• Title/Summary/Keyword: Q-Ring

Search Result 244, Processing Time 0.024 seconds

SOME REMARKS ON SKEW POLYNOMIAL RINGS OVER REDUCED RINGS

  • Kim, Hong-Kee
    • East Asian mathematical journal
    • /
    • v.17 no.2
    • /
    • pp.275-286
    • /
    • 2001
  • In this paper, a skew polynomial ring $R[x;\alpha]$ of a ring R with a monomorphism $\alpha$ are investigated as follows: For a reduced ring R, assume that $\alpha(P){\subseteq}P$ for any minimal prime ideal P in R. Then (i) $R[x;\alpha]$ is a reduced ring, (ii) a ring R is Baer(resp. quasi-Baer, p.q.-Baer, a p.p.-ring) if and only if the skew polynomial ring $R[x;\alpha]$ is Baer(resp. quasi-Baer, p.q.-Baer, a p.p.-ring).

  • PDF

SOME RESULTS ON A DIFFERENTIAL POLYNOMIAL RING OVER A REDUCED RING

  • Han, Jun-Cheol;Kim, Hong-Kee;Lee, Yang
    • East Asian mathematical journal
    • /
    • v.16 no.1
    • /
    • pp.89-96
    • /
    • 2000
  • In this paper, a differential polynomial ring $R[x;\delta]$ of ring R with a derivation $\delta$ are investigated as follows: For a reduced ring R, a ring R is Baer(resp. quasi-Baer, p.q.-Baer, p.p.-ring) if and only if the differential polynomial ring $R[x;\delta]$ is Baer(resp. quasi-Baer, p.q.-Baer, p.p.-ring).

  • PDF

SOME REMARKS ON PRIMAL IDEALS

  • Kim, Joong-Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.30 no.1
    • /
    • pp.71-77
    • /
    • 1993
  • Every ring considered in the paper will be assumed to be commutative and have a unit element. An ideal A of a ring R will be called primal if the elements of R which are zero divisors modulo A, form an ideal of R, say pp. If A is a primal ideal of R, P is called the adjoint ideal of A. The adjoint ideal of a primal ideal is prime [2]. The definition of primal ideals may also be formulated as follows: An ideal A of a ring R is primal if in the residue class ring R/A the zero divisors form an ideal of R/A. If Q is a primary idel of a ring R then every zero divisor of R/Q is nilpotent; therefore, Q is a primal ideal of R. That a primal ideal need not be primary, is shown by an example in [2]. Let R[X], and R[[X]] denote the polynomial ring and formal power series ring in an indeterminate X over a ring R, respectively. Let S be a multiplicative system in a ring R and S$^{-1}$ R the quotient ring of R. Let Q be a P-primary ideal of a ring R. Then Q[X] is a P[X]-primary ideal of R[X], and S$^{-1}$ Q is a S$^{-1}$ P-primary ideal of a ring S$^{-1}$ R if S.cap.P=.phi., and Q[[X]] is a P[[X]]-primary ideal of R[[X]] if R is Noetherian [1]. We search for analogous results when primary ideals are replaced with primal ideals. To show an ideal A of a ring R to be primal, it sufficies to show that a-b is a zero divisor modulo A whenever a and b are zero divisors modulo A.

  • PDF

QUOTIENT STRUCTURE OF A SEMINEAR-RING

  • Lee, Sang-Han;Yon, Yong-Ho
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.1
    • /
    • pp.289-295
    • /
    • 2000
  • In this note, we define a ${Q^*}-ideal$ in a seminear-ring which is analogous of a Q-ideal in a semiring, and we construct a quotient seminear-ring. Also, We prove the fundamental theorem of homomorphisms for seminear-rings.

SKEW POLYNOMIAL RINGS OVER σ-QUASI-BAER AND σ-PRINCIPALLY QUASI-BAER RINGS

  • HAN JUNCHEOL
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.1
    • /
    • pp.53-63
    • /
    • 2005
  • Let R be a ring R and ${\sigma}$ be an endomorphism of R. R is called ${\sigma}$-rigid (resp. reduced) if $a{\sigma}r(a) = 0 (resp{\cdot}a^2 = 0)$ for any $a{\in}R$ implies a = 0. An ideal I of R is called a ${\sigma}$-ideal if ${\sigma}(I){\subseteq}I$. R is called ${\sigma}$-quasi-Baer (resp. right (or left) ${\sigma}$-p.q.-Baer) if the right annihilator of every ${\sigma}$-ideal (resp. right (or left) principal ${\sigma}$-ideal) of R is generated by an idempotent of R. In this paper, a skew polynomial ring A = R[$x;{\sigma}$] of a ring R is investigated as follows: For a ${\sigma}$-rigid ring R, (1) R is ${\sigma}$-quasi-Baer if and only if A is quasi-Baer if and only if A is $\={\sigma}$-quasi-Baer for every extended endomorphism $\={\sigma}$ on A of ${\sigma}$ (2) R is right ${\sigma}$-p.q.-Baer if and only if R is ${\sigma}$-p.q.-Baer if and only if A is right p.q.-Baer if and only if A is p.q.-Baer if and only if A is $\={\sigma}$-p.q.-Baer if and only if A is right $\={\sigma}$-p.q.-Baer for every extended endomorphism $\={\sigma}$ on A of ${\sigma}$.

ON WEAK ARMENDARIZ RINGS

  • Jeon, Young-Cheol;Kim, Hong-Kee;Lee, Yang;Yoon, Jung-Sook
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.1
    • /
    • pp.135-146
    • /
    • 2009
  • In the present note we study the properties of weak Armendariz rings, and the connections among weak Armendariz rings, Armendariz rings, reduced rings and IFP rings. We prove that a right Ore ring R is weak Armendariz if and only if so is Q, where Q is the classical right quotient ring of R. With the help of this result we can show that a semiprime right Goldie ring R is weak Armendariz if and only if R is Armendariz if and only if R is reduced if and only if R is IFP if and only if Q is a finite direct product of division rings, obtaining a simpler proof of Lee and Wong's result. In the process we construct a semiprime ring extension that is infinite dimensional, from given any semi prime ring. We next find more examples of weak Armendariz rings.

REGULARITY OF THE GENERALIZED CENTROID OF SEMI-PRIME GAMMA RINGS

  • Ali Ozturk, Mehmet ;Jun, Young-Bae
    • Communications of the Korean Mathematical Society
    • /
    • v.19 no.2
    • /
    • pp.233-242
    • /
    • 2004
  • The aim of this note is to study properties of the generalized centroid of the semi-prime gamma rings. Main results are the following theorems: (1) Let M be a semi-prime $\Gamma$-ring and Q a quotient $\Gamma$-ring of M. If W is a non-zero submodule of the right (left) M-module Q, then $W\Gamma$W $\neq 0. Furthermore Q is a semi-prime $\Gamma$-ring. (2) Let M be a semi-prime $\Gamma$-ring and $C_{{Gamma}$ the generalized centroid of M. Then $C_{\Gamma}$ is a regular $\Gamma$-ring. (3) Let M be a semi-prime $\Gamma$-ring and $C_{\gamma}$ the extended centroid of M. If $C_{\gamma}$ is a $\Gamma$-field, then the $\Gamma$-ring M is a prime $\Gamma$-ring.

NOTE ON GOOD IDEALS IN GORENSTEIN LOCAL RINGS

  • Kim, Mee-Kyoung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.39 no.3
    • /
    • pp.479-484
    • /
    • 2002
  • Let I be an ideal in a Gorenstein local ring A with the maximal ideal m and d = dim A. Then we say that I is a good ideal in A, if I contains a reduction $Q=(a_1,a_2,...,a_d)$ generated by d elements in A and $G(I)=\bigoplus_{n\geq0}I^n/I^{n+1}$ of I is a Gorenstein ring with a(G(I)) = 1-d, where a(G(I)) denotes the a-invariant of G(I). Let S = A[Q/a$_1$] and P = mS. In this paper, we show that the following conditions are equivalent. (1) $I^2$ = QI and I = Q:I. (2) $I^2S$ = $a_1$IS and IS = $a_1$S:sIS. (3) $I^2$Sp = $a_1$ISp and ISp = $a_1$Sp :sp ISp. We denote by $X_A(Q)$ the set of good ideals I in $X_A(Q)$ such that I contains Q as a reduction. As a Corollary of this result, we show that $I\inX_A(Q)\Leftrightarrow\IS_P\inX_{SP}(Qp)$.

A Note on c-Separative Modules

  • Chen, Huanyin
    • Kyungpook Mathematical Journal
    • /
    • v.47 no.3
    • /
    • pp.357-361
    • /
    • 2007
  • A right R-module P is $c$-separative provided that $$P{\oplus}P{{c}\atop{\simeq_-}}P{\oplus}Q{\Longrightarrow}P{\simeq_-}Q$$ for any right R-module Q. We get, in this paper, two sufficient conditions under which a right module is $c$-separative. A ring R is a hereditary ring provided that every ideal of R is projective. As an application, we prove that every projective right R-module over a hereditary ring is $c$-separative.

  • PDF

ON COMMUTING GRAPHS OF GROUP RING ZnQ8

  • Chen, Jianlong;Gao, Yanyan;Tang, Gaohua
    • Communications of the Korean Mathematical Society
    • /
    • v.27 no.1
    • /
    • pp.57-68
    • /
    • 2012
  • The commuting graph of an arbitrary ring R, denoted by ${\Gamma}(R)$, is a graph whose vertices are all non-central elements of R, and two distinct vertices a and b are adjacent if and only if ab = ba. In this paper, we investigate the connectivity, the diameter, the maximum degree and the minimum degree of the commuting graph of group ring $Z_nQ_8$. The main result is that $\Gamma(Z_nQ_8)$ is connected if and only if n is not a prime. If $\Gamma(Z_nQ_8)$ is connected, then diam($Z_nQ_8$)= 3, while $\Gamma(Z_nQ_8)$ is disconnected then every connected component of $\Gamma(Z_nQ_8)$ must be a complete graph with a same size. Further, we obtain the degree of every vertex in $\Gamma(Z_nQ_8)$, the maximum degree and the minimum degree of $\Gamma(Z_nQ_8)$.