) * z), V_{A}(z)\right\}\right)$.
Putting $z=x$ in $(* *)$ and use (4.1), for any $x, y \in X$ we have

$$
\begin{aligned}
V_{A}(x * y) & \succeq \operatorname{imin}\left\{V_{A}((x * y) * x), V_{A}(x)\right\} \\
& =\operatorname{imin}\left\{V_{A}((x * x) * y), V_{A}(x)\right\} \\
& =\operatorname{imin}\left\{V_{A}(0 * y), V_{A}(x)\right\} \\
& \succeq \operatorname{imin}\left\{V_{A}(y), V_{A}(x)\right\} .
\end{aligned}
$$

Thus A is a vague $B C I$-algebra of X.
The converse of Theorem 4.3 is not true in general as seen the following example.

Example 4.4. Let $X:=\{0, a, b\}$ be a $B C I$-algebra([9]) in which the *-operation is given by the following table:

$$
\begin{array}{c|ccc}
* & 0 & a & b \\
\hline 0 & 0 & 0 & b \\
a & a & 0 & b \\
b & b & b & 0
\end{array}
$$

Let D be the vague set in X defined as follows:

$$
D=\{\langle 0,[0.8,0.1]\rangle,\langle a,[0.5,0.3]\rangle,\langle b,[0.5,0.3]\rangle\}
$$

It is routine to verify that D is both a vague ideal of X and a vague $B C I$-algebra of X. But it is not a vague a-ideal of X since

$$
V_{D}(a * 0) \nsucceq \operatorname{imin}\left\{V_{D}((0 * 0) *(0 * a)), V_{D}(0)\right\}
$$

Lemma 4.5. [8] Every vague $B C I$-algebra X of a $B C I$-algebra X satisfies:

$$
(\forall x \in X)\left(V_{A}(0) \succeq V_{A}(x)\right)
$$

Proposition 4.6. Let A be a vague set of a $B C I$-algebra X. If A is a vague ideal of X, then it satisfies: for any $x, y, z \in X$,

$$
x * y \leq z \Rightarrow V_{A}(x) \succeq \operatorname{imin}\left\{V_{A}(y), V_{A}(z)\right\}
$$

Proof. Assume that A is a vague ideal of X and let $x, y, z \in X$ be such that $x * y \leq z$. It follows from Proposition 3.3(i) that $V_{A}(z) \preceq V_{A}(x * y)$. Using (d2), we have

$$
V_{A}(x) \succeq \operatorname{imin}\left\{V_{A}(x * y), V_{A}(y)\right\} \succeq \operatorname{imin}\left\{V_{A}(y), V_{A}(z)\right\} .
$$

This completes the proof.
Next we give the characterizations of vague a-ideals.
Theorem 4.7. Let A be a vague ideal of a BCI-algebra X. Then the following are equivalent:
(1) A is a vague a-ideal of X.
(2) $(\forall x, y, z \in X)\left(V_{A}(y *(x * z)) \succeq V_{A}((x * z) *(0 * y))\right)$.
(3) $(\forall x, y \in X)\left(V_{A}(y * x) \succeq V_{A}(x *(0 * y))\right.$.

Proof. (1) $\Rightarrow(2)$ Let $s:=(x * z) *(0 * y)$ for any $x, y, z \in X$. Then $((x * z) * s) *(0 * y)=((x * z) *(0 * y)) * s=0$. Using (d5), for any $x, y, z \in X$ we have

$$
\begin{aligned}
V_{A}(y *(x * z)) & \succeq \operatorname{imin}\left\{V_{A}(((x * z) * s) *(0 * y)), V_{A}(s)\right\} \\
& =\operatorname{imin}\left\{V_{A}(0), V_{A}(s)\right\} \\
& =V_{A}(s) \\
& =V_{A}((x * z) *(0 * y)) .
\end{aligned}
$$

Hence (2) holds.
$(2) \Rightarrow(3)$ Let $z:=0$ in (2). We obtain (3).
$(3) \Rightarrow(1)$ Let $x, y, z \in X$. Using (b6) and (a2), we have $(x *(0 * y)) *((x *$ $z) *(0 * y)) \leq x *(x * z) \leq z$ and so $(x *(0 * y)) *((x * z) *(0 * y)) \leq z$. It follows from Proposition 4.6 that $V_{A}\left((x *(0 * y)) \succeq \operatorname{imin}\left\{V_{A}((x * z) *\right.\right.$ $\left.(0 * y)), V_{A}(z)\right\}$. Using (3), we have

$$
V_{A}(y * x) \succeq V_{A}(x *(0 * y)) \succeq \operatorname{imin}\left\{V_{A}((x * z) *(0 * y)), V_{A}(z)\right\}
$$

Hence (d5) holds. Thus A is a vague a-ideal of X.

Now, we discuss the relations among vague a-ideals, vague p-ideals, and vague q-ideals of a $B C I$-algebra X and give another characterization of vague a-ideals of a $B C I$-algebra X.

Theorem 4.8. [5] Let A be a vague ideal of a BCI-algebra X. Then the following are equivalent:
(1) A is a vague q-ideal of X.
(2) $(\forall x, y \in X)\left(V_{A}(x * y) \succeq V_{A}(x *(0 * y))\right.$.
(3) $(\forall x, y, z \in X)\left(V_{A}((x * y) * z) \succeq V_{A}(x *(y * z))\right.$.

Theorem 4.9. [5] Every vague q-ideal of a BCI-algebra X is both a vague ideal of X and a vague $B C I$-algebra of X.

Theorem 4.10. Any vague a-ideal of a $B C I$-algebra X is a vague p-ideal of X.

Proof. Let A be a vague a-ideal of X. Then it is a vague ideal of X by Theorem 4.3. Setting $x=z=0$ in Theorem 4.7(2), we have

$$
V_{A}(y *(0 * 0)) \succeq V_{A}((0 * 0) *(0 * y)
$$

i.e., $V_{A}(y) \succeq V_{A}(0 *(0 * y))$. By Theorem 3.11, A is a vague p-ideal of X.

The converse of Theorem 4.10 is not true in general as the following example.

Example 4.11. Let $X:=\{0, a, b\}$ be a $B C I$-algebra([9]) in which the *-operation is given by the following table:

$*$	0	a	b
0	0	b	a
a	a	0	b
b	b	a	0

Let E be the vague set in X defined as follows:

$$
E=\{\langle 0,[0.8,0.1]\rangle,\langle a,[0.5,0.3]\rangle,\langle b,[0.5,0.3]\rangle\}
$$

It is routine to verify that E is a vague p-ideal of X. But it is not a vague a-ideal of X since

$$
V_{E}(b * a) \nsucceq \operatorname{imin}\left\{V_{E}((a * 0) *(0 * b)), V_{E}(0)\right\}
$$

Theorem 4.12. Any vague a-ideal of a $B C I$-algebra X is a vague q-ideal X.

Proof. Let A be any vague a-ideal of X. Then it is a vague ideal of X by Theorem 4.3. In order to prove that A is a vague q-ideal from Theorem 4.8(2), it suffices to show that $V_{A}(x * y) \succeq V_{A}(x *(0 * y))$ for all $x, y \in X$. Since for any $x, y \in X$

$$
\begin{aligned}
(0 *(0 *(y *(0 * x)))) & *(x *(0 * y)) \\
& =[(0 *(0 * y)) *(0 *(0 *(0 * x)))] *(x *(0 * y)) \\
& =((0 *(0 * y)) *(0 * x)) *(x *(0 * y)) \\
& \leq(x *(0 * y)) *(x *(0 * y))=0
\end{aligned}
$$

we have $(0 *(0 *(y *(0 * x)))) *(x *(0 * y))=0$ and so

$$
0 *(0 *(y *(0 * x))) \leq x *(0 * y)
$$

It follows from Theorem 4.10, Theorem 3.11 and Proposition 3.3(i) that

$$
V_{A}(y *(0 * x)) \succeq V_{A}(0 *(0 *(y *(0 * x)))) \succeq V_{A}(x *(0 * y))
$$

Using Theorem $4.7(3)$, we have $V_{A}(x * y) \succeq V_{A}(y *(0 * x))$. Hence $V_{A}(x * y) \succeq V_{A}(x *(0 * y))$. Thus A is a vague q-ideal of X.

The converse of Theorem 4.12 is not true in general as seen the following example.

Example 4.13. Consider a $B C I$-algebra $X=\{0, a, b\}$ as in Example 4.4. Let F be the vague set in X defined as follows:

$$
F=\{\langle 0,[0.8,0.1]\rangle,\langle a,[0.5,0.4]\rangle,\langle b,[0.5,0.4]\rangle\}
$$

It is routine to verify that F is a vague q-ideal of X. But it is not a vague a-ideal of X since

$$
V_{F}(a * 0) \nsucceq \operatorname{imin}\left\{V_{F}((0 * 0) *(0 * a)), V_{F}(0)\right\} .
$$

Lemma 4.14. Let A be a both a vague $B C I$-algebra X and a vague ideal of a $B C I$-algebra X. Then $V_{A}(0 * x) \succeq V_{A}(x)$ for all $x \in X$.

Proof. Put $x=0$ in (d0). Then for all $y \in X$

$$
\begin{aligned}
V_{A}(0 * y) & \succeq \operatorname{imin}\left\{V_{A}(0), V_{A}(y)\right\} \\
& =V_{A}(y)
\end{aligned}
$$

This completes the proof.
Theorem 4.15. A vague set A of a $B C I$-algebra X is a a-ideal of X if and only if it is both a vague p-ideal and a vague q-ideal of X.

Proof. Assume that A is a vague p-ideal and a vague q-ideal of X. By Theorem 4.9, A is both a vague $B C I$-algebra of X and a vague ideal of X. In order to prove that A is a vague a-ideal from Theorem 4.7(3), it suffices to show that $V_{A}(y * x) \succeq V_{A}(x *(0 * y))$ for all $x, y \in X$. Since for any $x, y \in X$

$$
\begin{aligned}
(0 *(y * x)) *(x * y) & =((0 * y) *(0 * x)) *(x * y) \\
& =((0 *(x * y)) * y) *(0 * x) \\
& =(((0 * x) *(0 * y)) * y) *(0 * x) \\
& =(0 *(0 * y)) * y \\
& =(0 * y) *(0 * y)=0,
\end{aligned}
$$

we obtain $0 *(y * x) \leq x * y$. It follows from Proposition 3.3(i) that $V_{A}(x * y) \preceq V_{A}(0 *(y * x))$. Using Lemma 4.14 and Theorem 3.11, we have

$$
V_{A}(x * y) \preceq V_{A}(0 *(y * x)) \preceq V_{A}(0 *(0 *(y * x))) \preceq V_{A}(y * x) .
$$

By Theorem $4.8(2), V_{A}(x *(0 * y)) \preceq V_{A}(x * y) \preceq V_{A}(y * x)$. Thus A is a vague a-ideal of X.

Conversely, if A is a vague a-ideal of X, then A is a vague p-ideal and a vague q-ideal of X by Theorem 4.10 and Theorem 4.12.

Acknowledgements

The authors wish to thank the referees for their valuable suggestions.

References

[1] S. S. Ahn, Y. U. Cho, and C. H. Park, Vague quick ideals of BCK/BCIalgebras, Honam Math. J. 30 (2008), 65-74.
[2] R. Biswas, Vague groups, Internat. J. Comput. Cognition 4 (2006), no. 2, 20-23.
[3] W. L. Gau and D. J. Buehrer, Vague sets, IEEE Transactions on Systems, Man and Cybernetics 23 (1993), 610-614.
[4] Y. Huang, BCI-algebras, Science Press, Beijing, 2006.
[5] Y. S. Hwang and S. S. Ahn, Vague q-ideals of BCI-algebras, Honam Math. J. 34 (2012), no. 4, 549-557.
[6] Y. B. Jun and C. H. Park, Vague ideals of subtraction algebras, Int. Math. Forum 2 (2007), no. 59, 2919-2926.
[7] Y. B. Jun and K. J. Lee, Positive implicative vague ideal in BCK-algebras, Annals of Fuzzy Mathematics and Informatics, 1 (2011), 1-9.
[8] K. J. Lee, K. S. So, and K. S. Bang, Vague BCK/BCI-algebras, J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math., 15 (2008), 297-308.
[9] Y. Y. Liu, J. Meng, X. H. Zhang, and Z. C. Yue, q-ideals and a-ideals in BCI-algebras, Southeast Asian Bull. Math. 24 (2004), 243-253.
[10] C. H. Park, Vague deductive systems of subtraction algebras, J. Appl. Math. Comput. 26 (2008), 427-436.
[11] L. A. Zadeh, Fuzzy sets, Inform. Control 8 (1965), 338-353.
*
Department of Mathematics Education
Dongguk University
Seoul 10-715, Republic of Korea
E-mail: hwangyunsun@nate.com
**
Department of Mathematics Eduaction
Dongguk University
Seoul 100-715, Republic of Korea
E-mail: sunshine@dongguk.edu

[^0]: Received December 02, 2012; Accepted July 08, 2013.
 2010 Mathematics Subject Classification: 06F35, 03G25.
 Key words and phrases: vague ideal, vague ($q-, a$ - $) p$-ideal.
 Correspondence should be addressed to Sun Shin Ahn, sunshine@dongguk.edu.

