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EXTREME SETS OF RANK INEQUALITIES OVER

BOOLEAN MATRICES AND THEIR PRESERVERS

Seok Zun Song, Mun-Hwan Kang, and Young Bae Jun

Abstract. We consider the sets of matrix ordered pairs which satisfy
extremal properties with respect to Boolean rank inequalities of matrices
over nonbinary Boolean algebra. We characterize linear operators that
preserve these sets of matrix ordered pairs as the form of T (X) = PXPT

with some permutation matrix P .

1. Introduction

The linear preserver problem is one of the most active and fertile subjects
in matrix theory during the past one hundred years, which concerns the char-
acterization of linear operators on matrix spaces that leave certain functions,
subsets, relations, etc., invariant. Beasley and Guterman ([1]) investigated the
rank inequalities of matrices over semirings. The structure of matrix varieties
which arise as extremal cases in these inequalities is far from being understood
over fields, as well as over semirings. A usual way to generate elements of such
a variety is to find a pair of matrices which belongs to it and to act on this pair
by various linear operators that preserve this variety. The complete classifica-
tion of linear operators that preserve equality cases in matrix inequalities over
fields was obtained in [5]. For the details on linear operators preserving matrix
invariants one can see [8] and [9]. Almost all researches on linear preserver
problems over semirings have dealt with those semirings without zero-divisors
to avoid the difficulties of multiplication arithmetic for the elements in those
semirings ([2]-[6]). But nonbinary Boolean algebra is not the case. That is, all
elements except 0 and 1 in the nonbinary Boolean algebra are zero-divisors.
So there are few results on the linear preserver problems for the matrices over
nonbinary Boolean algebra ([7], [10]). Kirkland and Pullman characterized the
linear operators that preserve rank of matrices over nonbinary Boolean alge-
bra in [7].
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In this paper, we construct the sets of matrix ordered pairs which satisfy
extremal properties with respect to Boolean rank inequalities of two matrix
multiplication over nonbinary Boolean algebra and characterize the linear op-
erators that preserve those extreme sets.

2. Preliminaries and basic results

A semiring S consists of a set S with two binary operations, addition and
multiplication, such that:

· S is an abelian monoid under addition (the identity is denoted by 0);
· S is a monoid under multiplication (the identity is denoted by 1, 1 6= 0);
· multiplication is distributive over addition on both sides;
· s0 = os = 0 for all s ∈ S.

A semiring S is called antinegative if the zero element is the only element
with an additive inverse.

A semiring S is called a Boolean algebra if S is equivalent to a set of subsets
of a given set M , the sum of two subsets is their union, and the product is
their intersection. The zero element is the empty set and the identity element
is the whole set M .

Let Sk = {a1, a2, . . . , ak} be a set of k-elements, P(Sk) be the set of all
subsets of Sk and Bk be a Boolean algebra of subsets of Sk = {a1, a2, . . . , ak},
which is a subset of P(Sk). It is straightforward to see that a Boolean algebra
Bk is a commutative and antinegative semiring. If Bk consists of only the empty
subset and M , then it is called a binary Boolean algebra. If Bk is not a binary
Boolean algebra, then it is called a nonbinary Boolean algebra. Let Mm,n(Bk)
denote the set of m× n matrices with entries from the Boolean algebra Bk. If
m = n, we use the notation Mn(Bk) instead of Mn,n(Bk).

Throughout the paper, we assume that m ≤ n and Bk denotes the nonbinary
Boolean algebra, which contains at least 3 elements. The matrix In is the n×n
identity matrix, Jm,n is the m×n matrix of all ones and Om,n is the m×n zero
matrix. We omit the subscripts when the order is obvious from the context
and we write I, J and O, respectively. The matrix Ei,j , which is called a cell,
denotes the matrix with exactly one nonzero entry, that being a one in the
(i, j)th entry. A weighted cell is any nonzero scalar multiple of a cell, that is,
αEi,j is a weighted cell for any 0 6= α ∈ Bk. Let Ri denote the matrix whose
ith row is all ones and is zero elsewhere, and Cj denote the matrix whose jth

column is all ones and is zero elsewhere.
The matrix A ∈ Mm,n(Bk) is said to be of Boolean rank r if there exist

matrices B ∈ Mm,r(Bk) and C ∈ Mr,n(Bk) such that A = BC and r is the
smallest positive integer that such a factorization exists. We denote b(A) = r.

By definition, the unique matrix with Boolean rank equal to 0 is the zero
matrix O.

A line of a matrix A is a row or a column of the matrix A.
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For X,Y ∈ Mm,n(S), the matrix X ◦ Y denotes the Hadamard or Schur

product, i.e., the (i, j)thentry of X ◦ Y is xi,jyi,j .
We say that the matrix A dominates the matrix B if and only if bi,j 6= 0

implies that ai,j 6= 0, and we write A ≥ B or B ≤ A.
An operator T : Mm,n(Bk) → Mm,n(Bk) is called linear if it satisfies T (X +

Y ) = T (X) + T (Y ) and T (αX) = αT (X) for all X,Y ∈ Mm,n(Bk) and α ∈
Bk.

We say that an operator T preserves a set P if X ∈ P implies that T (X) ∈ P
or if P is the set of ordered pairs such that (X,Y ) ∈ P implies (T (X), T (Y )) ∈
P .

An operator T strongly preserves a set P if X ∈ P if and only if T (X) ∈
P or if P is the set of ordered pairs such that (X,Y ) ∈ P if and only if
(T (X), T (Y )) ∈ P .

An operator T is called a (P,Q,B)-operator if there exist permutation ma-
trices P and Q and a matrix B ∈ Mm,n(S) with no zero entries such that
T (X) = P (X ◦B)Q for all X ∈ Mm,n(S) or if for m = n, T (X) = P (X ◦B)TQ
for all X ∈ Mm,n(S). A (P,Q,B)-operator is called a (P,Q)-operator if B = J ,
the matrix of all ones.

If S is a field, then there is the usual rank function ρ(A) for any matrix
A ∈ Mm,n(S). It is well-known that the behavior of the function ρ with respect
to matrix addition and multiplication is given by the following inequalities ([3]):

• the rank-sum inequalities:

|ρ(A)− ρ(B)| ≤ ρ(A+ B) ≤ ρ(A) + ρ(B),

• Sylvester’s laws:

ρ(A) + ρ(B)− n ≤ ρ(AB) ≤ min {ρ(A), ρ(B)}, and

• the Frobenius inequality:

ρ(AB) + ρ(BC ) ≤ ρ(ABC ) + ρ(B),

where A, B are conformal matrices with entries from a field.

The arithmetic properties of Boolean rank for the matrix multiplications
are restricted by the following list of inequalities ([1]): For arbitrary A,B ∈
Mn(Bk),

(1) b(AB) ≤ min{b(A), b(B)},

(2) b(AB) ≥

{

0 if b(A) + b(B) ≤ n,
1 if b(A) + b(B) > n.

Now, we construct the following sets of matrix pairs that arise as either
extremal cases in the inequalities (1) and (2):

RMM (Bk) = {(X,Y ) ∈ Mn(Bk)
2 | b(XY ) = min{ b(X), b(Y )}},

RM0(Bk) = {(X,Y ) ∈ Mn(Bk)
2 | b(XY ) = 0},

RM1(Bk) = {(X,Y ) ∈ Mn(Bk)
2 | b(XY ) = 1}.
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In this paper, we characterize the linear operators that preserve these sets
of matrix pairs.

Lemma 2.1. Let P and Q be permutation matrices of m-square and n-square

respectively. If T : Mm,n(Bk) → Mm,n(Bk) is defined by T (X) = PX or

T (X) = XQ for any X ∈ Mm,n(Bk). Then T preserves Boolean rank. That is

b(T (X)) = b(X).

Proof. Let A,B ∈ Mm,n(Bk) and P be an m ×m permutation matrix. Since
b(AB) ≤ min{b(A),b(B)}, we have b(PX) ≤ min{b(P ), b(X)} ≤b(X). And
b(X) = b(IX) = b((PTP )X) = b(PT (PX)) ≤b(PX). Hence b(PX) = b(X).
Similarly b(XQ) = b(X) for all n× n permutation matrix Q. �

Theorem 2.2. Let T : Mm,n(Bk) → Mm,n(Bk) be a linear operator. Then the

following conditions are equivalent:
(a) T is bijective;
(b) T is surjective;
(c) T is injective;
(d) there exists a permutation σ on {(i, j) | i = 1, 2, . . . ,m; j = 1, 2, . . . , n}

such that T (Ei,j) = Eσ(i,j) for all 1 ≤ i ≤ m and 1 ≤ j ≤ n.

Proof. (a), (b) and (c) are equivalent since Mm,n(Bk) is a finite set.
(d)⇒(b) For any D ∈ Mm,n(Bk), we may write

D =

m
∑

i=1

n
∑

j=1

di,jEi,j .

Since σ is a permutation, there exist σ−1(i, j) and

D′ =

m
∑

i=1

n
∑

j=1

dσ−1(i,j)Eσ−1(i,j)

such that

T (D′) = T
(

m
∑

i=1

n
∑

j=1

dσ−1(i,j)Eσ−1(i,j)

)

=

m
∑

i=1

n
∑

j=1

dσσ−1(i,j)Eσσ−1(i,j) =

m
∑

i=1

n
∑

j=1

di,jEi,j = D.

(a)⇒(d) We assume that T is bijective. Suppose that T (Ei,j) 6= Eσ(i,j)

where σ be a permutation on {(i, j) | i = 1, 2, . . . ,m; j = 1, 2, . . . , n}. Then
there exist some pairs (i, j) and (r, s) such that T (Ei,j) = αEr,s(α 6= 1) or
some pairs (i, j), (r, s) and (u, v) ((r, s) 6= (u, v)) such that T (Ei,j) = αEr,s +
βEu,v +Z(α 6= 0, β 6= 0, Z ∈ Mm,n(Bk)), where the (r, s)th and (u, v)th entries
of Z are zeros.

Case 1) Suppose that there exist some pairs (i, j) and (r, s) such that
T (Ei,j) = αEr,s(α 6= 1). Since T is bijective, there exists Xr,s ∈ Mm,n(Bk)
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such that T (Xr,s) = Er,s. Then αT (Xr,s) = αEr,s = T (Ei,j), and hence
αXr,s = Ei,j , which contradicts the fact that α 6= 1.

Case 2) Suppose that there exist some pairs (i, j), (r, s) and (u, v) such that
T (Ei,j) = αEr,s + βEu,v + Z(α 6= 0, β 6= 0, Z ∈ Mm,n(Bk)), where the (r, s)th

and (u, v)th entries of Z are zeros. Since T is bijective, there existXr,s,Xu,v and
Z ′ ∈ Mm,n(Bk) such that T (Xr,s) = αEr,s, T (Xu,v) = βEu,v, and T (Z ′) = Z.
Thus T (Ei,j) = αEr,s + βEu,v + Z = T (Xr,s) + T (Xu,v) + T (Z ′) = T (Xr,s +
Xu,v + Z ′). So Ei,j = Xr,s +Xu,v + Z ′, a contradiction. �

Remark 2.3. One can easily verify that if m = 1 or n = 1, then all opera-
tors under consideration are (P,Q,B)-operators and if m = n = 1, then all
operators under consideration are (P, PT , B)-operators.

Henceforth we will always assume that m,n ≥ 2.

Lemma 2.4. Let T : Mm,n(Bk) → Mm,n(Bk) be a linear operator which maps

a line to a line and T be defined by the rule T (Ei,j) = bi,jEσ(i,j), where σ is

a permutation on the set {(i, j) | i = 1, 2, . . . ,m; j = 1, 2, . . . , n} and bi,j ∈ Bk

are nonzero elements for i = 1, 2, . . . ,m; j = 1, 2, . . . , n. Then T is a (P,Q,B)-
operator.

Proof. Since no combination of p rows and q columns can dominate J for any
nonzero p and q with p+ q = m, we have that either the image of each row is
a row and the image of each column is a column, or m = n and the image of
each row is a column and the image of each column is a row. Thus there are
permutation matrices P and Q such that T (Ri) ≤ PRiQ, T (Cj) ≤ PCjQ or,
if m = n, T (Ri) ≤ P (Ri)

TQ, T (Cj) ≤ P (Cj)
TQ. Since each nonzero entry of

a cell lies in the intersection of a row and a column and T maps nonzero cells
into nonzero (weighted) cells, it follows that T (Ei,j) = Pbi,jEi,jQ = P (Ei,j ◦
B)Q, or, if m = n, T (Ei,j) = P (bi,jEi,j)

TQ = P (Ei,j ◦B)TQ where B = (bi,j)
is defined by the action of T on the cells. �

3. Linear preservers of RMm(Bk)

Recall that

RMm(Bk) = {(X,Y ) ∈ Mn(Bk)
2 | b(XY ) = min{b(X), b(Y )}}.

Theorem 3.1. Let T : Mn(Bk) → Mn(Bk) be a linear operator. Then T is

surjective and preserves RMm(Bk) if and only if there exists a permutation

matrix P such that T (X) = PXPT for all X ∈ Mn(Bk).

Proof. Let T : Mn(Bk) → Mn(Bk) be defined by T (X) = PXPT and (X,Y ) ∈
RMm(Bk). Then b(XY ) = min{b(X), b(Y )} and hence

b(T (X)T (Y )) = b(PXPTPY PT ) = b(PXY PT ) = b(XY )

= min{b(X), b(Y )} = min{b(PXPT ), b(PY PT )}

= min{b(T (X)), b(T (Y ))}
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by Lemma 2.1. Thus (T (X), T (Y ))∈RMm(Bk). That is T preservesRMm(Bk).
Conversely, assume that T is surjective and preserves RMm(Bk). By The-

orem 2.2, we have that T (Ei,j) = Eσ(i,j) for a permutation σ on {(i, j) | 1 ≤
i, j ≤ n}. Consider (Ei,j , Ej,h) ∈ RMm(Bk) for all h. Then b(T (Ei,j)T (Ej,h))
= min{b(T (Ei,j), b(T (j,h))} = 1, but T (Ei,j)T (Ej,h) = Eσ(i,j)Eσ(j,h). It fol-
lows that Eσ(j,h) is in the same row as Eσ(j,1) for any h = 1, 2, . . . , n. That
is, T maps rows to rows; similarly T maps columns to columns. By Lemma
2.4 with bi,j = 1, it follows that T (X) = PXQ for some permutation matrices
P and Q. Let us show that Q = PT . Indeed T (Ei,j) = Eπ(i),τ(j), where π is
the permutation corresponding to P and τ is the permutation corresponding
to QT . But (E1,i, Ei,1) ∈ RMm(Bk); thus (Eπ(1),τ(i), Eπ(i),τ(1)) ∈ RMm(Bk)

and hence π ≡ τ . Therefore Q = PT . �

4. Linear preservers of RM0(Bk)

Recall that

RM0(Bk) = {(X,Y ) ∈ Mn(Bk)
2 | b(XY ) = 0}.

In this section, we characterize the linear operator T : Mn(Bk) → Mn(Bk) that
preserves RM0(Bk).

A linear operator T : Mn(Bk) → Mn(Bk) is singular if T (X) = O for some
nonzero X ∈ Mn(Bk); Otherwise T is nonsingular. Notice that if T is a (P,Q)-
operator, then T is nonsingular.

Theorem 4.1. Let T : Mn(Bk) → Mn(Bk) be a nonsingular linear operator.

Assume that T (J) ≥ PJ , a permutation matrix. Then T preserves RM0(Bk) if
and only if there exists a permutation matrix P such that T (X) = PXPT for

all X ∈ Mn(Bk).

Proof. Let T : Mn(Bk) → Mn(Bk) be defined by T (X) = PXPT and (X,Y ) ∈
RM0(Bk). Then b(XY ) = 0 and hence b(T (X)T (Y )) = b(PXPTPY PT ) =
b(PXY PT ) = b(XY ) = 0 by Lemma 2.1. Thus (T (X), T (Y )) ∈ RM0(Bk).
That is, T preserves RM0(Bk).

Conversely, assume that T preserves RM0(Bk). Since T (J) ≥ PJ , a permu-
tation matrix, there are n different cells whose images have nonzero entries in
every column. Assume that these cells can be chosen such that their nonzero
entries are in fewer than n columns, say X = E1+E2+ · · ·+En is the sum of n
such cells and X has no nonzero entry in column h. Then (X,Rh) ∈ RM0(Bk)
and hence (T (X), T (Rh)) ∈ RM0(Bk), since T preserves RM0(Bk). But T (X)
has nonzero entry in every column, which implies T (X)T (Rh) 6= O, a contra-
diction. Thus, if T maps a column into two columns, then we have a contra-
diction from above. Furthermore, if T maps two columns into one column,
there must be a column whose image is at least two column from T (J) ≥ PJ

for some permutation matrix PJ . Thus in this case, we also have a contradic-
tion as above. Consequently T maps a column into a column and all columns
into all columns respectively. Hence T induces a permutation on the set of
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columns. Similarly T induces a permutation on the set of rows, and hence
T (X) = P (X ◦B)Q for all X ∈ Mn(Bk) and some permutation matrices P and
Q. Let us show that Q = PT . Indeed we have that T (Ei,j) = bi,jEπ(i),τ(j).

If Q 6= PT , then π 6= τ . Thus, for some i, we have π(i) 6= τ(i) and hence
for some j 6= i, we have π(j) = τ(i). Here (Ei,i, Ej,i) ∈ RM0(Bk) but
T (Ei,i)T (Ej,i) = bi,ibj,iEπ(i),τ(i)Eπ(j),τ(i) = bi,ibj,iEπ(i),τ(i) 6= O, and hence
(T (Ei,i), T (Ej,i)) /∈ RM0(Bk); a contradiction. Thus π = τ and hence T (X) =
P (X ◦ B)PT for all X ∈ Mn(Bk). Since T is nonsingular, all entries of B are
nonzero and not zero divisors. But every elements α in Bk is a zero divisor if
α 6= 1. Thus bi,j = 1. Hence B = J . Consequently T (X) = PXPT . �

Corollary 4.2. Let T : Mn(Bk) → Mn(Bk) be a surjective linear operator.

Then T preserves RM0(Bk) if and only if there exists a permutation matrix P
such that T (X) = PXPT for all X ∈ Mn(Bk).

Proof. If T is a surjective linear operator, then T is bijective by Theorem 2.2.
Thus T is nonsingular. Hence, T preserves RM0(Bk) if and only if T (X) =
PXPT , by Theorem 4.1. �

Corollary 4.3. Let T : Mn(Bk) → Mn(Bk) be a linear operator. Then T
strongly preserves RM0(Bk) if and only if there exists a permutation matrix P
such that T (X) = PXPT for all X ∈ Mn(Bk).

Proof. It is easy to see that operator of the form T (X) = PXPT strongly
preserves RM0(Bk).

Conversely, suppose that T strongly preserves RM0(Bk). We claim that (1)
T (J) ≥ PJ , some permutation matrix, that is, T (J) has a nonzero element in
each row and each column and (2) T is a nonsingular operator. Then we apply
Theorem 4.1.

Claim (1): T (J) ≥ PJ . Assume, on the contrary, that T (J) has a zero col-
umn (For the case of a zero row, the proof is quite similar). Up to a multiplica-
tion with permutation matrices, we may assume that there are nonzero elements
in columns 1, 2, . . . , t of T (J) and all elements in the column (t+ 1), . . . , n are
zero. Then there exist column matrices Cj1 , Cj2 , . . . , Cjs whose images domi-
nate all nonzero entries in columns 1 through t. Let l 6= jh for all h, 1 ≤ h ≤ s.
Thus (Cj1 , Cj2 , . . . , Cjs)Rl = O. Since T strongly preservesRM0(Bk), it follows
that T (Cj1 , Cj2 , . . . , Cjs)T (Rl) = O. Then all the entries in rows 1 through t
of T (Rl) are zero, since there is a nonzero element in each of the first t columns
of T (Cj1 , Cj2 , . . . , Cjs). Therefore T (El,l) has nonzero entries only in rows
t + 1, . . . , n and only in columns 1, 2, . . . , t. Thus T (El,l)

2 = O, equivalently,
(T (El,l), T (El,l)) ∈ RM0(Bk). This is a contradiction since T strongly pre-
serves RM0(Bk) and (El,l, El,l) /∈ RM0(Bk). Thus T (J) has neither a zero row
nor a zero column, that is T (J) ≥ PJ .

Claim (2): T is a nonsingular operator. Assume that there exists a nonzero
matrix X such that T (X) = O. Then (T (X), T (I)) ∈ RM0(Bk). But (X, I) /∈
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RM0(Bk). This contradicts the fact that T strongly preserves RM0(Bk). Thus
T is a nonsingular operator.

Hence Theorem 4.1 is applicable, since claims (1) and (2) satisfy the con-
ditions in Theorem 4.1. Consequently we obtain T (X) = PXPT for all
X ∈ Mn(Bk) and for some permutation matrix P . �

5. Linear preservers of RM1(Bk)

Recall that

RM1(Bk) = {(X,Y ) ∈ Mn(Bk)
2 | b(XY ) = 1}.

Lemma 5.1. Let T : Mn(Bk) → Mn(Bk) be a linear operator defined by

T (Ei,j) = bi,jEσ(i,j) for some permutation σ of {(i, j) | 1 ≤ i, j ≤ n} and

nonzero scalars bi,j ∈ Bk. Then T strongly preserves RM1(Bk) if and only if

there exists a permutation matrix P such that T (X) = PXPT for all X ∈
Mn(Bk).

Proof. Clearly linear operators of the form T (X) = PXPT strongly preserves
RM1(Bk).

Conversely, assume that T strongly preservesRM1(Bk). Consider (Ei,i, Ei,h)
∈ RM1(Bk) for all h = 1, . . . , n. If T (Ei,i) = bi,iEr,s for some r and s, then
T (Ei,h) = bi,hEs,τ(h), where τ is some permutation, since (T (Ei,i), T (Ei,h)) ∈
RM1(Bk). That is, T (Ri) ≤ Rs. Thus T induces a permutation on the rows.
Similarly T induces a permutation on the columns. Thus, for some permuta-
tions π and τ , T (Ei,j) = bi,jEπ(i),τ(j). Now b(T (Ei,i)T (Ei,j)) must be 1 and

hence π(i) = τ(i). Therefore π = τ and we have that T (X) = P (X ◦ B)PT

for all X ∈ Mn(Bk), and P is the permutation corresponding to π. Now,
if B 6= J , then bp,q 6= 1 for some (p, q). But then, (Ei,i + Ei,q + Ep,i +
bp,qEp,q, I) /∈ RM1(Bk), while (Ei,i + Ei,q + Ep,i + Ep,q, I) ∈ RM1(Bk). How-
ever T (Ei,i + Ei,q + Ep,i + bp,qEp,q) = T (Ei,i + Ei,q + Ep,i + Ep,q), which
contradicts the fact that T strongly preserves RM1(Bk). Thus B = J and
hence T (X) = PXPT for all X ∈ Mn(Bk). �

Theorem 5.2. Let T : Mn(Bk) → Mn(Bk) be a surjective linear operator.

Then T strongly preserves RM1(Bk) if and only if there exists a permutation

matrix P such that T (X) = PXPT for all X ∈ Mn(Bk).

Proof. Assume that T strongly preserves RM1(Bk). Since T is surjective, we
have T (Ei,j) = Eσ(i,j) for all i and j with 1 ≤ i, j ≤ n by Theorem 2.2. By
Lemma 5.1 with bi,j = 1, we obtain the result.

Conversely if T (X) = PXPT for all X ∈ Mn(Bk) and some permuta-
tion matrix P , then T (XY ) = P (XY )PT = PXPTPY PT = T (X)T (Y ).
Thus b(T (X)T (Y )) = b(T (XY )) = b(PXY PT ) = b(XY ). Hence (X,Y ) ∈
RM1(Bk) if and only if (T (X), T (Y )) ∈ RM1(Bk). Therefore T strongly pre-
serves RM1(Bk). �
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As a concluding remark, we have constructed the sets of matrix ordered pairs
which satisfy extremal properties with respect to Boolean rank inequalities of
two matrix multiplication over nonbinary Boolean algebra and characterize the
linear operators that preserve those extreme sets.
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