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Abstract. An examination is conducted on the multinomial coefficients derived from

generalized quantum deformed algebras, and on their recurrence relations. The R(p, q)-

deformed multinomial probability distribution and the negative R(p, q)-deformed multino-

mial probability distribution are constructed, and the recurrence relations are determined.

From our general result, we deduce particular cases that correspond to quantum algebras

considered in the literature.

1. Introduction

The q-deformations of the Vandermonde formula, the Cauchy formula and the
univariate discrete probability distributions were investigated in [2]. Their limiting
distributions were derived, the q-deformed multinomial coefficient was defined, and
recurrence relations for these coefficients were deduced. Then, in [3], the q-deformed
multinomial and negative q-deformed multinomial probability distributions of the
first and second kind were presented [3].

Now, let p and q be two positive real numbers such that 0 < q < p < 1. We
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consider a meromorphic function R defined on C× C by [7]:

R(u, v) =

∞∑
s,t=−l

rstu
svt,(1.1)

with an eventual isolated singularity at the zero, where rst are complex numbers,
l ∈ N ∪ {0} , R(pn, qn) > 0,∀n ∈ N, and R(1, 1) = 0 by definition. We denote by
DR the bidisk

DR :=

2∏
j=1

DRj

=
{
e = (e1, e2) ∈ C2 : |ej | < Rj

}
,

where R is the convergence radius of the series (1.1) defined by Hadamard
formula[12]:

lim sup
s+t−→∞

s+t

√
|rst|Rs

1 R
t
2 = 1.

We denote by O(DR) the set of holomorphic functions defined on DR.
The R(p, q)-deformed numbers are given by [7]

[n]R(p,q) := R(pn, qn), n ∈ N,(1.2)

by which the R(p, q)-deformed factorials are defined as

[n]!R(p,q) :=

{
1 for n = 0
R(p, q) · · ·R(pn, qn) for n ≥ 1,

and the R(p, q)-deformed binomial coefficients as[
m
n

]
R(p,q)

:=
[m]!R(p,q)

[n]!R(p,q)[m− n]!R(p,q)
, (m,n) ∈ N ∪ {0}; m ≥ n.

The linear operators on O(DR) are defined by

Q : φ 7−→ Qφ(z) := φ(qz)

P : φ 7−→ Pφ(z) := φ(pz),

and the R(p, q)-deformed derivative given as

∂R,p,q := ∂p,q
p− q

P −Q
R(P,Q) =

p− q

pP − qQ
R(pP, qQ)∂p,q,

where ∂p,q is the (p, q)-derivative

∂p,q : φ 7−→ ∂p,qφ(z) :=
φ(pz)− φ(qz)

z(p− q)
.
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We spoke of the quantum algebra associated with the R(p, q)-deformation. It is a
quantum algebra, AR(p,q), generated by the set of operators {1, A,A†, N} satisfying
the following commutation relations [8]:

AA† = [N + 1]R(p,q), A†A = [N ]R(p,q)

[N, A] = −A,
[
N, A†] = A†.(1.3)

Its realization on O(DR) is given by

A† := z, A := ∂R(p,q), N := z∂z

where ∂z := ∂
∂z is the usual derivative on C. Let us recall some notions useful in

this paper.
The model deformation structure functions τi, i ∈ {1, 2}, depending on the

deformation parameters p and q were introduced in [5].
For a, b ∈ N, the R(p, q)-deformed shifted factorial is defined by [5]:

(
a⊕ b

)n
R(p,q)

:=

n∏
i=1

(
a τ i−1

1 + b τ i−1
2

)
, with

(
a⊕ b

)0
R(p,q)

:= 1.

Analogously,

(
a⊖ b

)n
R(p,q)

:=

n∏
i=1

(
a τ i−1

1 − b τ i−1
2

)
, with

(
a⊖ b

)0
R(p,q)

:= 1.

Furthermore, the R(p, q)-deformed factorial of a of order r is defined by[6]:

[a]r,R(p,q) =

r∏
i=1

[a− i+ 1]R(p,q), r ∈ N,(1.4)

and the following relations hold :

[a]R(p−1,q−1) = (τ1 τ2)
1−a [a]R(p,q),(1.5)

[a]R(p−1,q−1)! = (τ1τ2)
−(r2) [a]R(p,q)!,(1.6)

and

[a]r,R(p−1,q−1) = (τ1 τ2)
−ar+(r+1

2 ) [a]r,R(p,q).(1.7)

The R(p, q)-deformed of orthogonal polynomials and basic univariate discrete dis-
tributions of probability theory were defined and discussed by Hounkonnou and
Melong [5]. Relevant R(p, q)-deformed factorial moments of a random variable and
associated expressions of mean and variance established, and recurrence relations
for the probability distributions were derived, recovering known results as particular
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cases. Furthermore, the multivariate probability distributions (Pólya, inverse Pólya,
hypergeometric and negative hypergeometric) of the generalized quantum deformed
algebras were constructed. Their corresponding bivariate probability distributions
and properties were derived and determined [11].

Our aims are to construct the multinomial coefficients, the multinomial prob-
ability distribution and properties corresponding to the R(p, q)-deformed quantum
algebras [8].

This paper is organized as follows: Section 2 is focussed on multinomial coef-
ficients associated to R(p, q)-deformed quantum algebras. Alternate presentations
and their recurrence relations are derived. In Section 3, we contruct the R(p, q)-
deformed multinomial probability distributions of the first and second kinds. Sec-
tion 4 is dedicated to particular cases of our results corresponding to known quantum
algbras. We make some concluding remarks in Section 5.

2. R(p, q)-deformed Multinomial Formulae

In this section we investigate the multinomial coefficients, multinomial formula
and negative multinomial formula in the framework of the R(p, q)-deformed quan-
tum algebras. The recurrence relations are also determined.

Theorem 2.1. The R(p, q)-deformed multinomial coefficient

(2.1) [ x
r1,r2,··· ,rk ]R(p,q) =

[x]r1+r2+···+rk,R(p,q)

[r1]R(p,q)![r2]R(p,q)! · · · [rk]R(p,q)!

satisfies the recurrence relation

[ x
r1,··· ,rk ]R(p,q) = τsk1

[
x−1

r1,··· ,rk
]
R(p,q)

+ τx−m1
2

[
x−1

r1−1,r2,··· ,rk
]
R(p,q)

+ τx−m2
2

[
x−1

r1,r2−1,··· ,rk
]
R(p,q)

+ · · ·(2.2)

+ τx−mk
2 [ x

r1,r2,··· ,rk−1 ]R(p,q)

Or, equivalently,

[ x
r1,··· ,rk ]R(p,q) = τsk2

[
x−1

r1,··· ,rk
]
R(p,q)

+ τx−m1
1

[
x−1

r1−1,r2,··· ,rk
]
R(p,q)

+ τx−m2
1 τs12

[
x−1

r1,r2−1,··· ,rk
]
R(p,q)

+ · · ·(2.3)

+ τx−mk
1 τ

sk−1

2

[
x−1

r1,r2,··· ,rk−1

]
R(p,q)

where rj ∈ N and j ∈ {1, 2, · · · , k}, with mj =
∑k

i=j ri and sj =
∑j

i=1 ri.

Proof. Since
[x]sk,R(p,q) = [x]R(p,q) [x− 1]sk−1,R(p,q),

[x− 1]sk,R(p,q) = [x− 1]sk−1,R(p,q) [x− sk]R(p,q)
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and
[x]R(p,q) = τsk1 [x− sk]R(p,q) + τx−sk

2 [sk]R(p,q).

Then, the R(p, q)-deformed factorials of x of order sk =
∑k

i=1 rk satisfies the re-
currance relation

(2.4) [x]sk,R(p,q) = τsk1 [x− 1]sk,R(p,q) +

k∑
j=1

τ
x−mj

2 [rj ]R(p,q) [x− 1]sk−1,R(p,q).

Multiplying both sides of the relation (2.4) by 1/[r1]R(p,q)![r2]R(p,q)! · · · [rk]R(p,q)!
and using the R(p, q)-deformed multinomial coefficient (2.1), we obtain rela-
tion (2.2). Similarly, the R(p, q)-deformed number can be expressed as

[x]R(p,q) = τsk2 [x− sk]R(p,q) +

k∑
j=1

τ
x−mj

1 τ
sj−1

2 [rj ]R(p,q)

and the R(p, q)-deformed factorial of x of order sk satisfies the recursion relation

(2.5) [x]sk,R(p,q) = τsk2 [x− 1]sk,R(p,q) +

k∑
j=1

τ
x−mj

1 τ
sj−1

2 [rj ]R(p,q) [x− 1]sk−1,R(p,q),

with s0 = 0.
Dividing the both sides of the relation (2.5) by [r1]R(p,q)![r2]R(p,q)! · · · [rk]R(p,q)!

and using (2.1), the relation (2.3) is readily derived and the proof is achieved.

Remark 2.2.

(i) From the relations (1.5), (1.6) and (1.7), we obtain the R(p−1, q−1)- deformed
multinomial coefficients in the simpler form:

(2.6) [ x
r1,··· ,rk ]R(p−1,q−1) = (τ1τ2)

−
∑k

j=1 rj(x−mj)[ x
r1,··· ,rk ]R(p,q)

or

(2.7) [ x
r1,··· ,rk ]R(p−1,q−1) = (τ1τ2)

−
∑k

j=1 rj(x−sj)[ x
r1,··· ,rk ]R(p,q)

where sj =
∑j

i=1 ri, and mj =
∑k

i=j ri, for rj ∈ N, j ∈ {1, 2, · · · , k} and
k ∈ N.
Indeed, by replacing R(p, q) with R(p−1, q−1) in relation (2.1), and using the
formulae

[x]r,R(p−1,q−1) =
(
τ1τ2

)−xr+(r+1
2 )

[x]r,R(p,q)

and

[r]R(p−1,q−1)! =
(
τ1τ2

)(r2) [r]R(p,q)!,
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we obtain,

[ x
r1,r2,··· ,rk ]R(p−1,q−1) =

(
τ1τ2

)−xsk+(sk+1
2 )

[x]r1+r2+···+rk,R(p,q)(
τ1τ2

)−∑k
j=1 (

rj
2 )[r1]R(p,q)![r2]R(p,q)! · · · [rk]R(p,q)!

=
(
τ1τ2

)−xsk+(sk+1
2 )+

∑k
j=1 (

rj
2 ) [ x

r1,r2,··· ,rk ]R(p,q).

Moreover,

−xsk +

(
sk + 1

2

)
+

k∑
j=1

(
rj
2

)
= −xsk +

k−1∑
j=1

rj mj+1 +

k∑
j=1

((
rj + 1

2

)
+

(
rj
2

))

= −
k∑

j=1

rj(x−mj) = −
k∑

j=1

rj(x− sj).

Relations (2.6) and (2.7) follow.

(ii) Another recurrence relations can be obtained by replacing R(p, q) by R(p−1, q−1),
and using the expression (2.6), respectively. Thus, the recursion relations
(2.2) and (2.3) take the following forms:

[ x
r1,··· ,rk ]R(p,q) = τm1

2

[
x−1

r1,··· ,rk
]
R(p,q)

+ τm2
2

[
x−1

r1−1,r2,··· ,rk
]
R(p,q)

+ τm3
2

[
x−1

r1,r2−1,··· ,rk
]
R(p,q)

+ · · ·(2.8)

+ τx1
[

x−1
r1,r2,··· ,rk−1

]
R(p,q)

and

[ x
r1,··· ,rk ]R(p,q) = τx1

[
x−1

r1,··· ,rk
]
R(p,q)

+ τx−s1
2

[
x−1

r1−1,r2,··· ,rk
]
R(p,q)

+ τx−s2
2

[
x−1

r1,r2−1,··· ,rk
]
R(p,q)

+ · · ·(2.9)

+ τx−sk
2

[
x−1

r1,··· ,rk−1

]
R(p,q)

.

(iii) The q-multinomial coefficients and formula given in [3, eq (2.1)] can be re-
covered by taking R(x, 1) = (1− q)−1(1− x) involving τ1 = 1 and τ2 = q.

(iv) Taking k = 1, we obtained the R(p, q)-deformed binomial coefficients and
related relations of [5, p.3].

Let us generalize the multinomial formulas to the general framework of the R(p, q)-
deformed quantum algebras.

Theorem 2.3. For n a positive integers, x, p, and q real numbers, the following
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relation holds:

k∏
j=1

(
1⊕ xj

)n
R(p,q)

=
∑[

n
r1, · · · , rk

]
R(p,q)

k∏
j=1

x
rj
j τ

(n−rj
2 )

1 τ
(rj2 )
2

×
(
τ
n−sj−1

1 ⊕ xjτ
n−sj−1

2

)sj−1

R(p,q)
,(2.10)

where rj ∈ {0, · · · , n}, j ∈ {1, · · · , k}, with
∑k

i=1 ri ≤ n and sj =
∑j

i=1 ri, s0 = 0.

Proof. Setting

sn(x1, · · · , xk; p, q) =
∑ [

n
r1, · · · , rk

]
R(p,q)

k∏
j=1

x
rj
j τ

(n−rj
2 )

1 τ
(rj2 )
2

×
(
τ
n−sj−1

1 ⊕ xjτ
n−sj−1

2

)sj−1

R(p,q)

and using

(2.11)

[
n
r1

]
R(p,q)

[
n− s1
r2

]
R(p,q)

· · ·
[

n− sk−1

rk

]
R(p,q)

=

[
n

r1, · · · , rk

]
R(p,q)

,

we get:

sn(x1, · · · , xk; p, q) =

k∏
j=1

( n−sj−1∑
rj=0

[
n− sj−1

rj

]
R(p,q)

x
rj
j τ

(n−rj
2 )

1 τ
(rj2 )
2

)
×

(
τ
n−sj−1

1 ⊕ xjτ
n−sj−1

2

)sj−1

R(p,q)
.

From the R(p, q)-deformed binomial formula, the jth-sum is

(
1⊕ xj

)n−sj−1

R(p,q)
=

n−sj−1∑
rj=0

[
n− sj−1

rj

]
R(p,q)

x
rj
j τ

(n−rj
2 )

1 τ
(rj2 )
2 ,

where j ∈ {1, 2, · · · , k}. Moreover,(
1⊕ xj

)n−sj−1

R(p,q)

(
τ
n−sj−1

1 ⊕ xj τ
n−sj−1

2

)sj−1

R(p,q)
=

(
1⊕ xj

)n

R(p,q)
,

with j ∈ {1, 2, · · · , k}. Thus

sn(x1, · · · , xk; p, q) =

k∏
j=1

(
1⊕ xj

)n
R(p,q)

.

2
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Theorem 2.4. Let n be a positive integers, p and q real numbers. Then,

k∏
j=1

(
1⊕ xj

)n
R(p,q)

=
∑[

n+ sk − 1
r1, r2, · · · , rk

]
R(p,q)

k∏
j=1

x
rj
j τ

(n−rj
2 )

1 τ
(rj2 )
2(

τn1 ⊕ xjτn2

)sk−sj−1

R(p,q)

.

Equivalently,
∏k

j=1

(
1⊕ xj

)n
R(p,q)

=

∑
rj∈N

[
n+ sk − 1
r1, · · · , rk

]
R(p,q)

k∏
j=1

x
n+sk−sj−1

j τ
(n−rj

2 )
1 τ

(n+sk−sj−1
2 )+rj

2(
τn1 ⊕ xjτn2

)sk−sj−1

R(p,q)

,

where j ∈ {1, 2, · · · , k}, with sj =
∑j

i=1 ri and s0 = 0.

Proof. Consider the multiple sum defined as follows:

sn(x1, · · · , xk; p, q) =

∞∑
rj=0

[
n+ sk − 1

r1, r2, · · · , rk

]
R(p,q)

k∏
j=1

x
rj
j τ

(n−rj
2 )

1 τ
(rj2 )
2(

τn1 ⊕ xjτn2

)sk−sj−1

R(p,q)

and using the relation (2.11), with n+ sk − 1 instead of n, we obtain:

sn(x1, · · · , xk; p, q) =

k∏
j=1

( ∞∑
rj=0

[
n− sk − sj−1

rj

]
R(p,q)

x
rj
j τ

(n−rj
2 )

1 τ
(rj2 )
2(

τn1 ⊕ xjτn2

)sk−sj−1

R(p,q)

)
.

From the negative R(p, q)-deformed binomial formula:

n∏
i=1

(
τ i−1
1 + x τ i−1

2

)−1

=

∞∑
k=0

[
n+ k − 1

k

]
R(p,q)

τ
(n−1

2 )
1 τ

(k2)
2 xk(

τn1 ⊕ τn2
)k
R(p,q)

,

we get:

∞∑
rj=0

[
n− sk − sj−1

rj

]
R(p,q)

x
rj
j τ

(n−rj
2 )

1 τ
(rj2 )
2(

τn1 ⊕ xjτn2

)sk−sj−1

R(p,q)

=
(
1⊕ xj

)n

R(p,q)
(2.12)

and so

sn(x1, · · · , xk; p, q) =

k∏
j=1

(
1⊕ xj

)n

R(p,q)
.

An equivalent formula can be derived by putting p = p−1, q = q−1, xj = x−1
j and

R(p, q) = R(p−1, q−1). 2
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Theorem 2.5. Let xj , j ∈ {1, 2, · · · , k + 1}, p, and q real numbers. For n positive
integer, the following result holds.

(
1⊖ Λk

)n
R(p,q)

=

n∑
rj=0

[
n

r1, r2, · · · , rk

]
R(p,q)

×
k∏

j=1

x
n−sj
j

(
1⊖ xj

)rj
R(p,q)

(
1⊖ xk+1

)n−sk

R(p,q)
,(2.13)

where rj ∈ {0, · · · , n}, j ∈ {1, · · · , k}, with
∑k

i=1 ri ≤ n and sj =
∑j

i=1 ri, s0 = 0,

and Λk =
∏k+1

j=1 xj .

Proof. From the R(p, q)− deformed binomial formula, we get(
1⊖ Λk

)n

R(p,q)
=

n∑
r=0

[
n
r

]
R(p,q)

τ
(n−r

2 )
1 τ

(r2)
2

(
− Λk

)r

.

Using the relation

n−r∑
r1=0

[
n− r
r1

]
R(p,q)

xn−r−r1
1

(
1⊖ x1

)r1

R(p,q)
= 1

and interchanging the order of summation, we obtain:

(
1⊖ Λk

)n
R(p,q)

=

n∑
r1=0

[
n
r1

]
R(p,q)

xn−r1
1

(
1⊖ x1

)r1
R(p,q)

×
n−r1∑
r=0

[
n− r1

r

]
R(p,q)

τ
(n−r

2 )
1 τ

(r2)
2

(
− Λk

)r
.

By applying the R(p, q)-deformed binomial formula, we get:

(
1⊖ Λk

)n
R(p,q)

=

n∑
rj=0

[
n
r1

]
R(p,q)

xn−r1
1

(
1⊖ x1

)r1

R(p,q)

n−r1∏
i=1

(
τ i−1
1 −

k+1∏
j=2

xjτ
i−1
2

)
and generally,

n−sj−1∏
i=1

(
τ i−1
1 −

k+1∏
ν=j

xjτ
i−1
2

)
=

n−sj−1∑
rj=0

[
n− sj−1

rj

]
R(p,q)

x
n−sj
j

(
1⊖ xj

)rj

R(p,q)

×
n−sj∏
i=1

(
τ i−1
1 −

k+1∏
ν=j+1

xjτ
i−1
2

)
for j ∈ {1, 2, · · · , k} with s0 = 0. Applying the last expression, successively for
j ∈ {1, 2, · · · , k} and using the relation (2.11), the result is immediately deduced. 2
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The results contained in the corollary below are the particular case of the relation
(2.13) by taking xk+1 = 0.

Corollary 2.6. Let n be a positive integer. Then,

n∑
rj=0

[
n

r1, r2, · · · , rk

]
R(p,q)

k∏
j=1

x
n−sj
j

(
1⊖ xj

)rj
R(p,q)

= τ
sk(1+sk−2n)

2
1

and

n∑
rj=0

[
n

r1, r2, · · · , rk

]
R(p,q)

k∏
j=1

x
rj
j

(
1⊖ xj

)n−sj

R(p,q)
= τ

sk(1+sk−2n)

2
1 ,

where j ∈ {1, · · · , k}, with
k∑

i=1

rj ≤ n and sj =
∑j

i=1 ri, s0 = 0.

The generalization of the multinomial formula given by Gasper and Rahman [4]
can be determined as follows:

(
1⊖ Λk

)n
R(p,q)

=

n∑
rj=0

[
n

r1, r2, · · · , rk

]
R(p,q)

k∏
j=1

x
sj
j

(
1⊖ xj−1

)n
R(p,q)

(
1⊖ xk

)n−sk

R(p,q)
,

where j ∈ {1, 2, · · · , k}, with
k∑

i=1

rj ≤ n and sj =
∑j

i=1 ri.

3. R(p, q)-deformed Multinomial Distribution

In this section, we construct the multinomial and negative multinomial prob-
ability distribution of the first and second kind in the framework of the R(p, q)-
deformed quantum algebras. Moreover, the R(p, q)-deformed multiple Heine, Eu-
ler, negative multiple Heine, and negative Euler are obtained as limit of the above
probability distriburion as n −→ ∞. We use the following notations in the sequel:
Θ =

(
θ1, θ2, · · · , θk

)
.

3.1. R(p, q)-deformed multinomial distribution of the first kind

We consider a sequence of independant Bernoulli trials with chain-composite
successes (or failures) and suppose that the odds of success of the jth kind at the
ith trial is furnished by:

θj,i = θj τ
1−i
1 τ i−1

2 , 0 < θj < ∞, (j, i) ∈ N.
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The probability of success of the jth kind at the ith trial is derived as

pj,i =
θj τ

i−1
2

τ i−1
1 + θj τ

i−1
2

.(3.1.1)

Naturally, the probability of failure of the jth kind at the ith trial is deduced as

(3.1.2) qj,i =
τ i−1
1

τ i−1
1 + θj τ

i−1
2

.

Note that, taking R(x, 1) = x−1
1−q , we recover the following q-deformation of proba-

bilities (3.1.1)and (3.1.2) given in [3, eq. 3.2]:

pj,i =
θj q

i−1

1 + θj qi−1
and qj,i =

1

1 + θj qi−1
.

We denote by Yj , j ∈ {1, 2, · · · , k} the number of successes of the jth kind in a
sequence of n independent Bernoulli trials with chain-composite failures, with the
probability of success of the jth kind at the ith trial given by the relation (3.1.1).
The distribution of the random vector

(
Y1, Y2, · · · , Yk

)
can be called the R(p, q)-

deformed multinomial probability distribution of the first kind with parameters
n,Θ, p, and q.

Theorem 3.1.1. The probability function of the R(p, q)-deformed multinomial
probability distribution of the first kind with parameters n,Θ, p, and q is

(3) P
(
Y1 = y1, · · · , Yk = yk

)
=

[
n

y1, y2, · · · , yk

]
R(p,q)

k∏
j=1

θ
yj

j τ
(n−yj

2 )
1 τ

(yj2 )
2

(1⊕ θj)
n−sj−1

R(p,q)

and their recurrance relations are

Py+1 =
[
n−

k∑
j=1

yj

]
k,R(p,q)

k∏
j=1

θjτ
n−yj

1 τ
yj

2 Py

[yj + 1]R(p,q)

(
1⊕ θj

)
R(p,q)

with P0 =
∏k

j=1
τ
(n2)
1(

1⊕θj

)n

R(p,q)

, where for j ∈ {1, 2, · · · , k} we have yj ∈ {0, 1, · · · , n}

and
∑k

j=1 yj ≤ n, sj =
∑j

i=1 yi, 0 < θj < 1.

Proof. The random variable Y1 is defined on the sequence of n independent Bernoulli
trials with space ω = {s1, f1}, follows the R(p, q)-deformed binomial distribution of
the first kind with probability function:

P
(
Y1 = y1

)
=

[
n
y1

]
R(p,q)

θy1

1 τ
(n−y1

2 )
1 τ

(y12 )
2(

1⊕ θ1
)n
R(p,q)

, y1 ∈ {0, 1, · · · , n}.
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In the same way, the random variable Yk is defined on the sequence of n − sk−1

independent Bernoulli trials, with conditional space ω = {sk, fk}, obeys a R(p, q)-
deformed binomial distribution of the first kind with probability distribution:

P
(
Yk = yk | Y1 = y1, · · · , Yk−1 = yk−1

)
=

[
n− sk−1

yk

]
R(p,q)

θyk

k τ
(n−yk

2 )
1 τ

(yk2 )
2(

1⊕ θk
)n−sk−1

R(p,q)

,

where yk ∈ {0, 1, · · · , n − sk−1}. Then, from the relations (2.11) and the multi-
plicative formula for probabilities, the result follows. Using the R(p, q)-deformed
multinomial formula, we get:∑

P
(
Y1 = y1, · · · , Yk = yk

)
= 1.

The recurrence relation is obtained by simpler computation. 2

We consider Tj , j ∈ {1, 2, · · · , k} the number of successes of the jth kind until
the occurrence of the nth failure of the kth kind, in a sequence of Bernoulli trials
with chain-composite failures, with the probability of success of the jth kind at the
ith trial is given by the relation (3.1.1). The distribution of the random vector(
T1, T2, · · · , Tk

)
may be called the negative R(p, q)-deformed multinomial probabil-

ity distribution of the first kind with parameters n,Θ, p, and q.

Theorem 3.1.2. The probability function of the negative R(p, q)-deformed multi-
nomial distribution of the first kind with parameters n,Θ, p and q is given as

(4) P
(
T1 = t1, · · · , Tk = tk

)
=

[
n+ sk − 1
t1, t2, · · · , tk

]
R(p,q)

k∏
j=1

θ
tj
j τ

(n−tj
2 )

1 τ
(tj2 )
2(

1⊕ θj
)n+sk−sj−1

R(p,q)

and their recurrence relation by

Pt+1 =
[
n−

k∑
j=1

tj

]
k,R(p,q)

k∏
j=1

θjτ
n−tj
1 τ

tj
2 Pt

[tj + 1]R(p,q)

(
1⊖ θj

)
R(p,q)

,

wiht P0 =
∏k

j=1
τ
(n2)
1(

1⊕θj

)n

R(p,q)

, where for j ∈ {1, 2, · · · , k} we have tj ∈ N and sj =∑j
i=1 ti, 0 < θj < 1,.

Proof. From the multiplicative formula, we have:

P
(
T1 = t1, · · · , Tk = tk

)
= P

(
T1 = t1 | T2 = t2, · · · , Tk = tk

)
× P

(
T2 = t2 | T3 = t3, · · · , Tk = tk

)
· · ·P

(
Tk = tk

)
.

The random variable T1 is defined on the sequence of n+ sk independent Bernoulli
trials with space Ω1 = {s1, f1}, obeys the negative R(p, q)-deformed binomial dis-
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tribution of the first kind with probability function

P
(
T1 = t1 | T2 = t2, · · · , Tk = tk

)
=

[
n+ sk − 1

t1

]
R(p,q)

θt11 τ
(n+sk−t1

2 )
1 τ

(u1
2 )

2(
1⊕ θ1

)n+sk

R(p,q)

, t1 ∈ N.

Then, given the occurrence of the event {Tk = tk}, the random variable Tk is
defined on the sequence of n + sk − sk−1 = n + tk independent Bernoulli trials,
with conditional space Ωk = {sk, fk}, obeys the negative R(p, q)-deformed binomial
distribution of the first kind with probability distribution:

P
(
Tk = tk

)
=

[
n+ sk − sk−1 − 1

uk

]
R(p,q)

θuk

k τ
(n+uk

2 )
1 τ

(tk2 )
2(

1⊕ θk

)n+sk−sk−1

R(p,q)

,

where tk ∈ N. Then, multplying all the above probabilities and using the relation[
n+ sk − 1

t1, t2, . . . , tk

]
R(p,q)

=

k∏
j=1

[
n+ sk − sj−1 − 1

tj

]
R(p,q)

, s0 = 0

the result follows. Using the negative R(p, q)-deformed multinomial formula, we get∑
P
(
T1 = t1, . . . , Uk = tk

)
= 1.

. 2

Remark 3.1.3. We denote by Vj , j ∈ {1, 2, . . . , k}, the number of failures of the
jth kind until the occurrence of the nth success of the kth kind, in a sequence of in-
dependent Bernoulli trials with chain-composite successes and

(
V1, V2, · · · , Vk

)
the

random vector. The probability function of the negative R(p, q)-binomial distribu-
tion of the first kind is:

(5) P
(
V = v

)
=

[
n+ v − 1

v

]
R(p,q)

θnτ
(v2)
1 τ

(n2)+v

2(
1⊕ θ1

)n+v

R(p,q)

, v ∈ N.

From the relation (5) and the steps used to get the (4), the probability function of
the random vector

(
V1, V2, · · · , Vk

)
is given by P

(
V1 = v1, · · · , Vk = vk

)
=

(6)

[
n+ sk − 1

v1, v2, · · · , vk

]
R(p,q)

k∏
j=1

θ
n+sk−sj−1

j τ
(vj2 )
1 τ

(n+sk−sj−1
2 )+vj

2(
1⊕ θj

)n+sk−sj−1

R(p,q)

,

where vj ∈ N, sj =
j∑

i=1

vi, 0 < θj < 1, and j ∈ {1, 2, · · · , k}.
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Remark 3.1.4. The R(p, q)-deformed multinomial distributions (3) and (4) can
be approximated by the probability function of the R(p, q)-deformed multiple Heine

distributions (7) and (8). In fact, setting µj =
θj

τ1−τ2
and using 0 < q < p < 1, we

have:

lim
n−→∞

[
n

y1, y2, · · · , yk

]
R(p,q)

=
1∏k

j=1

(
τ1 − τ2

)yj
[yj ]R(p,q)!

and

lim
n−→∞

(
1⊕ µj(τ1 − τ2)

)n−sj−1

R(p,q)
=

1

eR(p,q)(−µj)
.

Thus,

lim
n−→∞

[
n

y1, · · · , yk

]
R(p,q)

k∏
j=1

θ
xj

j τ
(n−yj

2 )
1 τ

(yj2 )
2

(1⊕ θj)
n−sj−1

R(p,q)

=

k∏
j=1

eR(p,q)(−µj)
µ
yj

j τ
(yj2 )
2

[yj ]R(p,q)!
.(7)

Similarly, we get:

lim
n−→∞

[
n+ sk − 1
t1, · · · , tk

]
R(p,q)

k∏
j=1

θ
tj
j τ

(n−tj
2 )

1 τ
(tj2 )
2(

1⊕ θj
)n+sk−sj−1

R(p,q)

=

k∏
j=1

ER(p,q)(−µj)
µ
tj
j τ

(tj2 )
2

[tj ]R(p,q)!
.

(8)

3.2. R(p, q)-deformed multinomial distribution of the second kind

We consider a sequence of independent Bernoulli trials with chain-composite
successes(or failures) and suppose that the conditional probability of success of the
jth kind at any trial, given that i− 1 successes of the jth kind occur in the previous
trials, is given by:

pj,i = 1− θj τ
1−i
1 τ i−1

2 , 0 < θj < 1, (j, i) ∈ N.(3.2.1)

We denote by Xj the number of failures of the jth kind in a sequence of n in-
dependent Bernoulli trials with chain-composite successes, where the conditional
probability of success of the jth kind at any trial, given that i− 1 successes of the
jth kind occur in the previous trials, is given by (3.2.1).

Theorem 3.2.1. The probability function of the R(p, q)-deformed multinomial dis-
tribution of the second kind with parameters n,Θ, p and q is determined by:
(3.2.2)

P
(
X1 = x1, · · · , Xk = xk

)
=

[
n

x1, x2, · · · , xk

]
R(p,q)

k∏
j=1

θ
xj

j

(
1⊖ θj

)n−sj

R(p,q)
.

The recurrence relation for the R(p, q)-deformed multinomial distribution of the
second kind is given by:

Px+1 =
[
n−

k∑
j=1

xj

]
k,R(p,q)

k∏
j=1

θj
(
1⊖ θj

)
R(p,q)

[xj + 1]R(p,q)
Px, with P0 =

k∏
j=1

(
1⊖ θj

)n
R(p,q)

.
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where xj ∈ {0, 1, · · · , n},
k∑

j=1

xj ≤ n, sj =

j∑
i=1

xi, 0 < θj < 1, and j ∈ {1, 2, · · · , k}.

Remark 3.2.2.

(i) Taking k = 1, we deduced the R(p, q)-deformed binomial distribtuion of the
second kind ([5], Definition 3.5 in page 9).

(i) The multinomial probability distribution presented in ([13], eq 1 in page 18)
is recovered by putting R(p, q) = 1.

Corollary 3.2.3. The recursion relation for the q-deformed multinomial distribu-
tion of the second kind is deduced as :

Px+1 =
[
n−

k∑
j=1

xj

]
k,q

k∏
j=1

θj (1− θj)(1− q)

1− qxj+1
Px.

Proof. By taking R(x, 1) = 1−x
1−q in the general formalism. 2

Remark 3.2.4. We denote by Yj , j ∈ {1, 2, · · · , k}, the number of usccesses of
the jth kind in a sequence of n independent Bernoulli trials with chain-composite
failures, where the conditional probability of success of the jth kind at any trial,
given that i − 1 successes of the jth kind occur in the previous trials, is given by
the relation (3.2.1).

Using the same procedure to derive the relation (3.2.2), the probability function
of the random vector

(
Y1, Y2, · · · , Yk

)
is obtained as:

(3.2.3) P
(
Y1 = y1, · · · , Yk = yk

)
=

[
n

y1, y2, · · · , yk

]
R(p,q)

k∏
j=1

θ
n−sj
j

(
1⊖ θj

)yj

R(p,q)
,

where yj ∈ {0, 1, · · · , n},
k∑

j=1

yj ≤ n, sj =

j∑
i=1

yi, 0 < θj < 1, and j ∈ {1, 2, · · · , k}.

Let Wj , j ∈ {1, 2, . . . , k} be the number of failures of the jth kind until the occur-
rence of the nth success of the kth kind, in a sequence of n independent Bernoulli
trials with chain-composite successes.

Theorem 3.2.5. The probability function of the negative R(p, q)-deformed multi-
nomial distribution of the second kind with parameters n,Θ, p and q is furnished
by:
(3.2.4)

Pw := P
(
W1 = w1, · · · ,Wk = wk

)
=

[
n+ sk − 1
w1, · · · , wk

]
R(p,q)

k∏
j=1

θ
wj

j

(
1⊖ θj

)n+sk−sj

R(p,q)
,
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where wj ∈ N, sj =

j∑
i=1

wi, 0 < θj < 1, and j ∈ {1, 2, · · · , k}. Furthermore, their

recursion relations are given by:

Pw+1 =
[
n−

k∑
j=1

wj

]
k,R(p,q)

k∏
j=1

θj
(
1⊖ θj

)
R(p,q)

[wj + 1]R(p,q)
Pw, with P0 =

k∏
j=1

(
1⊖ θj

)n
R(p,q)

.

Remark 3.2.6. The limit of the R(p, q)-deformed multinomial distribution of the
second kind (3.2.2), as n −→ ∞ is the R(p, q)-deformed multiple Euler distribution:

lim
n−→∞

[
n

x1, x2, · · · , xk

]
R(p,q)

k∏
j=1

θ
xj

j

(
1⊖ θj

)n−sj

R(p,q)
=

k∏
j=1

ER(p,q)(−µj)
µ
xj

j

[xj ]R(p,q)
.

Moreover, the limit of the R(p, q)-deformed multinomial distribution of the second
kind (3.2.4), as n −→ ∞ is the R(p, q)-deformed multiple Euler distribution:

lim
n−→∞

[
n+ sk − 1

w1, w2, · · · , wk

]
R(p,q)

k∏
j=1

θ
wj

j

(
1⊖ θj

)n+sk−sj

R(p,q)
=

k∏
j=1

ER(p,q)(−µj)
µ
wj

j

[wj ]R(p,q)
.

Remark 3.2.7 Several kind of the R(p, q)-deformed multivariate absorption dis-
tribution are also attracted our attention. Replacing R(p, q) by R(p−1, q−1), θj by

τ
−mj

1 τ
mj

2 , for j ∈ {1, 2, · · · , k} in the relation (3.2.1), the probability of successes is
reduced as:

pj,i = 1− τ
−mji+1
1 τ

mj+1−i
2 , 0 < mj < ∞, j ∈ {1, 2, . . . , k}, i ∈ {1, 2, · · · , [mj ]}.

Using the relation (2.6) and the R(p, q)-deformed factorial, the probability function
(3.2.2) takes the following form:

P
(
X1 = x1, · · · , Xk = xk

)
=

[
n

x1, x2, · · · , xk

]
R(p,q)

(τ1 τ2)

−

k∑
j=1

xj(mj − n+ sj)

×
k∏

j=1

(
τ1 − τ2

)n−sj
[mj ]n−sj ,R(p,q).

Furtermore, from (2.6), the probability function (3.2.3) can be rewritten as:

P
(
Y1 = y1, · · · , Yk = yk

)
=

[
n

y1, y2, · · · , yk

]
R(p,q)

(τ1 τ2)

−

k∑
j=1

(mj − yj)(n− sj)

×
k∏

j=1

(
τ1 − τ2

)yj
[mj ]yj ,R(p,q).
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4. Particular Cases of Multinomial Distribution

In this section, we derive particular multinomial coefficient and multinomial
probability distribution induced by the quantum algebras known in the literature.

(i) Taking R(x, y) = x−y
p−q , we obtain the results from the Jagannathan-

Srinivassa algebra [10]: the (p, q)-deformed multinomial coefficients

[ x
r1,r2,··· ,rk ]p,q =

[x]r1+r2+···+rk,p,q

[r1]p,q![r2]p,q! · · · [rk]p,q!

satisfy the recursion relation:

[ x
r1,r2,··· ,rk ]p,q = psk

[
x−1

r1,r2,··· ,rk
]
p,q

+ qx−m1
[

x−1
r1−1,r2,··· ,rk

]
p,q

+ qx−m2
[

x−1
r1,r2−1,··· ,rk

]
p,q

+ · · ·

+ qx−mk
[

x−1
r1,r2,··· ,rk−1

]
p,q

and alternately,

[ x
r1,r2,··· ,rk ]p,q = qsk

[
x−1

r1,r2,··· ,rk
]
p,q

+ px−m1
[

x−1
r1−1,r2,··· ,rk

]
p,q

+ px−m2qs1
[

x−1
r1,r2−1,··· ,rk

]
p,q

+ · · ·

+ px−mkqsk−1
[

x−1
r1,r2,··· ,rk−1

]
p,q

.

Moreover, the (p−1, q−1)-deformed multinomial coefficients provided by

[ x
r1,r2,··· ,rk ]p−1,q−1 = (pq)−

∑k
j=1 rj(x−mj)[ x

r1,r2,··· ,rk ]p,q

= (pq)−
∑k

j=1 rj(x−sj)[ x
r1,r2,··· ,rk ]p,q

obey the recursion relations

[ x
r1,r2,··· ,rk ]p,q = qm1

[
x−1

r1,r2,··· ,rk
]
p,q

+ qm2
[

x−1
r1−1,r2,··· ,rk

]
p,q

+ qm3
[

x−1
r1,r2−1,··· ,rk

]
p,q

+ · · ·+ px
[

x−1
r1,r2,··· ,rk−1

]
p,q

.

and

[ x
r1,r2,··· ,rk ]p,q = px

[
x−1

r1,r2,··· ,rk
]
p,q

+ qx−s1
[

x−1
r1−1,r2,··· ,rk

]
p,q

+ qx−s2
[

x−1
r1,r2−1,··· ,rk

]
p,q

+ · · ·+ qx−sk
[

x−1
r1,r2,··· ,rk−1

]
p,q

,

where rj ∈ N and j ∈ {1, 2, · · · , k}, with mj =
∑k

i=j ri and sj =
∑j

i=1 ri.
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For n a positive integers, x, p, and q real numbers, the following relation
holds:

k∏
j=1

(
1⊕ xj

)n
p,q

=

∑[
n

r1, r2, · · · , rk

]
p,q

k∏
j=1

x
rj
j p(

n−rj
2 )q(

rj
2 )
(
pn−sj−1 ⊕ xjq

n−sj−1

)sj−1

p,q
,

where rj ∈ {0, · · · , n}, j ∈ {1, · · · , k}, with
∑k

i=1 ri ≤ n and sj =
∑j

i=1 ri,
and s0 = 0.

Furthermore, for n be a positive integers, we have

k∏
j=1

(
1⊕ xj

)n
p,q

=
∑[

n+ sk − 1
r1, r2, · · · , rk

]
p,q

k∏
j=1

x
rj
j p(

n−rj
2 )q(

rj
2 )(

pn ⊕ xjqn
)sk−sj−1

p,q

.

Equivalently,

k∏
j=1

(
1⊕ xj

)n
p,q

=

∑
rj∈N

[
n+ sk − 1

r1, r2, · · · , rk

]
p,q

k∏
j=1

x
n+sk−sj−1

j p(
n−rj

2 )q(
n+sk−sj−1

2 )+rj(
pn ⊕ xjqn

)sk−sj−1

p,q

,

where j ∈ {1, 2, · · · , k}, with sj =

j∑
i=1

ri, s0 = 0.

Let xj , j ∈ {1, 2, · · · , k + 1}, p, and q real numbers. For n positive integer,
the following result holds:

(
1⊖ Λk

)n
p,q

=

n∑
rj=0

[
n

r1, r2, · · · , rk

]
p,q

k∏
j=1

x
n−sj
j

(
1⊖ xj

)rj
p,q

(
1⊖ xk+1

)n−sk

p,q
,

where rj ∈ {0, · · · , n}, j ∈ {1, · · · , k}, with
∑k

i=1 ri ≤ n and sj =
∑j

i=1 ri,

s0 = 0, Λk =
∏k+1

j=1 xj .

For n a positive integer, we have:

n∑
rj=0

[
n

r1, r2, · · · , rk

]
p,q

k∏
j=1

x
n−sj
j

(
1⊖ xj

)rj
p,q

= p
sk(1+sk−2n)

2

and
n∑

rj=0

[
n

r1, r2, · · · , rk

]
p,q

k∏
j=1

x
rj
j

(
1⊖ xj

)n−sj

p,q
= p

sk(1+sk−2n)

2 ,
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where j ∈ {1, · · · , k}, with
k∑

i=1

rj ≤ n and sj =
∑j

i=1 ri, s0 = 0.

The (p, q)-deformed of the multinomial formula given by Gasper and Rah-
man [4] can be determined as follows:

(
1⊖ Λk

)n
p,q

=

n∑
rj=0

[
n

r1, r2, · · · , rk

]
p,q

k∏
j=1

x
sj
j

(
1⊖ xj−1

)n
p,q

(
1⊖ xk

)n−sk

p,q
,

where j ∈ {1, 2, · · · , k}, with
k∑

i=1

rj ≤ n and sj =
∑j

i=1 ri.

(a) The probability function of the (p, q)-deformed multinomial distribution
of the first kind with parameters n,

(
θ1, θ2, · · · , θk

)
, p and q is presented

by:

P
(
Y1 = y1, · · · , Yk = yk

)
=

[
n

y1, y2, · · · , yk

]
p,q

k∏
j=1

θ
yj

j p(
n−xj

2 ) q(
yj
2 )(

1⊕ θj
)n−sj−1

p,q

,

and their recursion relations as:

Py+1 =
[
n−

k∑
j=1

yj

]
k,p,q

k∏
j=1

θj p
n−yjqyjPy

[yj + 1]p,q
(
1⊕ θj

)
p,q

,

with P0 =
∏k

j=1
p(

n
2)(

1⊕θj

)n

p,q

, where for j ∈ {1, 2, · · · , k} we have yj ∈

{0, 1, · · · , n}, and
∑k

j=1 yj ≤ n, sj =
∑j

i=1 yi for 0 < θj < 1.

(b) The probability function of the negative (p, q)-deformed multinomial
distribution of the first kind with parameters n,

(
θ1, θ2, · · · , θk

)
, p and

q is given as follows:

P
(
T1 = t1, · · · , Tk = tk

)
=

[
n+ sk − 1

t1, t2, · · · , tk

]
p,q

k∏
j=1

θ
uj

j p(
n−uj

2 ) q(
uj
2 )(

1⊕ θj
)n+sk−sj−1

p,q

,

and their recurrence relation by:

Pt+1 =
[
n−

k∑
j=1

tj

]
k,p,q

k∏
j=1

θj p
n−tj qtjPt

[tj + 1]p,q
(
1⊖ θj

)
p,q

with P0 =
∏k

j=1
p(

n
2)(

1⊕θj

)n

p,q

where for j ∈ {1, 2, · · · , k} we have tj ∈ N

and sj =
∑j

i=1 ti for 0 < θj < 1.
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(c) The probability function of the (p, q)-deformed multinomial distribu-
tion of the second kind with parameters n,

(
θ1, θ2, · · · , θk

)
, p and q is

determined by:

P
(
X1 = x1, · · · , Xk = xk

)
=

[
n

x1, x2, · · · , xk

]
p,q

k∏
j=1

θ
xj

j

(
1⊖ θj

)n−sj

p,q

and the recurrence relation

Px+1 =
[
n−

k∑
j=1

xj

]
k,p,q

k∏
j=1

θj
(
1⊖ θj

)
p,q

[xj + 1]p,q
Px,

with P0 =
∏k

j=1

(
1⊖ θj

)n
p,q

where xj ∈ {0, 1, · · · , n},
∑k

j=1 xj ≤ n and

sj =
∑j

i=1 xi.

Another (p, q)-deformed multinomial distribution of the second kind

P
(
Y1 = y1, · · · , Yk = yk

)
=

[
n

y1, y2, · · · , yk

]
p,q

k∏
j=1

θ
n−sj
j

(
1⊖ θj

)yj

p,q
,

where yj ∈ {0, 1, · · · , n},
k∑

j=1

yj ≤ n, sj =

j∑
i=1

yi, 0 < θj < 1, and j ∈

{1, 2, · · · , k}.
(d) The probability function of the negative (p, q)-deformed multinomial

distribution of the second kind with parameters n,
(
θ1, θ2, · · · , θk

)
, p and

q is furnished by:

P
(
W1 =w1, · · · ,Wk = wk

)
=[

n+ sk − 1
w1, w2, · · · , wk

]
p,q

k∏
j=1

θ
wj

j

(
1⊖ θj

)n+sk−sj

p,q
.

Furthermore, their recursion relations are given as follows:

Px+1 =
[
n−

k∑
j=1

xj

]
k,p,q

k∏
j=1

θj
(
1⊖ θj

)
p,q

[xj + 1]p,q
Px, with P0 =

k∏
j=1

(
1⊖θj

)n
p,q

.

where wj ∈ N, sj =
j∑

i=1

wi, 0 < θj < 1, and j ∈ {1, 2, · · · , k}.

(ii) Putting R(x, y) = 1−xy
(p−1−q)x , we obtain the multinomial distribution and prop-

erties corresponding to the Chakrabarty and Jagannathan algebra [1].



Multinomial Probability Distribution and Quantum Algebras 483

(iii) The multinomial distribution and properties associated to theHounkonnou-
Ngompe generalized q-Quesne algebra [9] can be deduced by putting
R(x, y) = xy−1

(q−p−1)y .

5. Concluding Remarks

The multinomial coefficients and the multinomial probability distribution and
the negative multinomial probability distribution from the R(p, q)-deformed quan-
tum algebras have been examined and discussed. Particular cases have been de-
duced. The numerical interpretation of these probabilitu distributions is in prepa-
ration.
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