SOME RESULTS ON A DIFFERENTIAL POLYNOMIAL RING OVER A REDUCED RING

Jun Cheol Han, Hong Kee Kim and Yang Lee

Abstract

In this paper, a differential polynomial ring $R[v, \delta]$ of ring R with a derivation δ are mvestigated as follows For a reduced ring R, a ring R is $\operatorname{Baer}(\mathrm{resp}$. quasi-Baer, p.q-Baen, p p.-ring) if and orly if the differential polynomal ung $R[x, \delta]$ is Baer(tesp quasi-Baer p.q.-Baer, p.p.-rmg).

Throughout this paper, all rings are associative with unity. A ring R is called (quasi-) Baer if the right annihilator of every (right. ideal) nonempty subset of R is generated by an idempotent $\ln 3$. a ring R is called a right(resp. left) prunctpally quast-Baer (or simply raght(tesp. left) p.q.-Baer) if the right(resp. left) annihilator of a principal right(resp. left) ideal is generated by an idempotent A ring R is called a p.q.-Baer ring if it is both right and left p.q-Baer Another generalization of Baer ring is the p.p.-ring. A ring R is called a rught(resp. left) p.p.- ring if the right(resp. left) annihilator of an element of R is generated by an idempotent. Also, a ring R is called a p.p.-ring if it is both right and left p.p. In [3], the following fact was proved;

[^0]Proposition 1. The following are equivalent;
(1) R is a right p.q.-Baer ring.
(2) The right annuhulator of any fintely generated right ideal is generated (as a reght vdeal) by an adempotent.
(3) The rught annihilator of every princupal right adeal is generated (as a right ideal) by an idempotent.
(4) The right annihtlator of every fintely generated ideal is generated (as a right ideal) by an idempotent.

Note that this statement is true if "right" is replaced by "left" throughout.

Proof. See [3].
In [3], they also have shown the following results;
Theorem A. R as a nght p.q. Baer ring of and onty of the polynomial tung $R[x]$ is a roght p.q.- Baet ring.

Theorem B. For a ring R, the following are equivalent;
(1) R is a quası-Baer rung;
(2) the polynomıal ring $R[x]$ over R is a quast-Baer ring;
(3) the formal power series ring $R[[x]]$ over R is a quast-Baer ring.

Now we try to apply those results for Ore extension and so we recall the following : Let α be an endomorphism of a ring R. An α-derivation of R is an additive map $\delta: R \longmapsto R$ such that $\delta(a b)=$ $\alpha(a) \delta(b)+\delta(a) b$ for all $a, b \in R$. The Ore extension $R[x ; \alpha, \delta]$ is the ring of polynomials in x over R with usual addition and new multiplication defined by $x a=\alpha(a) x+\delta(a)$ for each $a \in R$. If $\delta=0$, we write $R[x ; \alpha]$ for $R[x ; \alpha, \delta]$ and is called an Ore extenston of endomorphtsm type (also called a skew polynomial ring). While if $\alpha=1$, we write $R[x ; \delta]$ for $R[x ; 1, \delta]$ and is called an Ore extension of derivation type (also called a differential polynomial ring). Also. we recall that R is called a reduced ring if it has no nonzero nilpotent elements and R is called an abehan ring if every idempotent of R is central. We can easily observe that every reduced ring is abelian and in a reduced ring R the left and right annihilaters coincide for any
subset U of R, where the left (right) annihilator of U is denoted by $l_{R}(U)=\{a \in \dot{R} \mid a U=0\}\left(r_{R}(U)=\{a \in R \mid U a=0\}\right)$.

Of course, for a reduced ring R, it is clear that the following are equivalent :
(1) R is a right p.p.-ring,
(2) R is a left p.p.-ring;
(3) R is a right p.q.-Baer ring;
(4) R is a left p q.-Baer ring.

For a quasi-Baer(or p.q.-Baer) ring, we have the following questions.

Question.

(1) If R is a quasi-Baer(or left p.q.-Baer) ring, then is the Ore extension $R[x ; \alpha, \delta]$ quast-Baer(or left p.q.-Baer)? Here α is an endomorphism of R and δ is an α-dervvation of R.
(2) Is the converse of (1) true"

In the following example, we give answers negatively to this question

Example 2.

(1) [2, Example 11] The ring $R=Z_{2}[x] /\left(x^{2}\right)$ is not a quasi-Baer, where Z_{2} is the field of two elements and $\left(x^{2}\right)$ is the ideal of the ring $Z_{2}[x]$ generated by x^{2}. In fact, $l_{R}\left(R\left(x-\left(x^{2}\right)\right)\right.$ is not generated by an idempotent of R.
But since $H_{i}^{[y} \delta=\operatorname{Mat}_{2}\left(Z_{2}\left[y^{2}\right]\right)$, where the derivation δ is defined by $\delta\left(x+\left(x^{2}\right)\right)=1+\left(x^{2}\right), R[y ; \delta]$ is a quasi-Baer because $Z_{2}\left[y^{2}\right]$ is a quasi-Baer and so $\mathrm{Mat}_{2}\left(Z_{2}\left[y^{2}\right]\right)$ is also a quasi-Baer.
(2) Let R be the ring of upper triangular matrices over Z_{2}. For our notation, $e_{2 j}$ denotes the matrix with 1 in $(2, j)$-position and 0 for otherwise. Define an endomorphism α of R by $\alpha\left(a e_{11}+\right.$ $\left.b e_{12}+c e_{13}+d e_{22}+e e_{23}+f e_{33}\right)=d e_{22}$ Let δ_{3} be an inner derivation of R (i.e. $\delta_{\beta}(r)=\beta r-r \beta$ for all $r \in R$), where $\beta=e_{11}$ Then $S=R\left[x ; \alpha, \delta_{\beta}\right]$ is an Ore extension of R.

Consider the principal left ideal $S e_{13}$ generated by ϵ_{13}. Since $x e_{13}=\alpha\left(e_{13}\right) x+\delta_{\beta}\left(\epsilon_{13}\right)=\epsilon_{13}$. we get $x^{n} e_{13}=\epsilon_{13}$ for all $n=$ $1,2, \ldots$ Also. since $\left(a e_{11}+b e_{12}+c e_{13}+d e_{22}+e e_{23}-f e_{33}\right) \epsilon_{13}=$ $a e_{13}$. we have $S e_{13}=\left\{a e_{13} \mid a \in Z_{2}\right\}$.

Note that all possible idempotents in S that generate $l_{S}\left(S e_{13}\right)$ are $e_{22}+e_{33}, e_{12}+e_{22}+e_{33}, e_{13}+e_{22}+e_{33}$ and $e_{12}+e_{13}+e_{22}+e_{33}$. Directional calculation yields that $l_{S}\left(S e_{13}\right)$ is not generated by an idempotent. So S is not left p.q.-Baer.

By Example 2, the answer to the question is "no" and so we can ask "under what conditions, the answer to the question is yes?". In (1), Armendariz proved that if R is a reduced ring, then R is a p.p.ring if and only if the polynomial ring $R[x]$ is a p.p.-ring. We will generalize this results by showing that if R is a reduced ring. then R is a p.p.(resp. Baer)-ring if and only if the differential polynomial ring $R[x ; \delta]$ is a p.p.(resp. Baer)-ring. Based on these facts, we have the following :

Lemma 3. Let R be a reduced rang with a deruation δ. Then for all a, b, c, and $d \in R$,
(1) $a b=0$ if and only if $b a=0$;
(2) If $a b=0$ and $c b+a d=0$, then $c b=a d=0$;
(3) If $a b=0$, then $\delta^{k}(a) \delta^{n-k}(b)=0$ for all posituve integers n and $k(0 \leq k \leq n) ;$
(4) $\delta(e)=0$ for all tempotent $e \in R$.

Proof. (1) is clear.
(2) If $a b=0$ and $c b+a d=0$, then $0=(c b+a d) a=c(b a)+(a d) a=a d a$ and so $a d=0$. Hence $c b=0$.
(3) If $a b=0$, then $0=\delta(a b)=a \delta(b)+\delta(a) b$. By (2), $a \delta(b)=\delta(a) b=0$ If $a \delta(b)=0$, then $\delta(a) \delta(b)=a \delta^{2}(b)=0$ by (2). Similarly, if $\delta(a) b=0$, then we also have $\delta^{2}(a) b=0$. Continuing in this way, we get the results by induction on n.
(4) Let e be an idempotent of R. Then $\delta(e)=\delta\left(e^{2}\right)=e \delta(e)+\delta(e) e$ and then $e \delta(e)=e \delta(e)+e \delta(e) e$, and so $e \delta(e) e=0$, which implies that $e \delta(e)=\delta(e) e=0$. Hence we get $\delta(e)=0$.

Lemma 4. Let R be a ring with a dervation δ. Then for each $a \in R$ and any postive integer n, we have $x^{n} b=\sum_{z=0}^{n}\binom{n}{2} \delta^{2}(b) x^{n-2}$ in the ring $R[x: \delta]$, where $\delta^{0}(b)=b$.

Proof. The proof is straightforward by an induction on n.
Lemma 5. Let R be a reduced ing with a dervation δ and let f and $g \in R[x ; \delta]$ with $f=\sum_{r=0}^{n} a_{2} x^{2}, g=\sum_{2=0}^{m} b_{2} x^{2}$. Then $f g=0$ of and only if $a_{2} b_{j}=0$ for all i and $j(0 \leq \imath \leq n, 0 \leq \jmath \leq m)$.

Proof. Suppose that $f g=0$. We can assume that $m=n$ without loss of generality. Let $f_{1}=\sum_{z=0}^{m-1} a_{2} x^{2}$ and $g_{1}=\sum_{z=0}^{m-1} b_{2} x^{2}$ Then $0=f g=\left(f_{1}+a_{m} x^{m}\right)\left(g_{1}+b_{m} x^{m}\right)=f_{1} g_{1}+f_{1}\left(b_{m} x^{m}\right)+\left(a_{m} x^{7 n}\right) g_{1}+$ $\left(a_{m} x^{m}\right)\left(b_{m} x^{m}\right)$ Let $f_{1} g_{1}=\sum_{t=0}^{2 m-2} c_{2} x^{2}$ and $f g=\sum_{k=0}^{2 m} d_{k} x^{k}$. Then by Lemma 4 we get the following equations
(i) For $0 \leq k \leq m-1$,

$$
d_{k}=c_{k}+\sum_{i=0}^{k}\binom{m}{m-k+\imath} a_{m i} \delta^{m-k+1}\left(b_{i}\right)
$$

(ii) For $m \leq k \leq 2 m$,

$$
\begin{aligned}
d_{k}= & c_{k}
\end{aligned}+\sum_{\imath=k-m}^{m-1}\binom{\imath}{\imath-(k-m)} a_{\imath} \delta^{\imath-(k-m)}\left(b_{m}\right)
$$

Observe that $c_{2 m-1}=c_{2 m}=0, d_{2 m-1}=a_{m-1} b_{m}+m a_{m} \delta\left(b_{m}\right)+$ $a_{m} b_{m-1}$ and $d_{2 m}=a_{m} b_{m}$. Since $f g=0, d_{k}=0$ for all $k(0 \leq$ $k \leq 2 m$). We will proceed the proof by induction on m. First, if $m=0$. then it is clear. Assume that $a_{2} b_{3}=0$ for all i and j $(0 \leq i, j \leq m-1)$. By Lemma 4, $c_{k}=0$, for all $k(0 \leq k \leq 2 m-2)$. It is enough to show that $a_{2} b_{m}=a_{m} b_{j}=0$ for all ι and $j(0 \leq$ $i, j \leq m)$. Since $d_{2 m}=a_{m} b_{m}$, we have $0=d_{2 m-1}=a_{m-1} b_{m}+$ $m a_{m} \delta\left(b_{m}\right)+a_{m} b_{m-1}=a_{m-1} b_{m}+a_{m} b_{m-1}$ by Lemma 3-(3), and also $a_{m-1} b_{m}=a_{n n} b_{m-1}=0$ by Lemma 3-(2). By continuing in this way and induction, we have the result.
Conversely, if $a_{2} b_{3}=0$ for all i and $j(0 \leq i, j \leq m)$, then by Lemma 1 and equations (i) and (ii), $d_{k}=0$ for all $k(0 \leq k \leq 2 m)$. Hence $f g=0$.

Corollary 6. Let R be a ring with a derivation δ. Then R is a reduced ring if and only if $R[x ; \delta]$ is a reduced ring.

Proof. Suppose that a ring R is reduced. If $f^{2}=0$ for any $f=$ $a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in R[x ; \delta]$. then by Lemma $5 a_{z} a_{3}=0$ for all i, j $(0 \leq \imath, j \leq n)$. In particular, $a_{2}^{2}=0$ for all \imath. Since R is reduced. $a_{2}=0$ for all i. Hence $f=0$ and so $R[x ; \delta]$ is a reduced ring. The converse is clear.

Corollary 7. If R is a reduced rung with a derwation δ and $f \in$ $R[x ; \delta]$ is an vdempotent, then $f \in R$, that us, every adempotent of $R[x: \delta]$ is an adempotent of R.

Proof. Let $f=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in R[x ; \delta!$ be an idempotent. Then $0=f-f^{2}=f(1-f)$. By Lemma $5, a_{0}\left(1-a_{0}\right)=0$ and $a_{2}^{2}=0$ for each $i(1 \leq i \leq n)$, and we get $a_{0}=a_{0}^{2}$ and so $a_{i}=0$ for each i $(1 \leq i \leq n)$. Hence $f=\hat{a}_{0} \in R$.

Corollary 8. Let R be a reduced ring with a dervation δ and let $T \subseteq R[X ; \delta]$. If $S_{f}=\left\{a_{0}, a_{1}, \ldots, a_{n}\right\}$, where $f=a_{0}+a_{1} J+\cdots . a_{n} x^{n} \in$ T, then $r_{R \mid x \delta\}}(T)=r_{R}\left(S_{T}\right)\{x ; \delta]$, where $S_{T}=\cup_{f \in T} S_{f}$.

Proof. If $g=b_{0}+b_{1} x+\cdots+b_{m} x^{m} \in r_{R|x \delta|}(T)$, then $T y=0$. i.e.. $f g=0$ for all $f \in T$. By Lemma 5, $a_{\imath} b_{j}=0$ for all i and $\eta(0 \leq i \leq m$. $0 \leq j \leq n$), which implies that $b_{j} \in r_{R}\left(S_{T}\right)$, and so $g \in r_{R}\left(S_{T}\right)[x ; \delta]$. Hence $r_{R \mid x]}(T) \subseteq r_{R}\left(S_{T}\right)[x ; \delta]$. The other inclusion is obvious.

Theorem 9. Let R be a reduced ring with a derveation δ. Then $R[x: \delta]$ is a p.p.-ring of and only of R is a p.p.-ring.

Proof. $\left(\Longrightarrow\right.$) If $R[x ; \delta]$ is a p.p.-ring and $a \in R$, then $r_{R}(a)=$ $R \cap r_{R \mid x \delta\}}(a)=R \cap e R[x ; \delta]$ for some idempotent $e \in R[x ; \delta]$. By Corollary $7, e \in R$, and so $r_{R}(a)=e R$. Hence R is a p.p.-ring. (\Longleftarrow) Assume that R is a p.p. ring. Note that for any finite subset T of $R . r_{R}(T)=e R$ for some idempotent $e \in R$. If $f \in R[x ; \delta]$. then by Corollary $8, r_{R|x \delta|}\left(S_{f}\right)=r_{R}\left(S_{f}\right)[x ; \delta]=e R!x ; \delta j$ for some idempotent $e \in R$ because S_{f} is a finite subset of R and ϵ is central Hence $R[x . \delta]$ is a p.p. ring.

Since a p.p.-ring is equivalent to a p.q.-Baer ring for a reduced ring, we have the following;

Corollary 10. Let R be a reduced mug with a dermathon δ. Then $R[x ; \delta]$ is a left(right) p.q-Baer ring if and only of R is a left(roght) p.q.-Baer rang.

Similarly we can also have the following Theorem;
Theorem 11. Let R be a reduced ring with a derivation δ. Then $R[x ; \delta]$ is a Baer rong if and only of R is a Baer ring.

Proof. (\Longrightarrow) If $\left.R_{[x ;}^{f} x ; \delta\right]$ is Baer, then for any subset T of $K, r_{R \mid \lambda \lambda}(T)=$ $f R[x ; \bar{\delta}]$ for some idempotent $f \in R[x ; \delta]$. By Corollary $7, f \in R$. and then $r_{R}(T)=R \cap r_{R^{\prime} \Delta i}(T)=R \cap f R[x, \delta]=f R$. Hence R is a Baer ring
$(\Longleftrightarrow$) Suppose that R is Baer and let S be an arbitrary nonempty subset of $R[x, \delta]$ Let $T=U_{f \in S} S_{f}$ Since R is Baer, $r_{R}(T)=e R$ for some idempotent $e \in R$. By Corollary $8, r_{R i x \delta j}(S)=r_{R}(T)\left\{x ; \delta_{j}=\right.$ $\left.\epsilon R_{\llcorner }^{\top} x ; \delta\right]$. Thus $R[x ; \delta j$ is Baer.

Theorems 9 and 11 extend Armendariz's results $[1$. Theorem A and $\mathrm{B}]$. Also, for a reduced ring R, the following are equivalent clearly:
(1) R is a Baer ring.
(2) R is a quasi-Baer ring.

Hence we have the following:
Corollary 12
Let R be a reduced ring with a dervation δ. Then $R[x, \delta]$ is a quastBaer rme if and only of R is a quasi-Baet rang.

Proof. (\Longrightarrow) Assume that $K[a: \delta j$ is a quasi-Baer ring. Since K is a reduced ring, $R[x: \delta]$ is a reduced ring by Corollary 6 and a Baer ring by above note According to Theorem 10. R is a Baer ring and hence is a quasi-Baer ring.
(\Leftarrow) If R is a quasi-Baer and reduced ring, then $R a ; \delta]$ is a reduced ring by Corollary 6 and a Baer ring by above note Hence $R[x, \delta i$ is a quasi-Baer ring

Finally we may raise the following question;

QUestion. For an abelian ring, are the results an this papet true?

References

[1] E. P. Armendariz, A note on extenszons of Baer and pp. rings, Australian Math. Soc. 18 (1974), $470-473$.
[2] E P Armendariz, H. K. Koo and J K. Park, Isomorphic Ore extensıons, Comm. in Algebra. 15 (12) (1987), 2633 - 2652
[3] G.F Birkenmeier, J. Y Kim and J. K Park, On extensıons of quası-Baer and princıpally quasi-Baer rings, preprınt.
[4] K R Goodearl, and R. B. Warfield, Jr., An Introduction to Noncommutatuve Noetherian Rings, Cambridge University Press, Cambridge. 1989.
[5] J. C. McConnell, and J. C Robson, Noncommutative Noetherian rangs, John Wiley \& Sons Ltd. 1987.

Jun Cheol Han
Department of Computer Mathematics
Kosin University
Busan 700, Korea
E-maul: jchan@sdg.kosin.ac.kr

Hong Kee Kim

Department of Mathematics
Gyeongsang National University
Jinju 660-701, Korea
E-mail: hkkim@gshp.gsnu.ac.kr

Yang Lee

Department of Mathematics Education
Pusan National University
Pusan 609-735, Korea
E-matl: ylee@hyowon.pusan.ac.kr

[^0]: Received January 14, 2000 Revised May 23, 2000.
 Key words and phrases Reduced ring, p p-ting, p.q-Baer rimg, (quasi-)Bder ring, Ore extension

 The authors would hike to express therr gratitnde to Piotesson .I K Park tor hus suggestion and helpful discussion The second and third althors wete suppoted by the Basic Science Rescarch Instatute Program, Korea Restatch Fomndation in 1999, Project No. 1999-015-DP0002.

