KYUNGPOOK Math. J. 47(2007), 357-361

A Note on *c*-Separative Modules

HUANYIN CHEN Department of Mathematics, Zhejiang Normal University, Jinhua 321004, People's Republic of China e mail: chyzxl@dhunnu.edu.cn

ABSTRACT. A right *R*-module *P* is *c*-separative provided that $P \oplus P \stackrel{c}{\cong} P \oplus Q \Longrightarrow P \cong Q$ for any right *R*-module *Q*. We get, in this paper, two sufficient conditions under which a right module is *c*-separative. A ring *R* is a hereditary ring provided that every ideal of *R* is projective. As an application, we prove that every projective right *R*-module over a hereditary ring is *c*-separative.

Let P and Q be right R-modules, and let $p: P \oplus Q \to P$ be the projection on P, and let $q_i: P \to P \oplus P$ be the injections from P(i = 1, 2). If $\varphi: P \oplus P \cong P \oplus Q$ and $(p\varphi q_1)(p\varphi q_2) = (p\varphi q_2)(p\varphi q_1)$, then we say that $P \oplus P \cong P \oplus Q$. For example, if R is a commutative ring, then $R \oplus R \cong R \oplus Q$ if and only if $R \oplus R \cong R \oplus Q$. A right R-module P is c-separative provided that $P \oplus P \cong P \oplus Q \Longrightarrow P \cong Q$ for any right R-module Q. A right R-module P is strongly separative provided that $P \oplus P \cong P \oplus Q \Longrightarrow P \cong Q$ for any right R-module Q. Clearly, the concept of c-separative modules is an extension of that of strongly separative modules. Many authors studied strong separativity for exchange rings (cf. [2], [4] and [9]-[10]). This inspires us to investigate c-separative modules. We get, in this paper, two sufficient conditions under which a right module is c-separative. A ring R is a hereditary ring provided that every ideal of R is projective. As an application, we prove that every projective right R-module over a hereditary ring is c-separative.

Throughout this paper, all rings are associative with identity and all modules are unital right *R*-modules. $A \leq^{\oplus} B$ means that *A* is isomorphic to a direct summand of *B*. Let *P* be a right *R*-module, and let $E = End_R(P)$. If aE + bE = E with $a, b \in E$, then we denote the submodule $\{p \in P \mid a(p) \in b(P)\}$ of *P* by $P_{(a,b)}$.

Theorem 1. Let P be a right R-module, and let $E = End_R(P)$. If aE + bE = Ewith ab = ba implies that there exists a right R-morphism $\tau : P_{(a,b)} \to P$ such that $a \mid_{P_{(a,b)}} + b\tau : P_{(a,b)} \to b(P)$ is a R-isomorphism, then P is c-separative.

Received April 6, 2006, and, in revised form, November 21, 2006.

²⁰⁰⁰ Mathematics Subject Classification: 19U99, 13G05.

Key words and phrases: c-separativity, herediatry ring, projective module.

³⁵⁷

Huanyin Chen

Proof. Assume that $P \oplus P \cong P \oplus Q$. Then there exists an isomorphism $\theta : P \oplus P \cong P \oplus Q$ such that $(p\theta q_1)(p\theta q_2) = (p\theta q_2)(p\theta q_1)$, where $q_i : P \to P \oplus P$ are natural injections and $p : P \oplus Q \to P$ is the natural projection. Let $p_i : P \oplus P \to P$ and $p' : P \oplus Q \to Q$ be natural projections and $q : Q \to P \oplus Q$ be the natural injection. Construct a map $\varphi : P \oplus P \to P$ given by $\varphi(r,s) = (p\theta q_1)(r) + (p\theta q_2)(s)$ for any $(r,s) \in P \oplus P$. For any $r \in P$, it is easy to check that $\varphi(p_1\theta^{-1}(r), p_2\theta^{-1}(r)) = r$; hence, φ is a *R*-epimorphism. Construct a map $i : Q \to P \oplus P$ given by $i(r) = \theta^{-1}(r)$ for any $r \in Q$. Clearly, i is a *R*-monomorphism. For any $r \in Q$, we see that

$$\begin{aligned}
\varphi(i(r) &= \varphi(\theta^{-1}(r)) \\
&= \varphi(p_1\theta^{-1}(r), p_2\theta^{-1}(r)) \\
&= (p\theta q_1)p_1\theta^{-1}(r) + (p\theta q_2)p_2\theta^{-1}(r) \\
&= p\theta(q_1p_1 + q_2p_2)\theta^{-1}(r) \\
&= p(r) \\
&= 0,
\end{aligned}$$

and thus $Imi \subseteq Ker\varphi$. If $\varphi(r,s) = 0$ for some $(r,s) \in P \oplus P$, we get $(p\theta q_1)(r) + (p\theta q_2)(s) = 0$; hence, $p\theta(r,s) = 0$. Obviously, $p'\theta(r,s) \in Q$. Furthermore,

$$i(p'\theta(r,s)) = \theta^{-1}(p'\theta(r,s))$$

= $\theta^{-1}(p'\theta(r,s) + p\theta(r,s))$
= $\theta^{-1}(\theta(r,s))$
= $(r,s).$

That is, $Ker\varphi \subseteq Imi$. Therefore we have an exact sequence

ζ

$$0 \to Q \stackrel{i}{\hookrightarrow} P \oplus P \stackrel{\varphi}{\to} P \to 0,$$

where $\varphi = (a, b), ab = ba, a, b \in E$. Construct a map $\phi : P \to P \oplus P$ given by $\phi(r) = \theta^{-1}(r, 0)$ for any $r \in P$. It is easy to verify that $\varphi \phi = 1_P$, so we have $\phi = \begin{pmatrix} c \\ d \end{pmatrix} : P \to P \oplus P$ such that $\varphi \phi = 1_P, c, d \in E$. Hence, $ac + bd = 1_P$. By assumption, there exists a $\tau : P_{(a,b)} \to P$ such that $a \mid_{P_{(a,b)}} + b\tau : P_{(a,b)} \to b(P)$ is a *R*-isomorphism. Let $u = a \mid_{P_{(a,b)}} + b\tau$ and $M = P_{(a,b)} \oplus P$. Construct a right *R*-morphism $\psi = \begin{pmatrix} u^{-1} \\ \tau u^{-1} \end{pmatrix} : b(P) \to M$. As $a \mid_{P_{(a,b)}} + b\tau = u : P_{(a,b)} \to b(P)$ is an isomorphism, we get $a \mid_{P_{(a,b)}} u^{-1} + b\tau u^{-1} = 1_{b(P)}$. This implies that $(\varphi \mid_M) \psi = 1_{b(P)}$. Thus, $M = Ker(\varphi \mid_M) \oplus Im\psi$. Clearly, $Ker(\varphi \mid_M) \subseteq Ker\varphi$. If $(p_1, p_2) \in Ker\varphi$, then $a(p_1) + b(p_2) = 0$ with $p_1, p_2 \in P$. Then $a(p_1) \in b(P)$; hence, $p_1 \in P_{(a,b)}$. As a result, $(p_1, p_2) \in M$, and so $(p_1, p_2) \in Ker(\varphi \mid_M)$. This implies that $Ker\varphi = Ker(\varphi \mid_M)$. So $M = Ker\varphi \oplus Im\psi$. On the other hand, we have $\sigma\psi = 1_M$, where $\sigma = (u, 0) : M = P_{(a,b)} \oplus P \to b(P)$. Consequently, we deduce

that $M = Ker\sigma \oplus Im\psi = P \oplus Im\psi$, and so $P \cong Ker\varphi \cong Q$. Therefore we complete the proof. \Box

Corollary 2. Let P be a right R-module. If every submodule of P is projective, then P is c-separative.

Proof. Let $E = End_R(P)$ and aE + bE = E with ab = ba. Let $P_{(a,b)} = \{p \in P \mid a(p) \in b(P)\}$. By assumption, $P_{(a,b)}$ is a projective right *R*-module. Using the Dual Basis Theorem, there exist $\{x_i\} \subseteq P_{(a,b)}$ and $f_i \in Hom_R(P_{(a,b)}, R)$ such that for any $x \in P_{(a,b)}$, $x = \sum_i x_i f_i(x)$, where only finite $f_i(x)$ are not zero. As $P_{(a,b)}$ is projective, there exists a $\alpha : P_{(a,b)} \to P$ such that the following diagram

$$\begin{array}{ccc} & P_{(a,b)} \\ \alpha & \swarrow & \downarrow a \\ P \xrightarrow{b} & bP & \to & 0 \end{array}$$

commutates, i.e, $a = b\alpha$. Since $x_i \in P_{(a,b)}$, there exists $p_i \in P$ such that $x_i = b(p_i)$ for each *i*. Hence $x = \sum_i b(p_i)f_i(x) = b(\sum_i p_i f_i(x))$. Define a map $h : P_{(a,b)} \to P$ given by $h(p) = \sum_i p_i f_i(p)$ for any $p \in P_{(a,b)}$. If p = 0, then each $f_i(p) = 0$; hence, h(p) = 0. That is, *h* is well defined. In addition, we get $1_{P_{(a,b)}} = bh$. One easily checks that $a \mid_{P_{(a,b)}} + b(1_P - a)h : P_{(a,b)} \to bP$ is a *R*-morphism. If $(a \mid_{P_{(a,b)}} + b(1_P - a)h)(p) = 0$ for a $p \in P_{(a,b)}$, then $a(p) + b(1_P - a)h(p) = 0$, and so p = 0. Thus, $a \mid_{P_{(a,b)}} + b(1_P - a)h : P_{(a,b)} \to bP$ is a *R*-monomorphism. Given any $bp \in bP$, we see that $bp \in P_{(a,b)}$. Furthermore, we have $(a \mid_{P_{(a,b)}} + b(1_P - a)h)(bp) =$ bp, i.e., $a \mid_{P_{(a,b)}} + b(1_P - a)h : P_{(a,b)} \to bP$ is a *R*-epimorphism. It follows that $a \mid_{P_{(a,b)}} + b(1_P - a)h : P_{(a,b)} \to bP$ is a *R*-epimorphism. Therefore we complete the proof by Theorem 1.

Corollary 3. Every projective right module over a hereditary ring is c-separative.

Proof. Let P be a projective right module over a hereditary ring R, and let $E = End_R(P)$. Since R is a hereditary ring, every submodule of P is projective. In view of Corollary 2, P is c-separative, as asserted.

Let R be a hereditary ring and aR + bR = R with ab = ba. Then $R \cong \{(\xi, \eta) | a\xi + b\eta = 0\}$. We construct a map $\varphi : R \oplus R \to R$ given by $\varphi(\xi, \eta) = a\xi + b\eta$ for any $(\xi, \eta) \in R \oplus R$. As ab = ba, we have that $R \oplus R \stackrel{c}{\cong} R \oplus Ker\varphi$. By virtue of Corollary 3, we see that $R \cong Ker\varphi$, and we are done.

Recall that a domain R is said to be a Dedekind domain in case it is hereditary. It is well known that every finitely generated module over a commutative Dedekind domain is cancellable (cf. [7, Theorem 5.8] and [10, Theorem 4.3.7].

Corollary 4. Let P be a projective right module over a Dedekind domain R. Then P is c-separative.

Proof. Since R is a Dedekind domain, it is a hereditary ring. Therefore the proof

is true by Corollary 3.

A ring R is a semihereditary ring provided that every finitely generated right ideal of R is projective. Let P be a finitely generated projective right module over a semihereditary ring. Analogously to Corollary 3, we conclude that P is c-separative.

A ring R is said to have stable rank one provided that aR + bR = R implies that there exists a $y \in R$ such that $a + by \in R$ is invertible. This condition plays an important role in algebraic K-theory (cf. [9]). It is well known that every strongly π -regular ring has stable rank one. Now we observe the following result on c-separativity.

Theorem 5. Let P be a right R-module, and let $E = End_R(P)$. If aE + bE = E with ab = ba implies that there exists a $y \in E$ such that $a + by : P \to P$ is an isomorphism, then P is c-separative.

Proof. Given aE + bE = E with ab = ba, then there exists a $y \in E$ such that $a + by : P \to P$ is an isomorphism, Let $\tau = y|_{P_{a,b}}$. Then $a|_{P(a,b)} + b\tau : P_{(a,b)} \to bP$. Let $u = (a + by)^{-1}|_{bP}$. For any $bp \in bP$, we let $x = (a + by)^{-1}(bp)$. Then (a + by)x = bp, and so $ax = b(p - yx) \in bP$. This implies that $u \in P_{(a,b)}$, i.e., we get $u : bP \to P_{(a,b)}$. It is easy to check that

$$(a|_{P(a,b)} + b\tau)u = 1_{P(a,b)}$$
 and $u(a|_{P(a,b)} + b\tau) = 1_{bP}$.

Therefore $a|_{P(a,b)} + b\tau : P_{(a,b)} \to bP$ is an isomorphism. According to Theorem 1, P is *c*-separative.

Corollary 6. If aR + bR = R with ab = ba implies that there exists $a \ y \in R$ such that $a + by \in R$ is invertible, then $R \oplus R \stackrel{c}{\cong} R \oplus P$ implies that $R \cong P$.

Proof. In view of Theorem 5, R is c-separative, and therefore we complete the proof. \Box

Theorem 7. Let P be a right R-module, $E = End_R(P)$, and let $Q \leq^{\oplus} P$. Suppose that aE + bE = E with ab = ba implies that there exists a right R-morphism $\tau : P_{(a,b)} \to P$ such that $a \mid_{P_{(a,b)}} + b\tau : P_{(a,b)} \to b(P)$ is a R-isomorphism. Then Q is c-separative.

Proof. Let $S = End_R(Q)$. Then we can find an idempotent $e \in E$ such that $Q \cong eP$. It will suffice to prove that eP is c-separative. Let S = eEe. Given cS+dS = S with cd = dc, then cx+dy = e for some $x, y \in S$. Hence, $(c+1_P-e)(x+1_P-e)+dy = 1_P$. Clearly, $(c+1_P-e)d = cd = dc = d(c+1_P-e)$. By assumption, we can find a right R-morphism $\tau : P_{(c+1_P-e,d)} \to P$ such that $(c+1_P-e) \mid_{P_{(c+1_P-e,d)}} + d\tau : P_{(c+1_P-e,d)} \to d(P)$ is a R-isomorphism. Clearly, $P_{(c+1_P-e,d)} = \{p \in P \mid (c+1_P-e)p \in d(P)\} = \{p \in P \mid cp \in d(P), p = ep\}$. Clearly, $(eP)_{(c,d)} \subseteq P_{(c+1_P-e,d)}$. Thus, we have $e\tau \mid_{(eP)_{(c,d)}} : (eP)_{(c,d)} \to eP$. On the other hand, $c \mid_{(eP)_{(c,d)}} + d(e\tau) \mid_{(eP)_{(c,d)}}$: $(eP)_{(c,d)} \to d(eP)$. If $(c \mid_{(eP)_{(c,d)}} + d(e\tau \mid_{(eP)_{(c,d)}}))(ep) = 0$ with $ep \in (eP)_{(c,d)}$, then ce(p) = d(eq) for some $q \in R$. Hence (c + 1 - e)(ep) = d(eq), and so $ep \in P_{(c+1-e,d)}$. In addition, $((c + 1_P - e) \mid_{P_{(c+1_P-e,d)}} + d\tau)(ep) = 0$. This implies that ep = 0, and then $c \mid_{(eP)_{(c,d)}} + d(e\tau \mid_{(eP)_{(c,d)}}) : (eP)_{(c,d)} \to d(eR)$ is a right *R*-monomorphism. Given any $d(ep) \in d(eP)$, we can find a $t \in P_{(c+1_P-e,d)}$ such that $((c+1_P-e) \mid_{P_{(c+1_P-e,d)}} + d\tau)(t) = d(ep)$. Clearly, there exists some $s \in P$ such that $(c+1_P-e)(t) = ds$; hence, c(e(t)) = d(es). It follows that $(1_P-e)(t) = 0$, and so t = e(t). Thus, we see that $e(t) \in (eP)_{(c,d)}$. As a result, we deduce that $(c \mid_{(eP)_{(c,d)}} + d(e\tau \mid_{(eP)_{(c,d)}}))(e(t)) = d(ep)$. This means that $c \mid_{(eP)_{(c,d)}} + d(e\tau \mid_{(eP)_{(c,d)}}) = d(eP)$ is a *R*-epimorphism. Therefore $c \mid_{(eP)_{(c,d)}} + d(e\tau \mid_{(eP)_{(c,d)}}) = (eP)_{(c,d)} \to d(eP)$ is a *R*-isomorphism. In view of Theorem 1, *Q* is *c*-separative. \Box

Corollary 8. Let P be a right R-module, and let $Q \leq^{\oplus} P$. If every submodule of P is projective, then Q is c-separative.

Proof. Let $E = End_R(P)$. As in proof of Corollary 2, aE + bE = E with ab = ba implies that there exists a right *R*-morphism $\tau : P_{(a,b)} \to P$ such that $a \mid_{P_{(a,b)}} + b\tau : P_{(a,b)} \to bP$ is a *R*-isomorphism. According to Theorem 7, we complete the proof.

Acknowledgment. The author would like to thank the referee for his/her comments and suggestions which lead to the new version.

References

- P. Ara, K. R. Goodearl, K. C. O'Meara and E. Pardo, Separative cancellation for projective modules over exchange rings, Israel J. Math., 105(1998), 105–137.
- [2] P. Ara, K.C. O'Meara and D. V. Tyukavkin, Cancellation of projective modules over regular rings with comparability, J. Pure Appl. Algebra, 107(1996), 19-38.
- [3] D.M. Arnold, Finite rank torsion free abelian groups and rings, Lecture Notes in Math., 931, Springer-Verlag, Berlin-Heidelberg-New York, 1982.
- [4] H. Chen, Exchange rings over which every regular matrix admits diagonal reduction, J. Algebra Appl., 3(2004), 207-217.
- [5] H. Chen, Self-cancellation of modules having the finite exchange property, Chin. Ann. Math., 26B(2005), 111-118.
- [6] K.R. Goodearl, Von Neumann Regular Rings, Pitman, London-San Francisco-Melbourne, 1979; 2nd ed., Krieger, Malabar, Fl., 1991.
- T.Y. Lam, A crash course on stable range, cancellation, substitution and exchange, J. Algebra Apll., 3(2004), 301-343.
- [8] K.C. O'Meara and C. Vinsonhaler, Separative cancelliton and multiple isomorphism in torsion-free abelian groups, J. Algebra, 221(1999), 536-550.
- [9] A.A. Tuganbaev, Rings Close to Regular, Kluwer Academic Publishers, Dordrecht, Boston, London, 2002.
- [10] H. Zhang and W. Tong, Weakly stable modules, Comm. Algebra, 34(2006), 983-989.