On algebras which resembles the Iocal Weyl algebra $\hat{D}_{n}(K)$

By C.W. Han, M. Miyanishi and D.Q. Zhang

Let K be an algebraically closed field of characteristic zero and let $\hat{Q}_n(K) = k[[x_1, \dots, x_n]]$ be the formal power series ring over K in n veriables. According to Björk [1], we denote by $\hat{D}_n(K)$ the subring of $\operatorname{End}_{K}(\hat{Q}_{n}(K))$ generated over K by the left multiplications by elements of $\hat{Q}n(K)$ and partial differentials $\partial_t = \frac{\partial}{\partial K}$

$$\hat{D}_{n}(K) = \hat{Q}_{n}(K) \langle \mathfrak{p}_{1}, \cdots, \mathfrak{p}_{n} \rangle.$$

where $\partial_1 x_1 - x_2 \partial_1 = \delta_1$ (Kronecker's delta) and $\partial_1 \partial_2 = \partial_1 \partial_1$. The ring $\hat{D}_a(K)$ has the Σ -filtration $\{\Sigma_v\}_{v\geq 0}$ such that $\Sigma_0 = \hat{Q}_0(K)$ and $\Sigma_v = \{\Sigma_u \ f_u \in \hat{Q}_u\}$ (K) and $\vartheta^{\alpha} = \vartheta_{1}^{\alpha_{1}} \dots \vartheta_{n}^{\alpha_{n}}$ with $|\alpha| = \alpha_{1} + \dots + \alpha_{n} \leq v$ and that the associated graded ring $gr_t(\hat{D}_n(K))$ is a polynomial ring over $\hat{Q}_n(K)$ in n variables. Moreover, $\hat{D}_n(K)$ has weak global dimension n. i.e., w.gl. dim $(\hat{D}_n(K)) = n$.

In the present article, we consider whether or not these conditions are sufficient to characterize the ring $\hat{D}_{a}(K)$.

2. Structure theorems

To simplify the notations, we denote $\hat{Q}_{0}(K)$ by R. let A be a (not necessarily commutative) ring finitely generated over R. Consider the following three conditions on A:

(i) A has a Σ -filtration $\{\Sigma_{v}\}_{v \ge 0}$ such that $\Sigma_{0} = R$, Σ_{1} generates

A over R, $\Sigma_v \cdot \Sigma_w \subset \Sigma_{v+w}$ for any $v, w \ge 0$ and $A = \bigcup_{v \ge 0} \Sigma_v$; (ii) The associated graded ring $g_{\Sigma}^{\mathsf{r}}(A) = \bigoplus_{v \ge 0} \Sigma_v / \Sigma_{v+1}$ is a polynomial

Received October 17,1989

ring $R[y_1, \dots, y_m]$ in m variables;

(iii) w.gl.dim(A) = n.

If A satisfies the above conditions (i) and (ii), we call it a pre-Walgebra over R. We denote by L the free R-module $\Sigma_1 / \Sigma_0 = \bigoplus_{i=1}^{m} Ry_i$.

Lemma 2.1. Let A be a pre-w-algebra over R. Then we have the following:

(1) Let Y_1, \dots, Y_m be elements of Σ_1 such that $y_i \equiv Y_i \mod \Sigma_0$ for any i. Then A is generated by Y_1, \dots, Y_m over R, which we write as $A = R \langle Y_1, \dots, Y_m \rangle$.

(2) For any $y \in L$ and $a \in R$, define y[a] by

$$y[a] = Ya - aY$$

for $Y \in \Sigma_1$ with $y \equiv Y \pmod{\Sigma_0}$. Then y[a] is independent of the choice of Y, and y is considered as a K-derivation on R. So, we have an R-linear map $\rho: L \rightarrow Der_{K}(R)$; we write y[a] as $\rho(y)(a)$ as well.

(3) Define a bracket product [y,z] on L by

 $[y,z] \equiv YZ - ZY \pmod{\Sigma_0}$

for $Y,Z \in \Sigma_1$ with $y \equiv Y \pmod{\Sigma_0}$ and $z \equiv Z \pmod{\Sigma_0}$. Then [y,z] is welldefined and ρ is a Lie-algebra homomorphism, i.e., $\rho([y,z]) = [\rho(y),\rho(z)]$.

Proof. (1) For and $f \in A$, we define v(f) as the smallest integer r with $f \in \Sigma_r$. If v(f) = r, there exists $F_r(y_1, \dots, y_m) \in R[y_1, \dots, y_m] =$ the r-th homogeneous part of $g_{\Sigma}^r(A)$ such that $f = F_r(Y_1, \dots, Y_m) \in \Sigma_{r-1}$. By induction on v(f), we can verify the assertion straightforwardly.

(2) Replace Y by Y+b with $b \in \mathbb{R}$. Then we have

$$(Y+b)a-a(Y+b)=Ya-aY$$
,

whence Y[a] is independent of the choice of Y. Furthermore, we have

$$y[ab] = Y(ab) - (ab)Y = (aY + y[a])b - abY$$

=abY+ay[b]+y[a]b-abY=ay[b]+y[a]b.

So, y[] is a K-derivation on R.

(3) The assertion can be verified by a straightforward computation. Q.E.D.

The structure of a pre-W-algebra over R is given in the follo-

wing:

Theorem 2.2. (1) Let A be a pre-w-algebra over R. Let Y_1, \dots, Y_m be elements of Σ_1 as chosen in the previous lemma. Write

(2.0)
$$Y_{i}Y_{j} - Y_{i}Y_{i} = \sum_{k=1}^{m} \rho_{ijk} Y_{k} + \sigma_{ij}, \quad 1 \leq i, j \leq m,$$

were $\rho_{\mu} \circ \sigma_{\mu} \in \mathbb{R}$. Then we have the following equalities:

$$(2.1) \quad \sum_{\ell=1}^{m} (\rho_{i,\epsilon}\rho_{\ell k,s} + \rho_{jk,\ell}\rho_{\ell i,s} + \rho_{k_i,\ell}\rho_{\ell_{j,s}}) \\ = y_i [\rho_{jk,s}] + y_j [\rho_{k_i,s}] + y_k [\rho_{i,s}], \quad 1 \le i, j, k, s \le m.$$

$$\begin{array}{ll} (2.2) \quad \sum\limits_{\ell=1}^{m} (\rho_{u,\ell} \ \sigma_{\ell K} + \ \rho_{jk,\ell} \ \sigma_{i_1} + \rho_{k_1,\ell} \sigma_{\ell_1}) \\ \quad = y_i [\sigma_{jk}] + y_j [\sigma_{i_1}] + y_k [\sigma_{i_2}], \quad 1 \leq i, j, k \leq m. \end{array}$$

(2.3)
$$\rho_{u,k} = -\rho_{u,k}, \quad \sigma_u = -\sigma_{u} \leq i, j, k \leq m.$$

The elements $\{\rho_{uk}; 1 \leq i, j, k \leq m\}$ are determined uniquely by the Lie algebra L and the choice of R-free basis $\{y_1, \dots, y_m\}$ of L.

(2) Suppose we are given as in Lemma 2.1. the Lie algebra L and an R-Linear map $\rho: L \rightarrow Der_k R$ which is a Lie-algebra hmomorphism. For an R-free basis $\{y_1, \dots, y_m\}$ of L, suppose we are given elements $\{\sigma_{i}: 1 \leq i, j \leq m\}$ satisfying the conditions (2.2) and (2.3) above. Then there exists an R-algebra A with a Σ -filtration $\{\Sigma_{v}\}_{v\geq 0}$ such that

- (i) A is generated over R by elements Y_{i_1}, \dots, Y_{i_m} ;
- (ii) The equalities (2.0)~(2.3) hold; (iii) $\Sigma_{v} = \{\Sigma_{\alpha} f_{\alpha} Y^{\alpha}; f_{\alpha} \in \mathbb{R}, Y_{\alpha} = Y_{1}^{\alpha_{1}} Y_{m}^{\alpha_{m}}, |\alpha| \leq v\}$ for any $v \geq 0$;
- (iv) $\operatorname{gr}_{\Sigma}(A) \simeq \mathbb{R}[y_1, \cdots, y_m]$: = the symmetric algebra of L over R.

Proof. (1) By the definition of $[y_{i},y_{i}]$ in Lemma 2.1, $\{\rho_{uk}; 1 \le i\}$ $j, k \leq m$ are the multiplication constants of the Lie algebra L. Hence they are uniquely determined by the choice of the R-free basis {y,...y_h} of L. if one chooses $\{y_1, \dots, Y_m\}$ as in Lemma 2.1, then $\{1, Y_1, \dots, Y_m\}$ is an R-free basis of Σ_i . Then the equalities (2.1) and (2.2) follow from the Jacobi identity:

$$[Y_{i},Y_{j}],Y_{k}] + [[Y_{i},Y_{k}],Y_{i}] + [[y_{k},Y_{i}],Y_{j}] = 0,$$

where $[Y_i,Y_i] = Y_iY_i - Y_iY_i$.

(2) Let $\{Y_1, \dots, Y_m\}$ be indeterminates and let A be the free R-algebra generated by Y_1, \dots, Y_m modulo the two-sided ideal I generated by

$$\{Y_iY_j - Y_jY_i - \sum_{k=1}^m r_{ijk}Y_k - \sigma_{ij}; 1 \le i, j, k \le m\}$$
 and

 $\{Y_i f = fY_i = \rho(y_i)(f) ; 1 \le i \le m, \forall f \in R\}.$

We write $y_{i}[f] = \rho(y_{i})(f)$ by identifying Y_{i} 's with y_{i} 's in L. We can employ the proof of the Poincare-Birkoff-Witt theorem (cf. Jacobson [2]) without major changes in the present situation to show that every element of A is written uniquely as a linear combination of standard monomials in Y_{i}, \dots, Y_{m} with coefficients in R. In particular, the equalities (2.1) and (2.2) imply that Σ_{1} (with the notation in (iii)) is a free R-module generated by $1, Y_{1}, \dots, Y_{m}$. Note that there is a surjective homomorphism $\theta : \mathbb{R}[Y_{1}, \dots, Y_{m}] \rightarrow \operatorname{gr}_{\Sigma}(A)$. Its kernel is generated by the relations $y_{i}y_{j} - y_{i}y_{i}$ and $y_{i}f - fy_{i}$, $1 \leq i, j \leq m$. But these elements are already zero in $\mathbb{R}[.Y_{1}, \dots, Y_{m}]$. Hence $g_{\Sigma}^{r}(A) \simeq \mathbb{R}[y_{1}, \dots, y_{m}]$.

Let A be a pre-W-algebra over R. We are interested in the existence of an R-algebra homomorphism from A to the local Weyl algebra $\hat{D}_n(K)$.

Theorem 2.3. Let A be a pre-W-algebra over R, Then the following conditions on A are equivalent:

(1) There is an R-algebra homomorphism $\overline{\pi}: A \rightarrow \widehat{D}_{n}(K)$ such that $\widetilde{\rho}(\Sigma_{v})$ $\uparrow \Sigma_{v}$ for all $v \ge 0$ and $\widetilde{\rho} \mid \Sigma_{v}$ induces the Lie-algebra homomorphism $\rho : L : = \Sigma_{1} / \Sigma_{0} \rightarrow \text{Der}_{k}(R)$.

(2) There exists a lifting $\{Y_1, \dots, Y_m\}$ of the R-free basis $\{y_1, \dots, y_m\}$ in Σ_1 for which $\sigma_n = 0, 1 \le i, j \le m$.

(3) There exist $\{a_i\}_{1 \leq i \leq m}$ in R such that (2.4) $\sigma_{ij} = \sum_{\ell=1}^{m} \rho_{ij\ell} a_\ell + y_i [a_i] - y_i [a_j], 1 \leq i, j \leq m.$ (4) There exists an R-free submodule L of Σ_1 such that L is closed under the bracket product [Y,Z] = YZ - ZY and the natural residue homomorphism $\pi \mid \tilde{L} \quad \tilde{L} \longrightarrow L$.

Proof (1) \rightarrow (1). Note that $\hat{D}_n(K)$ acts on R in the natural fashion. So, A acts on R via the homomorphism $\tilde{\rho}$. For $Y \in \Sigma_i$, let $a = \tilde{\rho}(Y) \cdot 1$ and let Y' = Y - a. Then, since $\tilde{\rho}(Y) \in \Sigma_1 := \bigoplus_{i=1}^n R \xrightarrow{\partial}_{\partial X_i} + R$, we know that $\tilde{\rho}(Y') \in \text{Der}_K(R)$. In particular, $\tilde{\rho}(Y') \cdot 1 = 0$. Now, for the given lifting $\{Y_{1,}, \cdots, Y_m\}$, we set $Y_i = Y_i - \tilde{\pi}(Y_i) \cdot 1$, $1 \le i \le m$. Then $\{Y_0, \cdots, Y_m\}$ is a lifting of $\{Y_1, \cdots, y_m\}$ in Σ_i . We assume from the beginning that $Y_i = Y_i$, $1 \le i \le m$. Then the equality (2.0) implies $\sigma_{ij} = 0$ (17 $\le i, j \le m$) because $\tilde{\rho}(Y_i) \in \text{Der}_K(R)$.

(2) \rightarrow (3). Suppose $\{Y_1, \dots, Y_m\}$ is the given lifting of $\{y_1, \dots, y_m\}$ and $\{Y_1, \dots, Y_m\}$ is a lifting for which $\sigma_u = 0$ when we write

(2.0)
$$Y_{i}Y_{j} - Y_{j}Y_{i} = \sum_{k=1}^{m} r_{i,k}Y_{k} + \sigma_{i,k} \quad 1 \leq i, j \leq m.$$

Then $Y_1 = Y_1 + a_1$, with $a_1 \in \mathbb{R}$. Replacing Y₁ in (2.0)' by this expression, we obtain the equality (2.4).

 $(3)\rightarrow(2)$. Conversely, if we are given $\{a_i\}_{1\leq i\leq m}$ satisfying (2.4), set $Y_i=Y_i+a$. Then $\{Y_i,\dots,Y_m\}$ is a lifting of $\{y_1,\dots,y_m\}$ for which $\sigma_q=0$. (2) $\rightarrow(4)$. Let $\{Y_1,\dots,Y_m\}$ be as in (2) above. Let Libe the R-submodule of Σ_1 generated by Y_1,\dots,Y_m . Then Lis a free R-module. Since $\sigma_{u=0}$, we readily verify that $[Y,Z]\in L$ for any $Y,Z\in L$ Clearly, π induces an isomorphism between L and L.

(4) \rightarrow (1). Define $\tilde{\rho}$ $\tilde{L} \rightarrow Der_{R}(R)$ by $\tilde{\rho}(Y) = \rho(\pi(y))$. Extend this to Σ_{1} in a natural fashion by putting $\tilde{\rho}|_{\Sigma_{0}} = id_{R}$. Furthermore, we extend $\tilde{\rho}$ to the free R-algebra F generated by Y_{1}, \dots, Y_{m} as follows. For an element $Y_{i_{1}}f_{1}\cdots Y_{i_{n}}f_{i_{n}}$ of F with $Y_{i_{n}} \in \{Y_{1},\dots,Y_{m}\}$ and $f_{i_{n}} \in \mathbb{R}$, define

$$Y_{i_{1}i_{1}}\cdots Y_{i_{r}i_{r}i_{r}}(a) = y_{i_{r}}[f_{i_{1}}[y_{i_{2}}[f_{i_{2}}[\cdots [f_{i_{r}}(a)]\cdots]]]],$$

where $y_{i_{1}} = \pi(Y_{i_{1}})$ and $f[b] := fb \in \mathbb{R}$. In view of (2) of Theorem 2.2,

A is identified with the residue ring of F by the two-sided ideal I considered in Theorem 2.2. So, in order to have $\tilde{\rho}$ as above, we have only to show that

$$Y_{j}[y_{j}[a]] - y_{j}[y_{i}[a]] = \sum_{k=1}^{m} \rho_{g,k} y_{k}[a]$$
 and
 $y_{i}[fa] = fy_{i}[a] + y_{i}[f]a$

for $a \in \mathbb{R}$. These equations hold, in fact, because $\rho : L \rightarrow Der_{\kappa}(\mathbb{R})$ being a Lie-algebra homomorphism implies

$$y_i[y_i[a]] - y_i[y_i[a]] = [y_i, y_i][a] = \sum_{k=1}^{m} \rho_{ik} y_k[a]$$

and the second equality above.

Q.E.D.

If a pre-W-algebra A over R satisfies one of the equivalent conditions in Theorem 2.3, we call A a W-algebra over R.

Remark 2.4 (1) Suppose that $\rho: L \rightarrow Der_k(R)$ is an isomorphism. Then, as an R-free basis $\{y_1, \dots, y_m\}$ of L, we can take $y_i = \rho^{-1}(\frac{\vartheta}{\vartheta x_i})$. Then $\rho_{ijk} = 0$ for all $1 \le i, j, k \le m$. So the case with all $\rho_{ijk} = 0$ can take place. We then say that L is essentially abelian.

(2) Suppose L is essentially abelian. Let $\{y_1, \dots, y_m\}$ be an R-free basis of L such that $[y_i, y_j] = 0, 1 \le i, j \le m$ and let $\{y_i, \dots, Y_m\}$ be such that $y_i \equiv Y_i \pmod{\Sigma_0}$ and $Y_i Y_j - Y_j Y_i = c_i \in K^* = K^-(0)$ for $1 \le i, j \le m$ i $\neq j$. Suppose that $\rho(y_i)(M) \in m$, where \in is the maximal ideal of R. Then we cannot find $\{a_i\}_{1 \le i \le m}$ so that the equallity (2.4) holds. there exists an R-algebra A satisfying these conditions. In fact, we can take A to be the residue ring of an R-free algebra F generated by Y_1, \dots, Y_m modulo the two-sided ideal I as considered in Theorem 2.2,(2). Then ρ cannot be extended to an R-algebra homomorphism $\tilde{\rho}: A \rightarrow \tilde{D}_n(K)$ as considered in Theorem 2.3.

182

3. Case L is essentially abelian

we begin with the following:

Lemma 3.1. Let A be a W-algebra over R with an R-algebra homomorphism $\tilde{\rho}$: A \rightarrow $\hat{D}^{*}(K)$ which is an extension of the Lie-algebra homomorphism ρ : L \rightarrow Der_k(R). Then we have w.gl.dim(A) \geq n.

Proof. Note that any element ξ of A can be expressed as $\xi = \Sigma_{\alpha} f_{\alpha} y^{\alpha}$, where $f_{\alpha} \in \mathbb{R}$ and $Y_{\alpha} = Y_{1}^{\alpha_{1}} \cdots Y_{m}^{\alpha_{m}}$ (cf. the equality Ya - aY = y[a] in Lemma 2.1). Furthermore, this expression is unique. Indeed, if we have a nontrivial expression $\Sigma_{\alpha} f_{\alpha} Y^{\alpha} = 0$ then this yields a homogeneous nontrivial relation

$$\sum_{\substack{\alpha \mid = v}} f_{\alpha} y^{\alpha} = 0, \quad y^{\alpha} = y_{1}^{\alpha_{1}} \cdots y_{m}^{\alpha_{m}},$$

where $v = \max\{ | \alpha| ; f_{\alpha \neq 0} \}$. This contradicts the hypothesis that $gr_{\Sigma}(A)$ is a polynomial ring in y_{i_1}, \dots, y_m over R. Hence A is a free R-module, whence A is R-flat as a left R-module. Similarly, ξ can be expressed uniquely as $\xi = \Sigma_{\beta} y^{\beta} g_{\beta}$ So, a is R-flat as a right R-module. Hence A is R-flat as a ring. In view of Björk [1; Cor. 2.9, p.42], we have

(*)
$$w.\dim_{\mathbb{R}}(A \bigotimes_{\mathbb{R}} M) \leq w.\dim_{\mathbb{A}}(A \bigotimes_{\mathbb{R}} M)$$

for any left R-module M. Take an R-module K=R/. with $.=(x_1,\dots,x_n)R$. Then, by the theory of syzyzy, we know that w.dim_R(K)=n; in fact, Tor^R(K,K)=K \neq (0). Then the above inequality (*) implies that w.dim_A (A \otimes K) \geq n. Hence w.gl.dim(A) \geq n. Q.E.D.

We shall be concerned with the condition w.gl.dim(A) = n for a W-algebra over R.

Theorem 3.2. Let A be a W-algebra over R with an R-algebra

homomorphism $\tilde{\rho}: A \rightarrow \hat{D}_n(K)$. Suppose that L is essentially abelian and A has w.gl.dim(A)=n. Then $\tilde{\rho}$ is an injection.

Proof. Let $\tilde{\rho}_i = \tilde{\rho} | L$, where L is an R-free submodule of Σ_i isomorphic to L as a Lie algebra (cf. Theorem 2.3). Then there exists an Rfree basis $\{Y_1, \dots, Y_m\}$ of L such that $Y_i Y_i = jY_i Y_i$ for $1 \le i, j \le m$. Let $\tilde{L} = \bigoplus KY_i$ and let $Q = Ker(\tilde{\rho}_i | L_0)$. Then $\tilde{L}_0 \simeq Q \subset \tilde{\rho}_i(\tilde{L})$ is a direct sum as Lie algebras and Q is contained in the center of A. Let B be the R-subalgebra generated of $\hat{D}_n(K)$ by $\tilde{\rho}_i(\tilde{L})$ and let J be the twosided ideal of A generated by Q. Then $B \simeq A/J$ and B is a W-algebra over R. Indeed, we may take $\{Y_{i_1}, \dots, Y_m\}$ so that $\{Y_{r+1_i}, \dots, Y_m\}$ is a Kbasis of Q. Let $Y_i = \tilde{\rho}_i(Y_i)$, $1 \le i \le r$. Then B is generated by Y_{i_1}, \dots, Y_r over R which act on R via the derivations $\delta_i = y_i [$], $1 \le i \le r$ Note—that $\{Y_{i_1}, \dots, Y_r\}$ are linearly independent over R. We claim :

Lemma 3.3. $\{\delta_1, \dots, \delta_r\}$ are algebraically independent over R. Namely, if $\sum_{\gamma} f_{\tau} \delta^{\gamma} = 0$ with $f_{\gamma} \in \mathbb{R}$ and $\delta^{\gamma} = \delta_1^{\gamma_1} \dots \delta_r^{\gamma_r}$ then $f_{\rho} = 0$ for all γ .

Proof. Denote by Q(R) the quotient field of R. We can find $\triangle_{2_i} \cdots \triangle_r \in \bigoplus_{i=1}^{r} \mathbb{R}_{\delta_i}$ satisfying the following conditions:

(1) $\bigoplus_{i=1}^{k} Q(R) \delta_i = \bigoplus_{i=1}^{k} Q(A) \Delta_i$;

(2) if we express $\triangle_{i} = \sum_{j=1}^{n} a_{q} a_{j}$ with $a_{q} \in \mathbb{R}$ and $a_{j} = \frac{\partial}{\partial x_{j}}$ and define s, $\min\{j : a_{q} \neq 0\}$ then $s_{1} < s_{2} < \cdots < s_{r}$. Suppose we have a nontrivial relation $\sum f_{r}\delta^{\gamma}=0$. Let $v = \max\{|\gamma| : f_{r} \neq 0\}$. Expressing δ_{i} as a Q(R)-linear combinations of \triangle_{j} 's and substituting it for δ_{i} in $\sum f_{r}\delta^{\gamma}=0$, we obtain a nontrivial relation $\sum g_{r}\Delta^{\gamma}=0$ with $\max\{|\gamma| : g_{r} \neq 0\}=v$. Expressing then \triangle_{γ} in terms of $\vartheta^{\beta}=\vartheta_{1}^{\beta_{1}}\cdots \vartheta_{n}^{\beta_{n}}$, we obtain

(*)
$$\sum_{|\gamma|=\nu} (g_{\gamma} \prod_{i=1}^{r} (a_{is_i})^{\gamma_i}) \hat{\sigma^{\gamma}} + \dots = 0,$$

where $\bar{\gamma} = (\gamma_1, \dots, \gamma_r, 0 \dots 0)$ if $\gamma = (\gamma_1, \dots, \gamma_r)$. Among g_{γ} 's with $|\gamma| = v$

185

and $g_r \neq 0$, let $(\alpha_1, \dots, \alpha_r)$ be the largest with respect to the lexicographic relation : $(\gamma_1, \dots, \gamma_r) \ge (\gamma_1, \dots, \gamma_i)$ if and only if $\gamma_1 = \gamma_1, \dots, \gamma_{r_1} = \gamma_{r_3}', \gamma_r \ge \gamma_r'$ Then $(g_{\alpha} \prod_{i=1}^{n} (a_{\alpha})^{\alpha}) \hat{a}^{\alpha}$ has no other terms in (*) to cancel with. This is a contradiction. Q.E.D.

Proof of Theorem 3.2 resumed. The above lemma implies that B is isomorphic to a W-algebra over R generated by Y₁,...,Y_r. Since any element ξ of A is expressed uniquely in the form

(**)
$$\xi = \sum_{r} f_{r} Y^{r} + \eta, f_{r} \in \mathbb{R} \text{ and } \eta \in J,$$

where $Y^{\gamma} = Y_1^{\gamma_1} \cdots Y_r^{\gamma_r}$ we know that A/J is isomorphic to B. Now we can easily show that $A \simeq B[Y_{r+1}, \cdots, Y_m]$, a polynomial ring in Y_{r+1}, \dots, Y_{r0} over B (cf. the above expression (**) of ξ). By Björk [1; Th. 3.4, p.43], we have w.gl.dim(A)=w.gl.dim(B)+(m-r) \geq n + m -r (cf. Lemma 3.1). By the hypothesis w.gl.dim(A)=n, we have m=r. This implies J=(0). Hence $A \simeq B$. Q.E.D.

A W-algebra A over R is called a W-subalgebra of D_a(K) provided p is injective.

Theorem 3.4. There is a one-to-one correspondence between the set of W-subalgebras of $D^{n}(K)$ and the set of R-submodules L of der_K(R) satisfying the conditions :

(L-1) Lis a free R-submodule of $Der_{x}(R)$; (L-2) Lis closed under the bracket product of $\text{Der}_{K}(\mathbb{R})$.

Proof. Let A be a W-subalgebra of $\hat{D}_n(K)$. Then we can find an R-free submodule L of Σ_1 which is isomorphic to $L^{\perp} = \Sigma_1 / \Sigma_0$ Since $\bar{\rho}$ is injective, so is $\rho: L \rightarrow Der_{\kappa}(R)$. Hence L is an R-free submodule of Der_k(R). Since $\rho \cdot (\pi \mid L)$ is a Lie-algebra homomorphism, L is closed under the bracket product (cf. theorem 2.3). Conversely, let L be an R-submodule of $\text{Der}_{K}(R)$ satisfying the condition (L-1) and (L-2). Let $\{Y_1, \dots, Y_m\}$ be an R-free basis of L Then we have:

- (1) $Y_{i}Y_{j} Y_{j}Y_{i} = \sum_{k=1}^{m} r_{ijk}Y_{k}, \quad 1 \leq i, j \leq m,$
- (2) $Y_i f = fY_i = y_i [f]$ for $f \in \mathbb{R}$ and $1 \le i \le m$.

Construct an R-algebra A as in Theorem 2.2, (2). Then the natural R-algebra homomorphism $A \rightarrow \hat{D}_n(K)$ is injective (cf. the proof of Lemma 3.3). Q.E.D.

A W-subalgebra A of $\hat{D}_n(K)$ is said to be of maximal rank if rank $\hat{L}=n$. We shall consider the case n=1. then L is essentially abelian. Hence there exists an R-algebra homomorphism $\tilde{\rho}: A \rightarrow \hat{D}_1(K)$ which must be injective by virtue of Theorem 3.2. We set $Y=Y_1$, a free generator of the R-module $\hat{L}(cf.$ Theorem 2.3). Then we have Yx-xY=f, where $f=x^{T}u$ with $u \in \mathbb{R}^*$. Replacing Y by $u^{T}Y$, we may assume that $f=x^{T}$. We shall show:

Lemma 3.5. $\operatorname{Tor}_{2}^{A}(K,K) = K$ if $r \ge 2$, while it is zero if r = 1. $\operatorname{Tor}_{1}^{A}(K,K) = K$ if r = 1.

Proof. Suppose r > 0. Then K is a two-sided A-module. As a right A-module, K has the following free A-module resolution:

$$0 \longrightarrow e_2 A \xrightarrow{\phi_1} e_1 A \oplus e_1 A \xrightarrow{\phi_0} e_0 A \xrightarrow{\epsilon} K \longrightarrow 0,$$

where ϵ is the natural residue homomorphism and ϕ_i (i=0,1) is given as:

$$\phi_0(e_1) = e_0 Y, \ \phi_0(e_1') = e_0 x \text{ and } \phi_1(e_2') = e_1 x - e_1' (Y + x^{r-1}).$$

Take the tensor product of this sequence with a left A-module K=Av to obtain the complex:

$$0 \rightarrow e_2 A \bigotimes_{A} A v \xrightarrow{\overline{\phi}_1} (e_1 A \bigotimes_{A} A v) \oplus (e'_1 A \bigotimes A v) \xrightarrow{\widetilde{\phi}_0} e_0 A \bigotimes_{A} A v \rightarrow 0,$$

where we can make the identification : $e_iA \bigotimes_A Av = e_i \bigotimes Kv$ for $e_i = e_0, e_1, e_1$

186

and e₂. Then it is clear that $\overline{\phi}_1 = \overline{\phi}_0 = 0$ if $r \ge 2$. Hence $\operatorname{Tor}_2^A(K,K) = K$ if $r \ge 2$. If r = 1, then $\overline{\phi}_1(e'_2 \otimes v) = -e_1 \otimes v$, whence $\overline{\phi}_1$ is injective. So, $\operatorname{Tor}_2^A(K,K) = 0$ if r = 1. If r = 1, $\operatorname{Tor}_1^A(K,K) = K$ because $\overline{\phi}_0 = 0$. Q.E.D.

If $n \ge 2$, we know little on W-subalgebras of $\hat{D}_n(K)$ even if it is of maximal rank. We shall give two partial results.

Proposition 3.6. Let A be a W-subalgebra of maximal rank of $\hat{D}_n(K)$ corresponding to a Lie subalgebra $I = \bigotimes_{i=1}^n RY_i$ with $Y_i = x_i^n \frac{\partial}{\partial x_i}$ and $r_i \ge 1$. Then we have

 $\mu := \max\{v : \operatorname{Tor}_{v}^{A}(K,K) \neq 0\} = 2_{\#}\{i ; r \geq 2\} + _{\#}\{i ; r_{i}=1\}. \text{ Hence } r_{i}=1$ for all i provided w.gl.dim(A) = n.

Proof. Let S_1 be the free algebra generated by Y_1 over a onedimensional polynomial ring $K[x_1]$ modulo the two-sided ideal generated by $Y_1x_1 - x_1Y_1 = x_1^{r_1}$. Sice $Y_iY_j = Y_jY_j$ and $x_iY_j = Y_jx_i$ if $i \neq j$. A is isomorphic to

$$(S_{\iota} \bigotimes_{k} S_{2} \bigotimes_{k} \cdots \bigotimes_{k} S_{n})_{K_{\mathbf{x}_{\mathbf{l}}}} \bigotimes_{\mu, \mathbf{x}_{n}} R,$$

where $S_1 \bigotimes_{x} \cdots \bigotimes_{x} S_n$ is regarded as an algebra over $K[x_1, \ldots, x_n]$. Consider a complex

$$(\tilde{C}_1): 0 \to e_2 S_1 \xrightarrow{\varphi_1} e_1 S_1 \oplus e_1 S_1 \xrightarrow{\varphi_0} e_0 S_1 \xrightarrow{\varepsilon} K \longrightarrow 0,$$

which is defined in the same fashion as in the proof of Lemma 3.5 with A replaced by S₁. It is a resolution of the two-sided S₁-module K by free fight S₁-modules. The complex $\tilde{C} := (\tilde{C} \bigotimes_{K} \cdots \bigotimes_{K} \tilde{C})_{K[x_{1}, \cdots, x_{n}]} \mathbb{R}$ i a resolution of the two-sided A-module K by free right A-modules. Let C₁ (resp. C) be the complex obtained from \tilde{C} (resp. \tilde{Q} by replacing K by 0. Then, taking the tensor products with the left A-module K, we obtain $\bar{C} := C \bigotimes_{K} K \simeq \tilde{C}_{1} \bigotimes_{K} \cdots \bigotimes_{n} \tilde{C}_{n}$, where $\bar{C}_{1} = C_{1} \bigotimes_{K} K$. By the Kunneth

formula for homolgies, we have

$$\operatorname{Tor}_{v}^{A}(K,K) \simeq \bigoplus_{v_{1}+ \bigoplus_{v_{n}=v}} \operatorname{Tor}_{v_{1}}^{S_{1}}(K,K) \bigotimes_{k} \cdots \bigotimes_{k} \operatorname{Tor}_{v_{n}}^{S_{n}}(K,K)$$

Thence we obtain the stated formula in view of Lemma 3.5. Q.E.D.

Proposition 3.7. Let A be a W-subalgebra of maximal rank of $\hat{D}_2(K)$ corresponding to a Lie subalgebra $L=RY_1+RY_2$ with $Y_{*}g\frac{\partial}{\partial x}$, where $h=x_1f+x_2g\in M:=Rx_1+Rx_2$. Suppose that h is a homogeneous polynomial in x_1 and x_2 . Then $\operatorname{Tor}_3^A(K,K)\neq 0$ and $\operatorname{Tor}_4^A(K,K)=0$.

Proof. We have the following relations:

$$\begin{array}{l} Y_{1}Y_{2}-Y_{2}Y_{1}=-h_{x_{2}}Y_{1}+h_{x_{1}}Y_{2}\\ Y_{1}x_{1}-x_{1}Y_{1}=h=Y_{2}x_{2}-x_{2}Y_{2}\\ Y_{1}x_{2}-x_{2}Y_{1}=0=Y_{2}x_{1}-x_{1}Y_{2} \end{array}$$

where $h_x = \frac{\partial h}{\partial x^i}$. Construct a complex of right A-modules:

$$0 \rightarrow e_{3}A \xrightarrow{\phi_{2}} e_{2}A \oplus e_{2}^{*}A \oplus e_{2}^{*}A \oplus e_{2}^{*}A \xrightarrow{\phi_{1}} e_{1}A \oplus e_{1}^{*}A \oplus e_{1}^{*}A \xrightarrow{\phi_{0}} e_{0}A \xrightarrow{\epsilon} K \rightarrow 0$$

where :

(0) K is the two-sided A-module with $x_i \cdot 1 = y_i \cdot 1 = 0$ for i=1,2;

(i) $\epsilon(e_0) = 1;$

(ii)
$$\phi_0(\mathbf{e}_1) = \mathbf{e}_0 \mathbf{Y}_1, \quad \phi_0(\mathbf{e}_1') = \mathbf{e}_0 \mathbf{x}_1, \quad \phi_0(\mathbf{e}_1') = \mathbf{e}_0 \mathbf{Y}_2, \quad \phi_0(\mathbf{e}_1^*) = \mathbf{e}_0 \mathbf{x}_2;$$

(iii) $\phi_1(\mathbf{e}_2) = \mathbf{e}_1 \mathbf{x}_1 - \mathbf{e}_1' (\mathbf{Y}_1 + \mathbf{f}) - \mathbf{e}_1^* \mathbf{g}, \quad \phi_0(\mathbf{e}_2') = -\mathbf{e}_1' \mathbf{f} + \mathbf{e}_1' \mathbf{x}_2$

$$-e_{1}^{*}(Y_{2}+g), \quad \varphi_{1}(e_{2}^{*})=e_{1}x_{2}-e_{1}^{*}Y_{1}, \quad \varphi_{1}(e_{2}^{*})=-e_{1}^{*}Y_{2}+e_{1}^{*}x_{1};$$

(iv)
$$\varphi_2(e_3) = e_2 x_2(Y_1 + g + h_{x_2}) + e_2 x_1(Y_1 + f + h_{x_1}).$$

 $-e_2^* x_1(Y_2 + g + h_{x_2}) - e_2^* x_2(Y_1 + f + h_{x_1}).$

It is straightforward to show that this comploex is a resolution of K right free A-modules. The stated result follows from this observation.

188

Q.E.D.

References

- J.E.Bjork, Rings of differential operators, North-Holland, Amsterdam-Oxford-New York, 1979.
- 2. N.Jacobson, Lie algebras, Dover, New York., 1979.

Department of Mathematics, Dong-A University, Pusan Korea

Department of Mathematics, Osaka University, Osaka 560 Japan

Department of Mathematics, Osaka University, Osaka 560 Japan