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Abstract. A right R-module P is c-separative provided that P ⊕P
c∼= P ⊕Q =⇒ P ∼= Q

for any right R-module Q. We get, in this paper, two sufficient conditions under which

a right module is c-separative. A ring R is a hereditary ring provided that every ideal of

R is projective. As an application, we prove that every projective right R-module over a

hereditary ring is c-separative.

Let P and Q be right R-modules, and let p : P ⊕Q → P be the projection on
P , and let qi : P → P ⊕P be the injections from P (i = 1, 2). If ϕ : P ⊕P ∼= P ⊕Q
and (pϕq1)(pϕq2) = (pϕq2)(pϕq1), then we say that P ⊕ P

c∼= P ⊕Q. For example,

if R is a commutative ring, then R ⊕ R
c∼= R ⊕ Q if and only if R ⊕ R ∼= R ⊕ Q.

A right R-module P is c-separative provided that P ⊕ P
c∼= P ⊕ Q =⇒ P ∼= Q for

any right R-module Q. A right R-module P is strongly separative provided that
P ⊕ P ∼= P ⊕ Q =⇒ P ∼= Q for any right R-module Q. Clearly, the concept of
c-separative modules is an extension of that of strongly separative modules. Many
authors studied strong separativity for exchange rings (cf. [2], [4] and [9]-[10]). This
inspires us to investigate c-separative modules. We get, in this paper, two sufficient
conditions under which a right module is c-separative. A ring R is a hereditary ring
provided that every ideal of R is projective. As an application, we prove that every
projective right R-module over a hereditary ring is c-separative.

Throughout this paper, all rings are associative with identity and all modules are
unital right R-modules. A .⊕ B means that A is isomorphic to a direct summand
of B. Let P be a right R-module, and let E = EndR(P ). If aE + bE = E with
a, b ∈ E, then we denote the submodule {p ∈ P | a(p) ∈ b(P )} of P by P(a,b).

Theorem 1. Let P be a right R-module, and let E = EndR(P ). If aE + bE = E
with ab = ba implies that there exists a right R-morphism τ : P(a,b) → P such that
a |P(a,b) +bτ : P(a,b) → b(P ) is a R-isomorphism, then P is c-separative.
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Proof. Assume that P ⊕P
c∼= P ⊕Q. Then there exists an isomorphism θ : P ⊕P ∼=

P ⊕ Q such that (pθq1)(pθq2) = (pθq2)(pθq1), where qi : P → P ⊕ P are natural
injections and p : P ⊕ Q → P is the natural projection. Let pi : P ⊕ P → P and
p′ : P ⊕Q→ Q be natural projections and q : Q→ P ⊕Q be the natural injection.
Construct a map ϕ : P ⊕ P → P given by ϕ(r, s) = (pθq1)(r) + (pθq2)(s) for any
(r, s) ∈ P ⊕ P . For any r ∈ P , it is easy to check that ϕ

(
p1θ

−1(r), p2θ
−1(r)

)
= r;

hence, ϕ is a R-epimorphism. Construct a map i : Q→ P⊕P given by i(r) = θ−1(r)
for any r ∈ Q. Clearly, i is a R-monomorphism. For any r ∈ Q, we see that

ϕi(r) = ϕ
(
θ−1(r)

)
= ϕ

(
p1θ

−1(r), p2θ
−1(r)

)
= (pθq1)p1θ

−1(r) + (pθq2)p2θ
−1(r)

= pθ(q1p1 + q2p2)θ−1(r)
= p(r)
= 0,

and thus Imi ⊆ Kerϕ. If ϕ(r, s) = 0 for some (r, s) ∈ P ⊕ P , we get (pθq1)(r) +
(pθq2)(s) = 0; hence, pθ(r, s) = 0. Obviously, p′θ(r, s) ∈ Q. Furthermore,

i
(
p′θ(r, s)

)
= θ−1

(
p′θ(r, s)

)
= θ−1

(
p′θ(r, s) + pθ(r, s)

)
= θ−1

(
θ(r, s)

)
= (r, s).

That is, Kerϕ ⊆ Imi. Therefore we have an exact sequence

0 → Q
i
↪→ P ⊕ P

ϕ→ P → 0,

where ϕ = (a, b), ab = ba, a, b ∈ E. Construct a map φ : P → P ⊕ P given by
φ(r) = θ−1(r, 0) for any r ∈ P . It is easy to verify that ϕφ = 1P , so we have

φ =
(
c
d

)
: P → P ⊕ P such that ϕφ = 1P , c, d ∈ E. Hence, ac + bd = 1P . By

assumption, there exists a τ : P(a,b) → P such that a |P(a,b) +bτ : P(a,b) → b(P )
is a R-isomorphism. Let u = a |P(a,b) +bτ and M = P(a,b) ⊕ P . Construct a right

R-morphism ψ =
(

u−1

τu−1

)
: b(P ) → M. As a |P(a,b) +bτ = u : P(a,b) → b(P )

is an isomorphism, we get a |P(a,b) u
−1 + bτu−1 = 1b(P ). This implies that (ϕ |M

)ψ = 1b(P ). Thus, M = Ker(ϕ |M ) ⊕ Imψ. Clearly, Ker(ϕ |M ) ⊆ Kerϕ. If
(p1, p2) ∈ Kerϕ, then a(p1) + b(p2) = 0 with p1, p2 ∈ P . Then a(p1) ∈ b(P ); hence,
p1 ∈ P(a,b). As a result, (p1, p2) ∈ M , and so (p1, p2) ∈ Ker(ϕ |M ). This implies
that Kerϕ = Ker(ϕ |M ). So M = Kerϕ ⊕ Imψ. On the other hand, we have
σψ = 1M , where σ = (u, 0) : M = P(a,b) ⊕ P → b(P ). Consequently, we deduce
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that M = Kerσ⊕Imψ = P ⊕Imψ, and so P ∼= Kerϕ ∼= Q. Therefore we complete
the proof. �

Corollary 2. Let P be a right R-module. If every submodule of P is projective,
then P is c-separative.

Proof. Let E = EndR(P ) and aE + bE = E with ab = ba. Let P(a,b) = {p ∈ P |
a(p) ∈ b(P )}. By assumption, P(a,b) is a projective right R-module. Using the Dual
Basis Theorem, there exist {xi} ⊆ P(a,b) and fi ∈ HomR

(
P(a,b), R

)
such that for

any x ∈ P(a,b), x =
∑
i

xifi(x), where only finite fi(x) are not zero. As P(a,b) is

projective, there exists a α : P(a,b) → P such that the following diagram

P(a,b)

α ↙ ↓ a
P

b→ bP → 0

commutates, i.e, a = bα. Since xi ∈ P(a,b), there exists pi ∈ P such that xi = b(pi)
for each i. Hence x =

∑
i

b(pi)fi(x) = b
( ∑

i

pifi(x)
)
. Define a map h : P(a,b) → P

given by h(p) =
∑
i

pifi(p) for any p ∈ P(a,b). If p = 0, then each fi(p) = 0;

hence, h(p) = 0. That is, h is well defined, In addition, we get 1P(a,b) = bh.
One easily checks that a |P(a,b) +b(1P − a)h : P(a,b) → bP is a R-morphism. If(
a |P(a,b) +b(1P −a)h

)
(p) = 0 for a p ∈ P(a,b), then a(p)+ b(1P −a)h(p) = 0, and so

p = 0. Thus, a |P(a,b) +b(1P − a)h : P(a,b) → bP is a R-monomorphism. Given any
bp ∈ bP , we see that bp ∈ P(a,b). Furthermore, we have

(
a |P(a,b) +b(1P −a)h

)
(bp) =

bp, i.e., a |P(a,b) +b(1P − a)h : P(a,b) → bP is a R-epimorphism. It follows that
a |P(a,b) +b(1P − a)h : P(a,b) → bP is a R-isomorphism. Therefore we complete the
proof by Theorem 1. �

Corollary 3. Every projective right module over a hereditary ring is c-separative.

Proof. Let P be a projective right module over a hereditary ring R, and let E =
EndR(P ). Since R is a hereditary ring, every submodule of P is projective. In view
of Corollary 2, P is c-separative, as asserted. �

Let R be a hereditary ring and aR + bR = R with ab = ba. Then R ∼=
{(ξ, η)|aξ+ bη = 0}. We construct a map ϕ : R⊕R→ R given by ϕ(ξ, η) = aξ+ bη

for any (ξ, η) ∈ R⊕R. As ab = ba, we have that R⊕R
c∼= R⊕Kerϕ. By virtue of

Corollary 3, we see that R ∼= Kerϕ, and we are done.
Recall that a domain R is said to be a Dedekind domain in case it is hereditary.

It is well known that every finitely generated module over a commutative Dedekind
domain is cancellable (cf. [7, Theorem 5.8] and [10, Theorem 4.3.7].

Corollary 4. Let P be a projective right module over a Dedekind domain R. Then
P is c-separative.

Proof. Since R is a Dedekind domain, it is a hereditary ring. Therefore the proof
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is true by Corollary 3. �

A ring R is a semihereditary ring provided that every finitely generated right
ideal of R is projective. Let P be a finitely generated projective right module over a
semihereditary ring. Analogously to Corollary 3, we conclude that P is c-separative.

A ring R is said to have stable rank one provided that aR + bR = R implies
that there exists a y ∈ R such that a + by ∈ R is invertible. This condition plays
an important role in algebraic K-theory (cf. [9]). It is well known that every
strongly π-regular ring has stable rank one. Now we observe the following result on
c-separativity.

Theorem 5. Let P be a right R-module, and let E = EndR(P ). If aE + bE = E
with ab = ba implies that there exists a y ∈ E such that a + by : P → P is an
isomorphism, then P is c-separative.

Proof. Given aE + bE = E with ab = ba, then there exists a y ∈ E such that
a+ by : P → P is an isomorphism, Let τ = y|Pa,b

. Then a|P (a,b) + bτ : P(a,b) → bP .
Let u = (a + by)−1|bP . For any bp ∈ bP , we let x = (a + by)−1(bp). Then
(a + by)x = bp, and so ax = b(p − yx) ∈ bP . This implies that u ∈ P(a,b), i.e., we
get u : bP → P(a,b). It is easy to check that(

a|P (a,b) + bτ
)
u = 1P(a,b) and u

(
a|P (a,b) + bτ

)
= 1bP .

Therefore a|P (a,b) + bτ : P(a,b) → bP is an isomorphism. According to Theorem 1,
P is c-separative. �

Corollary 6. If aR + bR = R with ab = ba implies that there exists a y ∈ R such

that a+ by ∈ R is invertible, then R⊕R
c∼= R⊕ P implies that R ∼= P .

Proof. In view of Theorem 5, R is c-separative, and therefore we complete the
proof. �

Theorem 7. Let P be a right R-module, E = EndR(P ), and let Q .⊕ P . Sup-
pose that aE + bE = E with ab = ba implies that there exists a right R-morphism
τ : P(a,b) → P such that a |P(a,b) +bτ : P(a,b) → b(P ) is a R-isomorphism. Then Q
is c-separative.
Proof. Let S = EndR(Q). Then we can find an idempotent e ∈ E such thatQ ∼= eP .
It will suffice to prove that eP is c-separative. Let S = eEe. Given cS+dS = S with
cd = dc, then cx+dy = e for some x, y ∈ S. Hence, (c+1P−e)(x+1P−e)+dy = 1P .
Clearly, (c+1P−e)d = cd = dc = d(c+1P−e). By assumption, we can find a rightR-
morphism τ : P(c+1P−e,d) → P such that (c+1P−e) |P(c+1P−e,d) +dτ : P(c+1P−e,d) →
d(P ) is a R-isomorphism. Clearly, P(c+1P−e,d) = {p ∈ P | (c+ 1P − e)p ∈ d(P )} =
{p ∈ P | cp ∈ d(P ), p = ep}. Clearly, (eP )(c,d) ⊆ P(c+1P−e,d). Thus, we have
eτ |(eP )(c,d)

: (eP )(c,d) → eP . On the other hand, c |(eP )(c,d)
+d(eτ) |(eP )(c,d)

:
(eP )(c,d) → d(eP ). If

(
c |(eP )(c,d)

+d(eτ |(eP )(c,d)
)
)
(ep) = 0 with ep ∈ (eP )(c,d),

then ce(p) = d(eq) for some q ∈ R. Hence (c + 1 − e)(ep) = d(eq), and so
ep ∈ P(c+1−e,d). In addition,

(
(c + 1P − e) |P(c+1P−e,d) +dτ

)
(ep) = 0. This im-

plies that ep = 0, and then c |(eP )(c,d)
+d(eτ |(eP )(c,d)

) : (eP )(c,d) → d(eR) is a
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right R-monomorphism. Given any d(ep) ∈ d(eP ), we can find a t ∈ P(c+1P−e,d)

such that
(
(c + 1P − e) |P(c+1P−e,d) +dτ

)
(t) = d(ep). Clearly, there exists some

s ∈ P such that (c + 1P − e)(t) = ds; hence, c
(
e(t)

)
= d(es). It follows that

(1P − e)(t) = 0, and so t = e(t). Thus, we see that e(t) ∈ (eP )(c,d). As a re-
sult, we deduce that

(
c |(eP )(c,d)

+d(eτ |(eP )(c,d)
)
)
(e(t)) = d(ep). This means that

c |(eP )(c,d)
+d(eτ |(eP )(c,d)

) : (eP )(c,d) → d(eP ) is a R-epimorphism. Therefore
c |(eP )(c,d)

+d(eτ |(eP )(c,d)
) : (eP )(c,d) → d(eP ) is a R-isomorphism. In view of

Theorem 1, Q is c-separative. �

Corollary 8. Let P be a right R-module,and let Q .⊕ P . If every submodule of P
is projective, then Q is c-separative.
Proof. Let E = EndR(P ). As in proof of Corollary 2, aE + bE = E with
ab = ba implies that there exists a right R-morphism τ : P(a,b) → P such that
a |P(a,b) +bτ : P(a,b) → bP is a R-isomorphism. According to Theorem 7, we com-
plete the proof. �
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