
Commun. Korean Math. Soc. 34 (2019), No. 3, pp. 701–718

https://doi.org/10.4134/CKMS.c180226

pISSN: 1225-1763 / eISSN: 2234-3024

THE U-PROJECTIVE RESOLUTION OF MODULES OVER

PATH ALGEBRAS OF TYPES An AND Ãn

Karin Baur, Yudi Mahatma, and Intan Muchtadi-Alamsyah

Abstract. In this paper we compute the U -projective resolution of kQ-

modules where Q is quiver of type An and Ãn. The behavior of the
sequence can be seen through its geometric representation.

1. Introduction

Projective resolution of modules plays an important role in homological al-
gebra. In 2002, Davvaz and Shabani-Solt introduced the notions of U -complex,
U -homology, etc. (see [5]) to generalize certain concepts in homological alge-
bra. Inspired by this, the second and the third authors introduced the notions
of U -projective resolutions and U -extension modules in 2016 (see [7]).

We also found that every short exact sequence of modules and module ho-
momorphisms over hereditary algebra can always be extended into a long exact
sequence of U -homologies (the modified homologies) consisting of U -extension
modules. This encouraged us to further research on U -extension modules over
hereditary algebra. The algebra of our interest is a path algebra generated by
a finite acyclic quiver. In this paper we will discuss U -projective resolutions of
modules over such an algebra.

A sequence · · · dk+2−−−→ Mk+1
dk+1−−−→ Mk

dk−→ Mk−1
dk−1−−−→ · · · of modules and

module homomorphisms is said to be exact if Imdk+1 = kerdk for every k. In [4]
Davvaz and Parnian-Garamaleky introduced the notion of U -exact sequence,
which is a generalization of an exact sequence. The idea is to replace ker
dk with d−1k (Uk−1), for every k, where Uk is a submodule of Mk for each k.
Davvaz and Shabani-Solt then redefined this concept in [5] using the so-called
U -complex approach which further assumes that Im dk+1 must contain Uk

for every k. Thus, a U -exact sequence is a sequence · · · dk+2−−−→ Mk+1
dk+1−−−→

Mk
dk−→ Mk−1

dk−1−−−→ · · · of modules and module homomorphisms such that
Uk ⊆ Imdk+1 = d−1k (Uk−1) where Uk is a submodule of Mk, for each integer k.
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Mahatma and Muchtadi-Alamsyah extended these result by proposing in [7]
a way to define U -projective resolutions and U -extension modules. The aim
of this paper is to state a formula for U -projective resolutions of kQ-modules
where Q is quiver of type An and Ãn. For an introduction to quivers and path
algebras see [1, Chapter II].

2. The U-projective resolution of a module

Given any module M , there always exists a projective resolution of M , i.e.,

an exact sequence · · · d3−→ P2
d2−→ P1

d1−→ P0
d0−→ M → 0 where Pi’s are projec-

tive for all i = 1, 2, 3, . . .. If we replace exactness with U -exactness, then we
have what we call a U -projective resolution. The complete algorithm to con-
struct a U -projective resolution of an A-module M for any nonzero submodule
U of M was given in [7]. Here, we recall the construction:

Given any module M there always exists a projective module P0 that can

map onto M . Hence we have a sequence P0
d0−→ M → 0. By the same reason,

we can extend the sequence into P1
d1−→ P0

d0−→M → 0 for a projective module
P1 so that the new sequence is U -exact at P0, i.e., d1(P1) = d−10 (U). Now, set

U0 := d−10 (U) and extend the last sequence into P2
d2−→ P1

d1−→ P0
d0−→ M → 0

for a suitable projective module P2 so that the new sequence is U0-exact at P1,
i.e., d2(P2) = d−11 (U0). Now set U1 := d−11 (ker d0) and continue the process.

By doing this, we obtain a sequence · · · d3−→ P2
d2−→ P1

d1−→ P0
d0−→ M → 0

where all Pi’s are projective and which is Ui−1-exact at Pi, i.e., di+1(Pi+1) =

d−1i (Ui−1) for i = 1, 2, 3, . . .. We denote this resolution by P : P•(U•)
d•−→

M(U). It has been shown in [7] that if both P : P•(U•)
d•−→ M(U) and

Q : Q•(V•)
e•−→ M(U) are U -projective resolutions of M , then there exist two

U -complex morphisms f : P → Q and g : Q → P such that gf ' 1P and
fg ' 1Q. This implies that the U -extension modules generated by U -projective
resolutions are unique up to isomorphism. Hence the projective modules Pi
may be chosen arbitrarily.

In this paper we will consider the U -projective resolution only for case U 6= 0.
One might suggest that the U -projective resolution of M can be substituted
by the projective resolution of M/U . In fact, they are not identical as the
extension modules generated from the resolutions can be not isomorphic. For
example, if both M and U are projective, then Ext1 (M [U ], U) = 0 (see [7])
while the module Ext1(M/U,U) is not necessarily zero. (See Chapter 7 of [8]
for the fundamental concept of extension modules.)

Since all algebras discussed in this paper are hereditary, the last nonzero
module in any U -projective resolution will be either P2 or P3. We will say that
the length of the resolution is 2 or 3, respectively, as we now explain.

Clearly, if M is projective, then we may set P0 := M and d0 := 1m. As
a consequence, U0 = d−10 (U) = U . Now since the algebra is hereditary and
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M is projective, then d−10 (U) = U ⊆ M must be projective and hence we
may set P1 := U and d1 as an inclusion from U to M . This implies that
U1 = d−11 (ker d0) = d−11 (0) = 0 and hence we may set P3 := 0. Since we have
reached the zero module then we can set all the next modules and maps as
zero. Hence the resolution will be as follows:

(2.1)
0 → U → U → M → M → 0

↑ ↑
U U

where the objects written in the bottom row are the Ui’s. Note that when Ui
is not written, we mean that Ui = 0.

Now, for the non projective case over hereditary algebra, we start with a

map P
d−→ M → 0 with P projective. Set P0 := P and d0 := d. Since the

algebra is hereditary and P is projective then d−1(U) ⊆ P must be projec-
tive. Hence we may set P1 := d−1(U) and d1 as the inclusion from d−1(U)
to P . As a consequence, we have U1 = d−11 (ker d) = ker d. Now, since
d−11 (U0) = d−11

(
d−1(U)

)
= d−1(U) is projective then we may set P2 := d−1(U)

and d2 := 1d−1(U). This implies that U2 = d−12 (ker d1) = d−12 (0) = 0. Next,

since d−12 (U1) = d−12 (ker d) = ker d ⊆ d−1(U) is projective then we may set
P3 := ker d and d3 as the inclusion from ker d to d−1(U). This implies that
U3 = d−13 (ker d2) = d−12 (0) = 0. Now, d−13 (U2) = d−13 (0) = 0 and hence we
may set P4 := 0 and the process can be stopped. Thus, the resolution will be
as follows:

(2.2)
0 → ker d → d−1(U) → d−1(U) → P

d−→ M → 0
↑ ↑ ↑

ker d d−1(U) U

Theorem 1. An algebra A is hereditary if and only if every U -projective res-
olution of an A-module has length 2 or 3.

Proof. We only need to prove the sufficiency. Suppose that A is an algebra
with every U -projective resolution of an A-module has length 2 or 3. Suppose
that there is an ideal I of A which is not projective as an A-module. Consider
the surjection d : P → I with P projective. The A/I-projective resolution of
A/I will be as follows:

(2.3)
X → P

d−→ A
1A−−→ A

1A−−→ A
π−→ A/I → 0

↑ ↑ ↑ ↑
ker d I A A/I

Since I is non projective then d is not an inclusion and hence X 6= 0 contrary
to the assumption that the length must not exceed 3. Thus, every ideal of A
must be projective as an A-module which means A is hereditary. �

We restrict the discussion in this paper only for resolutions of indecompos-
able modules. For decomposable case, the problem can be reduced by the
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following fact: given any finite collection of modules M1,M2, . . . ,Mn, if we
have constructed the Uα-projective resolution of Mα for each α, then we can
obtain the U1 ⊕U2 ⊕ · · · ⊕Un-projective resolution of M1 ⊕M2 ⊕ · · · ⊕Mn by
just taking the direct sum of the corresponding components of the sequences.
However, this has not covered all the situations since it is possible for a decom-
posable module M to have submodule which is not direct sum of submodules
of direct summands of M .

3. Diagonal representation of a kQ-module of type An

In this section we restrict the discussion to path algebras generated by the
quiver Q of the form n→ (n− 1)→ (n− 2)→ · · · → 1 which is a special case
of quiver of type An. All the indecomposable modules over such an algebra
will be represented through a geometric model: every indecomposable module
can be viewed as a diagonal in an (n + 3)-gon. The algebra kQ itself is given
by the following triangulation of an (n+ 3)-gon.

Figure 1. Triangulation for quiver Q : n → (n − 1) → (n −
2)→ · · · → 1.

Each vertex of Q corresponds to one of the diagonals in Figure 1. The arrows
correspond to clockwise rotations to the nearest neighbor (so-called minimal
rotations). See Subsection 3.1.3 of [9] for details. The indecomposable kQ-
modules can be described as diagonals in this polygon intersecting the diagonals
of the chosen triangulations. The simple modules intersect exactly one diagonal
and inductively we get all the indecomposable modules from this: consider the
module 0 → · · · → 0 → K(b) → K(b−1) → · · · → K(a) → 0 → · · · → 0
for some n ≥ b ≥ a ≥ 1, i.e., the representation of Q supported at vertices
b, b− 1, . . . , and a. The geometric representation of such a module is given by
the diagonal which intersects the diagonals b, b−1, . . . , and a, i.e., the diagonal
whose endpoints are a and b+ 2. Thus, as notation for this module we choose
(a, b+ 2). Further, a module (i, j) is: projective if and only if i = 1; injective if



THE U-PROJECTIVE RESOLUTION OF MODULES OVER PATH ALGEBRAS 705

and only if j = n+2; and simple if and only if j = i+2 ([1, Section III.2]). Also,
a module (a, b) is a submodule of (i, j) if and only if a = i and i+ 2 ≤ b ≤ j.

We shall denote the projective module (1, k+2) by P (k), the injective module
(k, n + 2) by I(k), and the simple module (k, k + 2) by S(k). Clearly, P (1) =
S(1), P (n) = I(1), and I(n) = S(n).

The AR-quiver of this type of an algebra is given as follows ([1, Section
IV.4], see also [6]).

Figure 2. Auslander-Reiten quiver for path algebra of quiver
n→ (n− 1)→ (n− 2)→ · · · → 1.

4. Geometric representation of a kQ-module of type Ãn

For algebras of type Ãn, we will use the geometric model given by Warkentin
in his diploma thesis ([10, Chapter 4]). Further details can also be found if [2]

and [3]. In this paper we restrict the discussion to quiver of type Ãn of the
form

Figure 3. Quiver of type Ãn.

Clearly, there are g clockwise arrows in the quiver described in Figure 3.
Now if we denote the number of anti-clockwise arrows by h, then we have
n = g+h−1. We shall denote this quiver byQg,h. The geometric representation
of the algebra will be based on following triangulation in an annulus.
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Figure 4. Triangulation for Qg,h.

Indecomposable modules correspond to oriented arcs crossing these diago-
nals in a similar way as for type An. First we state the convention that for
post-projective modules we will orient the arcs from the base to the top, and
for pre-injective modules in the opposite direction. If both endpoints are in the
same boundary, then we orient the arc from left to right. As an example, we
consider the geometric representation for the module P (i), 0 < i ≤ g, whose
representation is as follows:

Figure 5. Representation of module P (i), 0 < i ≤ g.

We must represent this module with an arc intersecting the edges i, i +
1, . . . , g in the fixed triangulation of the annulus. Hence we represent the
module by the following oriented arc:

Figure 6. Geometric representation of module Pi, 0 < i ≤ g.

We will use ∂ to denote the lower boundary and ∂′ for the upper boundary.
So we can denote the module as ((g − i+ 1)∂, (h− 1)∂′) or we will just write it
as
(
g − i+ 1, h− 1

)
to drop ∂ and ∂′. Note that, in the figure, the module P (1)

has starting point the right hand copy of 0∂. Hence the appropriate notation
for P (1) is (0, h− 1) instead of (g, h− 1). To make the unambiguous, we use(

(g − 1 + 1) mod g, h− 1
)

as notation for P (i), 0 < i ≤ g.



THE U-PROJECTIVE RESOLUTION OF MODULES OVER PATH ALGEBRAS 707

Next, consider the module P (0) whose representation is as follows:

Figure 7. Representation of module P (0).

Clearly, the geometric representation of P (0) is

Figure 8. Geometric representation of P0.

which can be shortened as

Figure 9. Geometric representation of P0 (shortened).

Hence our notation for P (0) is (1, h− 1).
Now, we point out that there are many other modules whose arcs start at

1∂ and end at (h− 1)∂′. For example, consider the following arc:

Figure 10. Geometric representation of P (g) = S(g).
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Which correspond to the module P (g) = S(g), and next consider the follow-
ing arc:

Figure 11. Another geometric representative whose end-
points are 1 and h− 1.

We see from these examples that we need more information to distinguish
between these three modules. Let us add an integer in the notation that shows
how many times the arc crosses the edge 0 from right to left. If the arc crosses
in the other direction, then we put negative sign on the number. As a con-
sequence, the notation for P (0), P (g) = S(g), and the module in Figure 11
are (1, h− 1, 1), (1, h− 1, 0), and (1, h− 1, 2) respectively. Note also that the

notation for the module P (i), 0 < i ≤ g, is
(

(g − i+ 1) mod g, h− 1, 0
)

.

Given a notation of a module whose arc contains an endpoint 0, we should
not be confused by which copy of 0 should be the endpoint of the arc in the
geometric representation since we require that the arc must cross at least one
edge. As an example, consider the module denoted by (0, h− 1, 0). In this case,
the arc must be started from the right hand copy of 0∂ for if it was started
from the left hand copy of 0∂, then the whole arc will coincide with the edge
g + 1 (see Figure 4 for reference) and this is not allowed. Hence the module
corresponds with this notation is unique.

Here are the descriptions of the projective, simple, and injective kQg,h-
modules. Not first that S(0) = I(0).

Table 1. Geometric notation of projective, simple, and injec-
tive kQg,h-modules.

Module Notation

P (i), 0 < i ≤ g
(

(g − i+ 1) mod g, h− 1, 0
)

P (i), g < i ≤ n (1, n− i, 0)

S(i), 0 < i < g
(
g − i− 1, (g − i+ 1) mod g, 0

)
S(i), g < i ≤ n

(
n− i, (n− i+ 2) mod h, 0

)
I(i), 0 ≤ i < g (1, g − i− 1, 1)

I(i), g < i ≤ n
(

(n− i+ 2) mod h, g − 1, 1
)

I(g) (1, g − 1, 2)
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5. General results

In this section we describe U -projective resolutions for indecomposable mod-
ules over the algebras from Section 3 and Section 4.

5.1. Type An

We begin this section with the results for an algebra of type An with linear
orientation. We will compute resolutions for non projective indecomposable
modules.

Clearly, for every module (i, j), 1 ≤ i ≤ j − 2, we have a surjective map

(1, j)
d−→ (i, j)→ 0. Thus, we can take (1, j) to be the P0.

Now consider the submodule (i,m) of (i, j) which is given by the module
0 → · · · → 0 → K(m−2) → · · · → K(i) → 0 → · · · → 0. To find d−1 ((i,m)),
note that d =

(
dt : K(t) → K(t)

)
is described as follows:

(5.1)
0 → · · · → 0 → K(j−2) → · · · → K(i) → K(i−1) → · · · → K(1)

↓ ↓ ↓ ↓ ↓ ↓
0 → · · · → 0 → K(j−2) → · · · → K(i) → 0 → · · · → 0

Clearly, we have dt = 1k if i ≤ t ≤ j−2 and 0 otherwise. Hence, d−1 ((i,m))
is given by the module 0 → · · · → 0 → K(m−2) → · · · → K(1) whose diagonal
notation is (1,m). From this we have P1 = P2 = (1,m) = P (m− 2).

Now, from (5.1) again we can easily verify that ker d is given by the module
0 → · · · → 0 → K(i−1) → · · · → K(1) whose diagonal notation is (1, i + 1).
From this we have P3 = (1, i + 1) = P (i − 1). We state the result in the
following lemma.

Lemma 1. The (i,m)-projective resolution of (i, j) is given by:

(5.2)
0 → (1, i+ 1) → (1,m) → (1,m) → (1, j) → (i, j) → 0

↑ ↑ ↑
(1, i+ 1) (1,m) (i,m)

In the AR-quiver, the (i,m)-projective resolution of (i, j) has the following
form:

Figure 12. The U -projective resolution of M = (i, j) viewed
in the AR-quiver.
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Note again that every module (i, j) has exactly j−i−1 nonzero submodules.
Hence for a chosen i we can consider 1+2+· · ·+(n−i+1) different U -projective
resolutions with U 6= 0. Since we consider only the resolution of indecomposable
non projective modules, where i runs from 2 to n, then there are in total of

n∑
i=2

(1 + 2 + · · ·+ (n− i+ 1)) =

n∑
i=2

(n− i+ 1)(n− i+ 2)

2

=

n−1∑
l=1

l(l + 1)

2

=
1

2

(
n−1∑
l=1

l2 +

n−1∑
l=1

l

)
(5.3)

=
1

2

(
(n− 1)n(2n− 1)

6
+

(n− 1)n

2

)
=
n3 − n

6

possible U -projective resolutions we have to consider for linear oriented type
An.

For example, there are 20 different U -projective resolutions with U 6= 0 for
indecomposable non projective modules over path algebra A5. We give here
the geometric representation of 4 of them, which are the resolutions of I(2).
Recall that I(2) has exactly 4 nonzero submodules: I(2) = (2, 7), (2, 6), (2, 5),
and (2, 4) = S(2). The dotted lines in Figure 13 represent the Ui’s.

5.2. Type Ãn

We restrict the computation of the U -projective resolutions only for the
simples and for the injectives. We distinguish 2 cases: U = M and U 6= M
(always assuming U 6= 0). For the latter case, we will restrict to the situation
M = I(i) while U = S(i). Recall that the sequence will have the form (2.2).
Hence from now we will not write down the Ui’s on the sequence since U0

appears as P1 and P2, and U1 appears as P3. Further, on the case U = M we
have P0 = P1 = P2.

Lemma 2. For U 6= 0, the U -projective resolution of S(i) is given by:

(1) 0→ P (i+ 1)→ P (i)→ P (i)→ P (i)→ S(i)→ 0 if 0 < i < g, and
(2) 0→ P (i− 1)→ P (i)→ P (i)→ P (i)→ S(i)→ 0 if g < i ≤ n.

Proof. Since S(i) is simple, the only nonzero submodule of S(i) is S(i). Now
consider the map d : P (i)→ S(i) defined by

d = (d′) :=

{
1K if t = i,

0 if t 6= i.
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Figure 13. Geometric representation for U -projective reso-
lution of I(2) in type A5. From top to bottom: U = I(2),
U = (2, 6), U = (2, 5), U = S(2).

Clearly, d is a surjection whose kernel is P (i + 1) if 0 < i < g and P (i − 1) if
g < i ≤ n. The result then follows. �

Lemma 3. The I(i)-projective resolution of I(i) is given by:

(1a) 0→ P (i+ 1)⊕P (n)→ P (0)→ P (0)→ P (0)→ I(i)→ 0 if 0 ≤ i < g,
and

(1b) 0→ P (1)⊕P (i− 1)→ P (0)→ P (0)→ P (0)→ I(i)→ 0 if g < i ≤ n.
The S(i)-projective resolution of I(i) is given by:

(1a) 0→ P (i+1)⊕P (n)→ P (i)⊕P (n)→ P (i)⊕P (n)→ P (0)→ I(i)→ 0
if 0 < i < g, and

(1b) 0→ P (1)⊕P (i−1)→ P (1)⊕P (i)→ P (1)⊕P (i)→ P (0)→ I(i)→ 0
if g < i ≤ n.

Proof. We will show this only for the case 0 ≤ i < g. Consider the map
d : P (0)→ I(i) defined by

d = (d′) :=


1k, if 0 ≤ t ≤ i,
0, if i < t ≤ n, t 6= g,

02×1, if t = g.

Clearly, d is a surjection whose kernel is P (i+ 1)⊕ P (n). Hence we have (1a).
Now, for i 6= 0 we have d−1 (S(i)) = P (i)⊕P (n) . Hence (1b) holds. The other
parts can be handled similarly. �
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5.3. Geometric notation for type Ãn

Now we give the geometric notation of the results obtained in previous sub-
sections.

CASE 1: U = M

Table 2. Geometric notation for the simple case, U = M

S(i)

0 < i < g g < i ≤ n

M = U
(
g − i− 1, (g − i+ 1) mod g, 0

) (
n− i, (n− i+ 2) mod h, 0

)
P0 = P1 = P2 = U0

(
(g − i+ 1) mod g, h− 1, 0

) (
1, n− i, 0

)
P3 = U1

(
g − i, h− 1, 0

)
1,
(
n− i+ 1, 0

)

Table 3. Geometric notation for the injective case, U = M

S(i)

0 < i < g g < i ≤ n

M = U
(
1, g − i− 1, 1

) (
(n− i+ 2) mod h, g − 1, 1

)
P0 = P1 = P2 = U0

(
1, h− 1, 1

)
P3 = U1

(
g − i, h− 1, 0

)
∪
(
1, 0, 0

) (
0, h− 1, 0

)
∪
(
g − i+ 2, h− 1, 0

)

CASE 2: U 6= M

Table 4. Geometric notation for the injective case taking the
simple submodule as the submodule U in each case.

I(i)

0 < i < g g < i ≤ n

M
(
1, g − i− 1, 1

) (
(n− i+ 2) mod h, g − 1, 1

)
U = S(i)

(
g − i− 1, (g − i+ 1) mod g, 0

) (
n− i, (n− i+ 2) mod h, 0

)
P0

(
1, h− 1, 1

)
P1 = P2 = U0

(
g − i+ 1, h− 1, 0

)
∪
(
1, 0, 0

) (
0, h− 1, 0

)
∪
(
g − i+ 1, h− 1, 0

)
P3 = U1

(
g − i, h− 1, 0

)
∪
(
1, 0, 0

) (
0, h− 1, 0

)
∪
(
g − i+ 2, h− 1, 0

)



THE U-PROJECTIVE RESOLUTION OF MODULES OVER PATH ALGEBRAS 713

5.4. Resolution for I(g)

The construction of U -projective resolutions for the module I(g) is done
in different way. Let us first describe the module I(g) with Figure 3 as a
reference. This will help us to understand the maps. The module I(g) is given
by
(
K(t), α, β

)
, described as follows:

K(t) =

{
K2, if t = 0,

K, if t 6= 0,

αt =

{
(1 0), if t = n,

1K , if t 6= n,

βt =

{
(0 1), if t = 0,

1K , if t 6= 0.

Now consider the module P (0)2 =
(
K(t), α, β

)
where K(t), αt, and βt are

described as follows:

K(t) =

{
K4, if t = g,

K2, if t 6= g,

αt =

{(
I2

02×2

)
, if t = g,

I2, if t 6= g,

βt =

{(
02×2
I2

)
, if t = g − 1,

I2, if t 6= g − 1.

We can easily verify that the map P (0)2
d−→ I(g)→ 0 is defined by

d = (dt) =


I2, if t = 0,

(0 1), if 1 ≤ t < g,

(1 0 0 1), if t = g,

(1 0), if g < t ≤ n.

Then the projective module P0 of I(g) is given by P (0)2.
Now, we can easily verify that ker d is the module

(
K(t), αt, βt

)
given by the

following properties:

K(t) =


02, if t = 0,

K ⊕ 0, if 1 ≤ t < g,

〈(1, 0, 0,−1), (0, 1, 0, 0), (0, 0, 1, 0)〉 , if t = g,

0⊕K, if g < t ≤ n,
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αt =


02×2, if t = n,

E2×2
22 , if g < t < n,(
E2×2

22
02

)
, if t = g,

βt =


02×2, if t = 0,

E2×2
11 , if 1 ≤ t < g − 1,(
02

E2×2
22

)
, if t = g − 1.

Consider the module P (1)⊕P (g)⊕P (n) =
(
K(t), αt, βt

)
with the following

properties:

K(t) =


03, if t = 0,

K ⊕ 02, if 1 ≤ t < g,

K3, if t = g,

02 ⊕K, if g < t ≤ n,

αt =

{
03×3, if t = n,

E
(3×3)
33 , if g ≤ t < n,

βt =

{
03×3, if t = 0,

E
(3×3)
11 , if 1 ≤ t < g.

Now define a map ker d
ϕ−→ P (1)⊕ P (g)⊕ P (n) as follows:

ϕ =
(
ϕt : K(t) → K(t)

)
=



03×2, if t = 0,(
1 0
02×2

)
, if 1 ≤ t < g,(

0 0 1 0
1 0 0 0
0 1 0 0

)
, if t = g,(

02×2
0 1

)
, if g < t ≤ n.

(5.2)

Then ϕ is an isomorphism. Hence we may take P (1) ⊕ P (g) ⊕ P (n) as P3.
Thus, we have the following result.

Lemma 4. The I(g)-projective resolution of I(g) is given by 0→ P (1)⊕P (g)⊕
P (n)→ P (0)2 → P (0)2 → P (0)2 → I(g)→ 0.

Next, it is clear that if i 6= 0, then P (i) is a submodule of I(g). For 0 < i ≤ g,
d−1 (P (i)) =

(
K(t), αt, βt

)
is given by

K(t) =



02, if t = 0,

K ⊕ 0, if 1 ≤ t < i,

K2, if i ≤ t < g,

K4, if t = g,

0⊕K, if g < t ≤ n,



THE U-PROJECTIVE RESOLUTION OF MODULES OVER PATH ALGEBRAS 715

αt =


02×2, if t = n,

E
(2×2)
22 , if g < t < n,(
E

(2×2)
22

0(2×2)

)
, if t = g,

βt =


02×2, if t = 0,

E
(2×2)
11 , if 1 ≤ t < i,

I2, if i ≤ t < g − 1,(
02×2
I2

)
, if t = g − 1.

Now consider the module P (1) ⊕ P (i) ⊕ P (g) ⊕ P (n) =
(
K(t), αt, βt

)
with

the following properties:

K(t) =



04, if t = 0,

K ⊕ 03, if 1 ≤ t < i,

K2 ⊕ 02, if i ≤ t < g,

K4, if t = g,

0⊕K, if g < t ≤ n,

αt =


04×4, if t = n,(

02×2 02×2

02×2 E
(2×2)
22

)
, if g ≤ t < n,

βt =



04×4, if t = 0,(
E

(2×2)
11 02×2

02×2 02×2

)
, if 1 ≤ t < i,(

I2 02×2
02×2 02×2

)
, if i ≤ t < g.

Now define a map d−1 (P (i))
θ−→ P (1)⊕ P (i)⊕ P (g)⊕ P (n) as follows

θ =
(
θt : K(t) → K(t)

)
=



04×2, if t = 0,(
cE

(2×2)
11

02×2

)
, if 1 ≤ t < i,(

cI2
02×2

)
, if i ≤ t < g,(

02×2 I2
I2 02×2

)
, if t = g,(

I2
E

(2×2)
22

)
, if g < t ≤ n.

Then θ is an isomorphism. Hence we may take P (1)⊕ P (i)⊕ P (g)⊕ P (n) as
P1 and P2.
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Now, let g < i ≤ n. Then d−1 (P (i)) =
(
K(t), αt, βt

)
is given by

K(t) =



02, if t = 0,

K ⊕ 0, if 1 ≤ t < g,

K4, if t = g,

K2, if g < t ≤ i,
0⊕K, if i < t ≤ n,

αt =


02×2, if t = n,

E
(2×2)
22 , if i ≤ t < n,

I2, if g < t < i,(
cI2
02×2

)
, if t = g,

βt =


02×2, if t = 0,

E
(2×2)
11 , if 1 ≤ t < g − 1,(
c02×2

E
(2×2)
11

)
, if t = g − 1m.

Now consider the module P (1) ⊕ P (g) ⊕ P (i) ⊕ P (n) =
(
K(t), αt, βt

)
with

the following properties

K(t) =



04, if t = 0,

K ⊕ 03, if 1 ≤ t < g,

K4, if t = g,

02 ⊕K2, if g < t ≤ i,
03 ⊕K, if i < t ≤ n,

αt =



04×4, if t = n,(
02×2 02×2

02×2 E
(2×2)
22

)
, if i ≤ t < n,(

02×2 02×2
02×2 I2

)
, if g ≤ t < i,

βt =


04×4, if t = 0,(
E

(2×2)
11 02×2
02×2 02×2

)
, if 1 ≤ t < g.

Now define a map d−1 (P (i))
θ′−→ P (1)⊕ P (g)⊕ P (n) as follows

θ′ =
(
θ′t : K(t) → K(t)

)
=



04×2, if t = 0,(
E

(2×2)
11

02×2

)
, if 1 ≤ t < g,(

02×2 I2
I2 02×2

)
, if t = g,(

02×2
I2

)
, if g < t ≤ i,(

02×2

E
(2×2)
22

)
, if i < t ≤ n.

Then θ′ is an isomorphism. Hence we may take P (1)⊕ P (g)⊕ P (i)⊕ P (n) as
P1 and P2. We summarize the results for the case M = I(g) while U = P (i)
in the following lemma.



THE U-PROJECTIVE RESOLUTION OF MODULES OVER PATH ALGEBRAS 717

Lemma 5. For 0 < i ≤ n, the P (i)-projective resolution of I(g) is given by
0→ ⊕

t=1,g,n
P (t)→ ⊕

t=1,i,g,n
P (t)→ ⊕

t=1,i,g,n
P (t)→ P (0)2 → I(g)→ 0.

For the illustration, we choose the quiver Q3,2 of type Ã4 as the underliy-
ing quiver. We give here the geometric representation of the I(i)-projective
resolution of I(i). The dotted lines in Figure 14 represent the Ui’s.

Figure 14. Geometric representation for I(i)-projective res-
olution of kQ3,2-module I(i). From top to bottom: i = 0, i =
1, i = 2, i = 3, i = 4
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