• Title/Summary/Keyword: Q-algebra

Search Result 76, Processing Time 0.02 seconds

WEIGHTED PROJECTIVE LINES WITH WEIGHT PERMUTATION

  • Han, Lina;Wang, Xintian
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.1
    • /
    • pp.219-236
    • /
    • 2021
  • Let �� be a weighted projective line defined over the algebraic closure $k={\bar{\mathbb{F}}}_q$ of the finite field ��q and σ be a weight permutation of ��. By folding the category coh-�� of coherent sheaves on �� in terms of the Frobenius twist functor induced by σ, we obtain an ��q-category, denoted by coh-(��, σ; q). We then prove that coh-(��, σ; q) is derived equivalent to the valued canonical algebra associated with (��, σ).

Multinomial Probability Distribution and Quantum Deformed Algebras

  • Fridolin Melong
    • Kyungpook Mathematical Journal
    • /
    • v.63 no.3
    • /
    • pp.463-484
    • /
    • 2023
  • An examination is conducted on the multinomial coefficients derived from generalized quantum deformed algebras, and on their recurrence relations. The 𝓡(p, q)-deformed multinomial probability distribution and the negative 𝓡(p, q)-deformed multinomial probability distribution are constructed, and the recurrence relations are determined. From our general result, we deduce particular cases that correspond to quantum algebras considered in the literature.

A NOTE ON (p, q)-TH RELATIVE ORDER AND (p, q)-TH RELATIVE TYPE OF P-ADIC ENTIRE FUNCTIONS

  • Biswas, Tanmay
    • Honam Mathematical Journal
    • /
    • v.40 no.4
    • /
    • pp.621-659
    • /
    • 2018
  • Let us consider that ${\mathbb{K}}$ be a complete ultrametric algebraically closed field and A (${\mathbb{K}}$) be the ${\mathbb{K}}$-algebra of entire functions on ${\mathbb{K}}$. In this paper we introduce the notions of (p, q)-th relative order and (p, q)-th relative type of entire functions on ${\mathbb{K}}$ where p and q are any two positive integers and then study some basic properties of p-adic entire functions on the basis of their (p, q)-th relative order and (p, q)-th relative type.

Some Nonlinear Alternatives in Banach Algebras with Applications II

  • Dhage, B.C.
    • Kyungpook Mathematical Journal
    • /
    • v.45 no.2
    • /
    • pp.281-292
    • /
    • 2005
  • In this paper a nonlinear alternative of Leray-Schauder type is proved in a Banach algebra involving three operators and it is further applied to a functional nonlinear integral equation of mixed type $$x(t)=k(t,x({\mu}(t)))+[f(t,x({\theta}(t)))]\(q(t)+{\int}_0{^{\sigma}^{(t)}}v(t,s)g(s,x({\eta}\(s)))ds\)$$ for proving the existence results in Banach algebras under generalized Lipschitz and $Carath{\acute{e}}odory$ conditions.

  • PDF

EXTREME SETS OF RANK INEQUALITIES OVER BOOLEAN MATRICES AND THEIR PRESERVERS

  • Song, Seok Zun;Kang, Mun-Hwan;Jun, Young Bae
    • Communications of the Korean Mathematical Society
    • /
    • v.28 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • We consider the sets of matrix ordered pairs which satisfy extremal properties with respect to Boolean rank inequalities of matrices over nonbinary Boolean algebra. We characterize linear operators that preserve these sets of matrix ordered pairs as the form of $T(X)=PXP^T$ with some permutation matrix P.

REPRESENTATIONS OVER GREEN ALGEBRAS OF WEAK HOPF ALGEBRAS BASED ON TAFT ALGEBRAS

  • Liufeng Cao
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.6
    • /
    • pp.1687-1695
    • /
    • 2023
  • In this paper, we study the Green ring r(𝔴0n) of the weak Hopf algebra 𝔴0n based on Taft Hopf algebra Hn(q). Let R(𝔴0n) := r(𝔴0n) ⊗ ℂ be the Green algebra corresponding to the Green ring r(𝔴0n). We first determine all finite dimensional simple modules of the Green algebra R(𝔴0n), which is based on the observations of the roots of the generating relations associated with the Green ring r(𝔴0n). Then we show that the nilpotent elements in r(𝔴0n) can be written as a sum of finite dimensional indecomposable projective 𝔴0n-modules. The Jacobson radical J(r(𝔴0n)) of r(𝔴0n) is a principal ideal, and its rank equals n - 1. Furthermore, we classify all finite dimensional non-simple indecomposable R(𝔴0n)-modules. It turns out that R(𝔴0n) has n2 - n + 2 simple modules of dimension 1, and n non-simple indecomposable modules of dimension 2.

CLASSIFICATIONS OF (α, β)-FUZZY SUBALGEBRAS OF BCK/BCI-ALGEBRAS

  • Jun, Young Bae;Ahn, Sun Shin;Lee, Kyoung Ja
    • Honam Mathematical Journal
    • /
    • v.36 no.3
    • /
    • pp.623-635
    • /
    • 2014
  • Classications of (${\alpha},{\beta}$)-fuzzy subalgebras of BCK/BCI-algebras are discussed. Relations between (${\in},{\in}{\vee}q$)-fuzzy subalgebras and ($q,{\in}{\vee}q$)-fuzzy subalgebras are established. Given special sets, so called t-q-set and t-${\in}{\vee}q$-set, conditions for the t-q-set and t-${\in}{\vee}q$-set to be subalgebras are considered. The notions of $({\in},q)^{max}$-fuzzy subalgebra, $(q,{\in})^{max}$-fuzzy subalgebra and $(q,{\in}{\vee}q)^{max}$-fuzzy subalgebra are introduced. Conditions for a fuzzy set to be an $({\in},q)^{max}$-fuzzy subalgebra, a $(q,{\in})^{max}$-fuzzy subalgebra and a $(q,{\in}{\vee}q)^{max}$-fuzzy subalgebra are considered.

STABILITY OF HAHN DIFFERENCE EQUATIONS IN BANACH ALGEBRAS

  • Abdelkhaliq, Marwa M.;Hamza, Alaa E.
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.4
    • /
    • pp.1141-1158
    • /
    • 2018
  • Hahn difference operator $D_{q,{\omega}}$ which is defined by $$D_{q,{\omega}}g(t)=\{{\frac{g(gt+{\omega})-g(t)}{t(g-1)+{\omega}}},{\hfill{20}}\text{if }t{\neq}{\theta}:={\frac{\omega}{1-q}},\\g^{\prime}({\theta}),{\hfill{83}}\text{if }t={\theta}$$ received a lot of interest from many researchers due to its applications in constructing families of orthogonal polynomials and in some approximation problems. In this paper, we investigate sufficient conditions for stability of the abstract linear Hahn difference equations of the form $$D_{q,{\omega}}x(t)=A(t)x(t)+f(t),\;t{\in}I$$, and $$D^2{q,{\omega}}x(t)+A(t)D_{q,{\omega}}x(t)+R(t)x(t)=f(t),\;t{\in}I$$, where $A,R:I{\rightarrow}{\mathbb{X}}$, and $f:I{\rightarrow}{\mathbb{X}}$. Here ${\mathbb{X}}$ is a Banach algebra with a unit element e and I is an interval of ${\mathbb{R}}$ containing ${\theta}$.