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REPRESENTATIONS OVER GREEN ALGEBRAS OF WEAK

HOPF ALGEBRAS BASED ON TAFT ALGEBRAS

Liufeng Cao

Abstract. In this paper, we study the Green ring r(w0
n) of the weak

Hopf algebra w0
n based on Taft Hopf algebra Hn(q). Let R(w0

n) :=
r(w0

n)⊗Z C be the Green algebra corresponding to the Green ring r(w0
n).

We first determine all finite dimensional simple modules of the Green

algebra R(w0
n), which is based on the observations of the roots of the

generating relations associated with the Green ring r(w0
n). Then we show

that the nilpotent elements in r(w0
n) can be written as a sum of finite di-

mensional indecomposable projective w0
n-modules. The Jacobson radical

J(r(w0
n)) of r(w0

n) is a principal ideal, and its rank equals n − 1. Fur-

thermore, we classify all finite dimensional non-simple indecomposable

R(w0
n)-modules. It turns out that R(w0

n) has n2 − n+ 2 simple modules
of dimension 1, and n non-simple indecomposable modules of dimension

2.

1. Introduction

Let H be a finite dimensional (weak) Hopf algebra over C. The Green ring
r(H) (see [7]) is an abelian group generated by the isomorphism classes [V ] of
finite dimensional H-modules V modulo the relations [M ⊕ V ] = [M ] + [V ].
For any H-modules V and M , the multiplication of r(H) is given by the tensor
product, that is, [M ][V ] = [M ⊗ V ]. Then r(H) is an associative ring with
identity [C], where C is the trivialH-module. Notice that r(H) is an associative
ring with a Z-basis {[V ] |V ∈ ind(H)}, where ind(H) denotes the set of finite
dimensional indecomposable H-modules up to isomorphism.

Recently, many researches of Green rings of (weak) Hopf algebras have been
done. Chen et al. described explicitly the generators and generating relations
of the Green rings of Taft algebras in [3]. Then in [9], Li and Zhang investi-
gated the Green rings of generalized Taft algebras, and determined all finite
dimensional indecomposable modules of the corresponding Green algebras. In
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[12] and [13], Wang et al. studied the Green rings of finite dimensional pointed
rank one Hopf algebras of nilpotent type and non-nilpotent type, respectively.

In [8], Li gave a version of definition of weak Hopf algebras. Then, under
some conditions, Aizawa and Isaac classified the weak Hopf algebras corre-
sponding to Uq(sln) in [1]. In [5], Cheng and Li gave some results of a weak
Hopf algebra associated with Uq(sl2). Cheng [4] determined the structures of
weak Hopf algebras based on Sweedler’s Hopf algebra. Su and Yang in [10],
introduced two classes of weak Hopf algebras ws

n,d of type s (s = 0, 1) based

on generalized Taft Hopf algebras Hn,d(q), and described the Green rings of
them.

In this paper, the Green ring r(w0
n) of the weak Hopf algebra w0

n based on
Taft Hopf algebra Hn(q) has been studied. We describe explicitly the Jacobson
radical J(r(w0

n)) of r(w
0
n), and classify all non-isomorphic finite dimensional in-

decomposable modules over the Green algebra R(w0
n). This paper is organized

as follows. In Section 2, we recall the definitions of Taft algebra Hn(q) and the
weak Hopf algebra w0

n corresponding to Hn(q). Moreover, the classification of
finite dimensional indecomposable w0

n-modules, and the Clebsch-Gordan rules
of them will be reviewed. In Section 3, we determine all finite dimensional
simple modules over the Green algebra R(w0

n), which is based on the obser-
vation of the roots of the generating relations associated with r(w0

n). Then
the Jacobson J(r(w0

n)) of r(w
0
n) will be described. Furthermore, we classify all

finite dimensional non-simple indecomposable R(w0
n)-modules.

2. Preliminaries

Throughout this paper, the letters Z and C stand for the ring of integers
and the field of complex numbers, respectively. Unless otherwise stated, all
algebras, (weak) Hopf algebras and modules are defined over C, all modules
are left modules and finite dimensional; dim, ⊗ and Hom stand for dimC, ⊗C
and HomC, respectively.

Let q be an n-th primitive root of unity. The Taft algebra Hn(q) is generated
by two elements G and X subject to the relations (see [11]):

Gn = 1, Xn = 0, XG = qGX.

The comultiplication ∆, counit ε and the antipode S are respectively given by

∆(G) = G⊗G, ε(G) = 1, S(G) = G−1 = Gn−1,

∆(X) = X ⊗G+ 1⊗X, ε(X) = 0, S(X) = −q−1Gn−1X.

Notice that dim(Hn(q)) = n2 and {GiXj | 0 ≤ i, j ≤ n− 1} forms a C-basis for
Hn(q).

We continue to review the definition of the weak Hopf algebra w0
n, which is

the generalization of Taft algebra Hn(q). Let B0 be a bialgebras generated by
two elements g and x subject to the relations (see [2] and [6])

g = gn+1, xg = qgx, xn = 0.
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The coalgebra structure is given by

∆(g) = g ⊗ g, ε(g) = 1,

∆(x) = gn ⊗ x+ x⊗ g, ε(x) = 0,

As a bialgebra, w0
n = B0/(x−gnx), where (x−gnx) is a bi-ideal of B0 generated

by x− gnx.
Recall that a bialgebra (H,µ, η,∆, ε) is called a weak Hopf algebra if H is

equipped with a weak antipode T ∈ Hom(H,H) such that T ∗ id ∗ T = T and
id ∗T ∗ id = id, where ∗ is the convolution map in Hom(H,H). In [10], Su and
Yang proved that the map T : w0

n → w0
n defined as follows:

1 7→ 1, g 7→ gn−1, x 7→ −q−1gn−1x

is the weak antipode of w0
n. Thus, w

0
n is a weak Hopf algebra with dim(w0

n) =
n2 + 1, and the set

{gixjgn, 1− gn | 0 ≤ i, j ≤ n− 1}

forms a PBW basis for w0
n. Moreover, w0

n/(1− gn) = Hn(q) as Hopf algebras
(see [10, Proposition 3.4]).

In the following, we list all non-isomorphic indecomposable w0
n-modules,

which was studied in [10].
M(l, i) (0 ≤ l ≤ n− 1, i ∈ Zn): Let M(l, i) be a C-vector space with a basis

{v(i)0 , . . . , v
(i)
l }. The action of w0

n on M(l, i) is given by

g · v(i)j = qi−jv
(i)
j , 0 ≤ j ≤ l,

x · v(i)j =

{
v
(i)
j+1, 0 ≤ j ≤ l − 1,

0, j = l.

It is noted that M(l, i) is simple if and only if l = 0, and M(l, i) is projective
if and only if l = n− 1.

N : It is a 1-dimensional vector space (N = C as vector spaces), and the
action of w0

n on N is determined by

g · 1 = x · 1 = 0.

Notice that N is simple and projective.
The set {M(l, i), N | 0 ≤ l ≤ n − 1, i ∈ Zn} forms a complete set of non-

isomorphic indecomposable modules over w0
n (see [10, Proposition 4.1]).

The decomposition formulas of the tensor product of two indecomposable
w0

n-modules are listed as follows (see [10, Theorem 4.2]).
Let 0 ≤ u, v, l ≤ n− 1 and i, j ∈ Zn. Then as w0

n-modules, we have
1. (a) If u+ v ≤ n− 1, then

M(u, i)⊗M(v, j) ∼= M(v, j)⊗M(u, i) ∼=
min{u,v}⊕

k=0

M(u+ v − 2k, i+ j − k).
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(b) If u+ v ≥ n, set t = u+ v − (n− 1), then

M(u, i)⊗M(v, j)

∼= M(v, j)⊗M(u, i)

∼=
t⊕

k=0

M(n− 1, i+ j − k)⊕
min{u,v}⊕
k=t+1

M(u+ v − 2k, i+ j − k).

2. M(l, i)⊗N ∼= N ⊗M(l, i) ∼= N ⊕ · · · ⊕N︸ ︷︷ ︸
l+1 copies

.

3. N ⊗N ∼= N .
Let Ft(y, z) be a kind of generalized Fibonacci polynomial defined by

Ft+2(y, z) = zFt+1(y, z)− yFt(y, z)

for t ≥ 0, while F0(y, z) = 0, F1(y, z) = 1. The generalized Fibonacci polyno-
mial Ft(y, z) has the following general form:

Ft(y, z) =

[ t−1
2 ]∑

i=0

(−1)i
(
t− 1− i

i

)
yizt−1−2i,

where
[
t−1
2

]
denotes the biggest integer which is not bigger than t−1

2 .

It is easy to see that the Green ring r(w0
n) is commutative. Furthermore, it

follows from [10, Theorem 5.5] that r(w0
n)

∼= Z[x, y, z]/I as a ring isomorphism,
where I is the ideal generated by the relations

xn − 1, (y − x− 1)Fn(x, y), xz − z, yz − 2z, z2 − z.

3. The representation theory of R(w0
n)

The aim of this section is to classify all indecomposable modules over the
Green algebra R(w0

n) = r(w0
n)⊗Z C up to isomorphism.

By Section 2, we know that r(w0
n) is commutative, and r(w0

n)
∼= Z[x, y, z]/

(xn − 1, (y − x− 1)Fn(x, y), xz − z, yz − 2z, z2 − z). We first consider all non-
isomorphic simple modules over R(w0

n), which is closely related to the solutions
of the following system of equations in C

(3.1)


xn − 1 = 0,
(y − x− 1)Fn(x, y) = 0,
xz − z = 0,
yz − 2z = 0,
z2 − z = 0.

Thanks to the work in [9], we can easily obtain the solutions of the system
(3.1). In [9], the authors considered the solutions of the following system of
equations in C:

(3.2)

{
xn − 1 = 0,
(y − x− 1)Fn(x, y) = 0.
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It turns out that when n ≥ 2, the system (3.2) has n2−n+1 distinct solutions
given by

Φ = {(1, 2)} ∪ {(ωk, σk,j) | 0 ≤ k ≤ n− 1, 1 ≤ j ≤ n− 1},

where ωk = cos 2kπn + isin 2kπ
n is an n-th root of unity in C, and σk,j =

2
√
ωkcos

jπ
n , 1 ≤ j ≤ n− 1 (see [9, Lemma 4.4]).

Proposition 3.1. The system of equations (3.1) has n2−n+2 distinct solutions
in C, which are determined by

Ω = {(1, 2, 0), (1, 2, 1)} ∪ {(ωk, σk,j , 0) | 0 ≤ k ≤ n− 1, 1 ≤ j ≤ n− 1}.

Proof. It follows from a straightforward verification. □

Since the Green algebra R(w0
n) is commutative, each simple R(w0

n)-module
over C is 1-dimensional. Proposition 3.1 states that the system (3.1) has n2 −
n + 2 distinct solutions given by Ω. For each solution ω = (α, β, γ) ∈ Ω, one
can define a simple R(w0

n)-module Cα,β,γ on the vector space C by x · 1 = α,
y · 1 = β and z · 1 = γ.

It is clear that ω 7→ Cω (ω ∈ Ω) gives a one to one correspondence between
the set of solutions for the system (3.1) and the set of the isomorphism classes
of simple R(w0

n)-modules. Hence one gets the following result.

Proposition 3.2. The set {Cω |ω ∈ Ω} forms a complete set of non-isomorphic
simple modules over R(w0

n).

Proof. It follows from Proposition 3.1. □

Theorem 3.3. The Jacobson radical J(r(w0
n)) of r(w

0
n) (n ≥ 2) has a Z-basis

{[M(n− 1, i)]− [M(n− 1, i+ 1)] | 0 ≤ i ≤ n− 2}.

Proof. On one hand, for each 0 ≤ i ≤ n − 2, it is easy to check that ([M(n −
1, i)]− [M(n−1, i+1)])2 = 0, which implies that [M(n−1, i)]− [M(n−1, i+1)]
is an nilpotent element. Hence [M(n− 1, i)]− [M(n− 1, i+1)] ∈ J(r(w0

n)) for
each 0 ≤ i ≤ n−2. On the other hand, by Wedderburn-Artin Theorem, one can
easily know that the dimension of J(r(w0

n))⊗Z C dim(J(r(w0
n))) = (n2 + 1)−

(n2−n+2) = n−1. The C-linear independence of [M(n−1, i)]−[M(n−1, i+1)],
0 ≤ i ≤ n− 2, is obvious. Thus, the proof is completed. □

Corollary 3.4. The Jacobson radical J(r(w0
n)) is a principal ideal of r(w0

n)
generated by the element [M(n− 1, 0)]− [M(n− 1, 1)].

Proof. For any 0 ≤ i ≤ n− 2, we have

[M(n− 1, i)]− [M(n− 1, i+ 1)] = [M(0, i)]([M(n− 1, 0)]− [M(n− 1, 1)]).

Notice that [M(0, i)] is invertible in r(w0
n). Hence, we complete the proof. □
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In the sequel, we will classify all non-isomorphic non-simple indecomposable
R(w0

n)-modules. Recall that for each 0 ≤ k ≤ n − 1, ωk = cos 2kπn + isin 2kπ
n

given in Proposition 3.1 is an n-th root of unity. Let V (k) be a 2-dimensional
C-vector space with a basis {v1, v2}. Define the action of R(w0

n) on V (k) as
follows:

x · vi = ωkvi, y · v1 = (1 + ωk)v1, y · v2 = v1 + (1 + ωk)v2, z · vi = 0.

Lemma 3.5. Let 0 ≤ k ≤ n − 1. Then V (k) is a non-simple indecomposable
module of R(w0

n). Furthermore, V (k) ∼= V (t) if and only if k = t.

Proof. It is easy to check that V (k) is a module of R(w0
n). By y ·v1 = (1+ωk)v1

and y ·v2 = v1+(1+ωk)v2, the action of y corresponds to the following Jordan
block matrix (

1 + ωk 1
0 1 + ωk

)
.

Hence V (k) is indecomposable. Note that Cv1 ∼= Cωk,1+ωk,0, which follows that
V (k) is reducible by Proposition 3.1. The rest of the proof is straightforward.

□

In the following, we will show that V (k) (0 ≤ k ≤ n − 1) are all non-
isomorphic non-simple indecomposable modules over R(w0

n).

Theorem 3.6. Let V be a non-simple indecomposable R(w0
n)-module. Then

there exists k, 0 ≤ k ≤ n− 1, such that V ∼= V (k).

Proof. We first show dim(V ) = 2. Assume that the dimension of V is greater
than 2. By the commutativity of the generators x, y and z, xn = 1 and z2 = z,
there exists a basis {v1, v2, . . . , vt} (t > 2) of V such that the matrices X and
Z corresponding to the actions of x and z on V are diagonal, and the matrix
Y corresponding to the action of y on V is Jordan type, respectively. It is easy
to see that Y is a Jordan block matrix, otherwise, V is not indecomposable.
Suppose that

X =


x1

x2

. . .

xt−1

xt

 , Y =


y 1

y 1
. . .

. . .

y 1
y

 .

By a straightforward computation, we get

XY =


x1

x2

. . .

xt−1

xt




y 1

y 1
. . .

. . .

y 1
y
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=



x1y x1

x2y x2

. . .
. . .

xt−1y xt−1

xty


,

and

Y X =


y 1

y 1
. . .

. . .

y 1
y




x1

x2

. . .

xt−1

xt



=


x1y x2

x2y x3

. . .
. . .

xt−1y xt

xty

 .

Since xy = yx, one can easily get that x1 = x2 = · · · = xt, i.e., X = ωkEt,
where 0 ≤ k ≤ n− 1 and Et is the t× t identity matrix.

Note that the matrix Y must satisfy the following matrix equation

(Y − (1 + ωk)Et)

n−1∏
j=1

(Y − σk,jEt) = 0,

where {σk,j | 1 ≤ j ≤ n − 1} is the set of roots of the generalized Fibonacci
polynomial Fn(ωk, y).

Since the matrix Y − σk,jEt is a Jordan block for each 1 ≤ j ≤ n − 1,
Y − σk,jEt is invertible if y ̸= σk,j . Furthermore, σk,j for 1 ≤ j ≤ n − 1 are
distinct and σk,k = 1+ ωk. It follows that t = 2, ωk ̸= 1 and y = 1+ ωk. Now,
we already get that X = ωkE2, E2 is the 2× 2 identity matrix, and

Y =

(
1 + ωk 1

0 1 + ωk

)
.

Since the matrix Z is diagonal and Z2 = Z, we only need to consider the
following four conditions:(

0 0
0 0

)
,

(
1 0
0 1

)
,

(
1 0
0 0

)
,

(
0 0
0 1

)
.

Note that(
1 + ωk 1

0 1 + ωk

)(
1 0
0 1

)
=

(
1 + ωk 1

0 1 + ωk

)
̸= 2

(
1 0
0 1

)
,

which is contrary with yz = 2z.
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And (
1 + ωk 1

0 1 + ωk

)(
1 0
0 0

)
=

(
1 + ωk 0

0 0

)
,(

1 0
0 0

)(
1 + ωk 1

0 1 + ωk

)
=

(
1 + ωk 1

0 0

)
,(

1 + ωk 1
0 1 + ωk

)(
0 0
0 1

)
=

(
0 1
0 1 + ωk

)
,(

0 0
0 1

)(
1 + ωk 1

0 1 + ωk

)
=

(
0 0
0 1 + ωk

)
,

which contradict with yz = zy. Hence

Z =

(
0 0
0 0

)
.

Thus, the proof is completed. □

Corollary 3.7. The set {V (k) | 0 ≤ k ≤ n − 1} forms a complete set of non-
simple indecomposable R(w0

n)-modules up to isomorphism.

Corollary 3.8. The set {Cω, V (k) |ω ∈ Ω, 0 ≤ k ≤ n − 1} forms a complete
set of non-isomorphic indecomposable modules of R(w0

n).
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