East Asian Math. J. 16(2000), No. 1, pp. 89-96

SOME RESULTS ON A DIFFERENTIAL POLYNOMIAL RING OVER A REDUCED RING

JUN CHEOL HAN, HONG KEE KIM AND YANG LEE

ABSTRACT In this paper, a differential polynomial ring $R[x, \delta]$ of ring R with a derivation δ are investigated as follows. For a reduced ring R, a ring R is Baer(resp. quasi-Baer, p.q.-Baer, p.p.-ring) if and only if the differential polynomial ring $R[x, \delta]$ is Baer(resp. quasi-Baer p.q.-Baer, p.p.-ring).

Throughout this paper, all rings are associative with unity. A ring R is called (quasi-) Baer if the right annihilator of every (right ideal) nonempty subset of R is generated by an idempotent In [3], a ring R is called a right(resp. left) principally quasi-Baer (or simply right(resp. left) p.q.-Baer) if the right(resp. left) annihilator of a principal right(resp. left) ideal is generated by an idempotent A ring R is called a p.q.-Baer ring if it is both right and left p.q.-Baer Another generalization of Baer ring is the p.p.-ring. A ring R is called a right(resp. left) p.p.- ring if the right(resp. left) annihilator of an element of R is generated by an idempotent. Also, a ring R is called a p.p.-ring if it is both right and left p.q. by an idempotent. Also, a ring R is called a p.p.-ring if it is both right and left p.p. ring fact was proved;

Received January 14, 2000 Revised May 23, 2000.

Key words and phrases Reduced ring, p.p.-ring, p.q.-Baer ring, (quasi-)Baer ring, Ore extension

The authors would like to express their gratitude to Professor J K. Park for his suggestion and helpful discussion. The second and third authors were supported by the Basic Science Research Institute Program, Korea Research Foundation in 1999, Project No. 1999-015-DP0002.

PROPOSITION 1. The following are equivalent;

- (1) R is a right p.q.-Baer ring.
- (2) The right annihilator of any finitely generated right ideal is generated (as a right ideal) by an idempotent.
- (3) The right annihilator of every principal right ideal is generated (as a right ideal) by an idempotent.
- (4) The right annihilator of every finitely generated ideal is generated (as a right ideal) by an idempotent.

Note that this statement is true if "right" is replaced by "left" throughout.

PROOF. See [3].

In [3], they also have shown the following results;

THEOREM A. R is a right p.q.-Baer ring if and only if the polynomial ring R[x] is a right p.q.-Baer ring.

THEOREM B. For a ring R, the following are equivalent;

- (1) R is a quasi-Baer ring;
- (2) the polynomial ring R[x] over R is a quasi-Baer ring;
- (3) the formal power series ring R[[x]] over R is a quasi-Baer ring.

Now we try to apply those results for Ore extension and so we recall the following : Let α be an endomorphism of a ring R. An α - derivation of R is an additive map $\delta : R \mapsto R$ such that $\delta(ab) =$ $\alpha(a)\delta(b) + \delta(a)b$ for all $a, b \in R$. The Ore extension $R[x; \alpha, \delta]$ is the ring of polynomials in x over R with usual addition and new multiplication defined by $xa = \alpha(a)x + \delta(a)$ for each $a \in R$. If $\delta = 0$, we write $R[x; \alpha]$ for $R[x; \alpha, \delta]$ and is called an Ore extension of endomorphism type (also called a skew polynomial ring). While if $\alpha = 1$, we write $R[x; \delta]$ for $R[x; 1, \delta]$ and is called an Ore extension of derivation type (also called a differential polynomial ring). Also, we recall that R is called a reduced ring if it has no nonzero nilpotent elements and R is called an abelian ring if every idempotent of R is central. We can easily observe that every reduced ring is abelian and in a reduced ring R the left and right annihilaters coincide for any subset U of R, where the left (right) annihilator of U is denoted by $l_R(U) = \{a \in R \mid aU = 0\}(r_R(U) = \{a \in R \mid Ua = 0\}).$

Of course, for a reduced ring R, it is clear that the following are equivalent :

- (1) R is a right p.p.-ring,
- (2) R is a left p.p.-ring;
- (3) R is a right p.q.-Baer ring;
- (4) R is a left p q.-Baer ring.

For a quasi-Baer(or p.q.-Baer) ring, we have the following questions.

QUESTION.

- (1) If R is a quasi-Baer(or left p.q.-Baer) ring, then is the Ore extension $R[x; \alpha, \delta]$ quasi-Baer(or left p.q.-Baer)? Here α is an endomorphism of R and δ is an α -derivation of R.
- (2) Is the converse of (1) true^{γ}

In the following example, we give answers negatively to this question

EXAMPLE 2.

(1) [2, Example 11] The ring $R = Z_2[x]/(x^2)$ is not a quasi-Baer, where Z_2 is the field of two elements and (x^2) is the ideal of the ring $Z_2[x]$ generated by x^2 . In fact, $l_R(R(x + (x^2)))$ is not generated by an idempotent of R. But since $R[y \ \delta] \simeq Mat_2(Z_2[y^2])$, where the derivation δ is

but since M_1g $\delta_j = Mat_2(Z_2[g])$, where the derivation δ is defined by $\delta(x+(x^2)) = 1+(x^2)$, $R[y;\delta]$ is a quasi-Baer because $Z_2[y^2]$ is a quasi-Baer and so $Mat_2(Z_2[y^2])$ is also a quasi-Baer.

(2) Let R be the ring of upper triangular matrices over Z_2 . For our notation, e_{ij} denotes the matrix with 1 in (i, j)-position and 0 for otherwise. Define an endomorphism α of R by $\alpha(ae_{11} + be_{12} + ce_{13} + de_{22} + ee_{23} + fe_{33}) = de_{22}$ Let δ_{β} be an inner derivation of R (i.e. $\delta_{\beta}(r) = \beta r - r\beta$ for all $r \in R$), where $\beta = e_{11}$ Then $S = R[x; \alpha, \delta_{\beta}]$ is an Ore extension of R.

Consider the principal left ideal Se_{13} generated by e_{13} . Since $xe_{13} = \alpha(e_{13})x + \delta_{\beta}(e_{13}) = e_{13}$, we get $x^n e_{13} = e_{13}$ for all n = 1, 2, ... Also, since $(ae_{11} + be_{12} + ce_{13} + de_{22} + ee_{23} - fe_{33})e_{13} = ae_{13}$, we have $Se_{13} = \{ae_{13} \mid a \in Z_2\}$.

Note that all possible idempotents in S that generate $l_S(Se_{13})$ are $e_{22}+e_{33}$, $e_{12}+e_{22}+e_{33}$, $e_{13}+e_{22}+e_{33}$ and $e_{12}+e_{13}+e_{22}+e_{33}$. Directional calculation yields that $l_S(Se_{13})$ is not generated by an idempotent. So S is not left p.q.-Baer.

By Example 2, the answer to the question is "no" and so we can ask "under what conditions, the answer to the question is yes?". In (1), Armendariz proved that if R is a reduced ring, then R is a p.p.ring if and only if the polynomial ring R[x] is a p.p.-ring. We will generalize this results by showing that if R is a reduced ring, then Ris a p.p.(resp. Baer)-ring if and only if the differential polynomial ring $R[x; \delta]$ is a p.p.(resp. Baer)-ring. Based on these facts, we have the following :

LEMMA 3. Let R be a reduced ring with a derivation δ . Then for all a, b, c, and $d \in R$,

- (1) ab = 0 if and only if ba = 0;
- (2) If ab = 0 and cb + ad = 0, then cb = ad = 0;
- (3) If ab = 0, then $\delta^k(a)\delta^{n-k}(b) = 0$ for all positive integers n and k $(0 \le k \le n);$
- (4) $\delta(e) = 0$ for all itempotent $e \in R$.

PROOF. (1) is clear.

(2) If ab = 0 and cb+ad = 0, then 0 = (cb+ad)a = c(ba)+(ad)a = adaand so ad = 0. Hence cb = 0.

(3) If ab = 0, then $0 = \delta(ab) = a\delta(b) + \delta(a)b$. By (2), $a\delta(b) = \delta(a)b = 0$ If $a\delta(b) = 0$, then $\delta(a)\delta(b) = a\delta^2(b) = 0$ by (2). Similarly, if $\delta(a)b = 0$, then we also have $\delta^2(a)b = 0$. Continuing in this way, we get the results by induction on n.

(4) Let e be an idempotent of R. Then $\delta(e) = \delta(e^2) = e\delta(e) + \delta(e)e$ and then $e\delta(e) = e\delta(e) + e\delta(e)e$, and so $e\delta(e)e = 0$, which implies that $e\delta(e) = \delta(e)e = 0$. Hence we get $\delta(e) = 0$.

LEMMA 4. Let R be a ring with a derivation δ . Then for each $a \in R$ and any positive integer n, we have $x^n b = \sum_{i=0}^n {n \choose i} \delta^i(b) x^{n-i}$ in the ring $R[x; \delta]$, where $\delta^0(b) = b$. **PROOF.** The proof is straightforward by an induction on n.

LEMMA 5. Let R be a reduced ring with a derivation δ and let f and $g \in R[x; \delta]$ with $f = \sum_{i=0}^{n} a_i x^i$, $g = \sum_{i=0}^{m} b_i x^i$. Then fg = 0 if and only if $a_i b_j = 0$ for all i and j $(0 \le i \le n, 0 \le j \le m)$.

PROOF. Suppose that fg = 0. We can assume that m = n without loss of generality. Let $f_1 = \sum_{i=0}^{m-1} a_i x^i$ and $g_1 = \sum_{i=0}^{m-1} b_i x^i$. Then $0 = fg = (f_1 + a_m x^m)(g_1 + b_m x^m) = f_1 g_1 + f_1 (b_m x^m) + (a_m x^m)g_1 + (a_m x^m)(b_m x^m)$. Let $f_1 g_1 = \sum_{i=0}^{2m-2} c_i x^i$ and $fg = \sum_{k=0}^{2m} d_k x^k$. Then by Lemma 4 we get the following equations

(i) For $0 \le k \le m - 1$,

$$d_k = c_k + \sum_{i=0}^k \binom{m}{m-k+i} a_m \delta^{m-k+i}(b_i)$$

(ii) For $m \leq k \leq 2m$,

$$d_k = c_k + \sum_{i=k-m}^{m-1} \binom{i}{i-(k-m)} a_i \delta^{i-(k-m)}(b_m) + \sum_{i=k-m}^m \binom{m}{i-(k-m)} a_m \delta^{i-(k-m)}(b_i).$$

Observe that $c_{2m-1} = c_{2m} = 0$, $d_{2m-1} = a_{m-1}b_m + ma_m\delta(b_m) + a_mb_{m-1}$ and $d_{2m} = a_mb_m$. Since fg = 0, $d_k = 0$ for all $k(0 \le k \le 2m)$. We will proceed the proof by induction on m. First, if m = 0, then it is clear. Assume that $a_ib_j = 0$ for all i and j $(0 \le i, j \le m-1)$. By Lemma 4, $c_k = 0$, for all $k(0 \le k \le 2m-2)$. It is enough to show that $a_ib_m = a_mb_j = 0$ for all i and $j(0 \le i, j \le m)$. Since $d_{2m} = a_mb_m$, we have $0 = d_{2m-1} = a_{m-1}b_m + ma_m\delta(b_m) + a_mb_{m-1} = a_{m-1}b_m + a_mb_{m-1}$ by Lemma 3-(3), and also $a_{m-1}b_m = a_mb_{m-1} = 0$ by Lemma 3-(2). By continuing in this way and induction, we have the result.

Conversely, if $a_i b_j = 0$ for all i and j $(0 \le i, j \le m)$, then by Lemma 1 and equations (i) and (ii), $d_k = 0$ for all k $(0 \le k \le 2m)$. Hence fg = 0.

COROLLARY 6. Let R be a ring with a derivation δ . Then R is a reduced ring if and only if $R[x; \delta]$ is a reduced ring.

PROOF. Suppose that a ring R is reduced. If $f^2 = 0$ for any $f = a_0 + a_1x + \cdots + a_nx^n \in R[x; \delta]$. then by Lemma 5 $a_ia_j = 0$ for all i, j $(0 \le i, j \le n)$. In particular, $a_i^2 = 0$ for all *i*. Since R is reduced, $a_i = 0$ for all *i*. Hence f = 0 and so $R[x; \delta]$ is a reduced ring. The converse is clear.

COROLLARY 7. If R is a reduced ring with a derivation δ and $f \in R[x; \delta]$ is an idempotent, then $f \in R$, that is, every idempotent of $R[x; \delta]$ is an idempotent of R.

PROOF. Let $f = a_0 + a_1 x + \dots + a_n x^n \in R[x; \delta]$ be an idempotent. Then $0 = f - f^2 = f(1 - f)$. By Lemma 5, $a_0(1 - a_0) = 0$ and $a_i^2 = 0$ for each i $(1 \le i \le n)$, and we get $a_0 = a_0^2$ and so $a_i = 0$ for each i $(1 \le i \le n)$. Hence $f = a_0 \in R$.

COROLLARY 8. Let R be a reduced ring with a derivation δ and let $T \subseteq R[X; \delta]$. If $S_f = \{a_0, a_1, \ldots, a_n\}$, where $f = a_0 + a_1 x + \cdots + a_n x^n \in T$, then $r_{R[x \ \delta]}(T) = r_R(S_T)[x; \delta]$, where $S_T = \bigcup_{f \in T} S_f$.

PROOF. If $g = b_0 + b_1 x + \dots + b_m x^m \in r_{R[x \ \delta]}(T)$, then Tg = 0. i.e., fg = 0 for all $f \in T$. By Lemma 5, $a_i b_j = 0$ for all i and j $(0 \le i \le m$. $0 \le j \le n$), which implies that $b_j \in r_R(S_T)$, and so $g \in r_R(S_T)[x; \delta]$. Hence $r_{R[x \ \delta]}(T) \subseteq r_R(S_T)[x; \delta]$. The other inclusion is obvious.

THEOREM 9. Let R be a reduced ring with a derivation δ . Then $R[x; \delta]$ is a p.p.-ring if and only if R is a p.p.-ring.

PROOF. (\Longrightarrow) If $R[x;\delta]$ is a p.p.-ring and $a \in R$, then $r_R(a) = R \cap r_{R[x|\delta]}(a) = R \cap eR[x;\delta]$ for some idempotent $e \in R[x;\delta]$. By Corollary 7, $e \in R$, and so $r_R(a) = eR$. Hence R is a p.p.-ring. (\Leftarrow) Assume that R is a p.p. ring. Note that for any finite subset T of R. $r_R(T) = eR$ for some idempotent $e \in R$. If $f \in R[x;\delta]$, then by Corollary 8, $r_{R[x|\delta]}(S_f) = r_R(S_f)[x;\delta] = eR[x;\delta]$ for some idempotent $e \in R$ because S_f is a finite subset of R and e is central. Hence $R[x,\delta]$ is a p.p. ring. Since a p.p.-ring is equivalent to a p.q.-Baer ring for a reduced ring, we have the following;

COROLLARY 10. Let R be a reduced ring with a derivation δ . Then $R[x; \delta]$ is a left(right) p.q.-Baer ring if and only if R is a left(right) p.q.-Baer ring.

Similarly we can also have the following Theorem;

THEOREM 11. Let R be a reduced ring with a derivation δ . Then $R[x; \delta]$ is a Baer ring if and only if R is a Baer ring.

PROOF. (\Longrightarrow) If $R[x; \delta]$ is Baer, then for any subset T of R, $r_{R[x|\delta]}(T) = fR[x; \delta]$ for some idempotent $f \in R[x; \delta]$. By Corollary 7, $f \in R$, and then $r_R(T) = R \cap r_{R[x|\delta]}(T) = R \cap fR[x, \delta] = fR$. Hence R is a Baer ring

(\Leftarrow) Suppose that R is Baer and let S be an arbitrary nonempty subset of $R[x, \delta]$ Let $T = \bigcup_{f \in S} S_f$ Since R is Baer, $r_R(T) = eR$ for some idempotent $e \in R$. By Corollary 8, $r_{R[x|\delta]}(S) = r_R(T)[x; \delta] = eR[x; \delta]$. Thus $R[x; \delta]$ is Baer.

Theorems 9 and 11 extend Armendariz's results [1. Theorem A and B]. Also, for a reduced ring R, the following are equivalent clearly:

- (1) R is a Baer ring.
- (2) R is a quasi-Baer ring.

Hence we have the following:

COROLLARY 12

Let R be a reduced ring with a derivation δ . Then $R[x, \delta]$ is a quasi-Baer ring if and only if R is a quasi-Baer ring.

PROOF. (\Longrightarrow) Assume that $R[x; \delta]$ is a quasi-Baer ring. Since R is a reduced ring, $R[x; \delta]$ is a reduced ring by Corollary 6 and a Baer ring by above note According to Theorem 10. R is a Baer ring and hence is a quasi-Baer ring.

(\Leftarrow) If R is a quasi-Baer and reduced ring, then $R[x; \delta]$ is a reduced ring by Corollary 6 and a Baer ring by above note Hence $R[x, \delta]$ is a quasi-Baer ring

Finally we may raise the following question;

QUESTION. For an abelian ring, are the results in this paper true?

References

- E. P. Armendariz, A note on extensions of Baer and p p. rings, Australian Math. Soc. 18 (1974), 470 - 473.
- [2] E P Armendariz, H. K. Koo and J K. Park, Isomorphic Ore extensions, Comm. in Algebra. 15(12) (1987), 2633 - 2652
- [3] G. F. Birkenmeier, J. Y. Kim and J. K. Park, On extensions of quasi-Baer and principally quasi-Baer rings, preprint.
- [4] K R Goodearl, and R. B. Warfield, Jr., An Introduction to Noncommutative Noetherian Rings, Cambridge University Press, Cambridge. 1989.
- [5] J. C. McConnell, and J. C. Robson, Noncommutative Noetherian rings, John Wiley & Sons Ltd. 1987.

Jun Cheol Han Department of Computer Mathematics Kosin University Busan 700, Korea *E-mail*: jchan@sdg.kosin.ac.kr

Hong Kee Kim Department of Mathematics Gyeongsang National University Jinju 660-701, Korea *E-mail*: hkkim@gshp.gsnu.ac.kr

Yang Lee Department of Mathematics Education Pusan National University Pusan 609-735, Korea *E-mail*: ylee@hyowon.pusan.ac.kr