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ON COMMUTING GRAPHS OF GROUP RING Z,Qs

JIANLONG CHEN, YANYAN GAO, AND GAOHUA TANG

ABSTRACT. The commuting graph of an arbitrary ring R, denoted by
I'(R), is a graph whose vertices are all non-central elements of R, and
two distinct vertices a and b are adjacent if and only if ab = ba. In this
paper, we investigate the connectivity, the diameter, the maximum degree
and the minimum degree of the commuting graph of group ring Z,Qs.
The main result is that I'(Z,Qsg) is connected if and only if n is not a
prime. If I'(Z,Qsg) is connected, then diam(Z,Qs)= 3, while I'(Z,Qg)
is disconnected then every connected component of I'(Z,Qs) must be a
complete graph with a same size. Further, we obtain the degree of every
vertex in I'(Z,Qsg), the maximum degree and the minimum degree of

['(ZnQs).

1. Introduction

Let G be a group and R a ring. We denote RG by the set of all formal linear
combinations of the forms o = ° _ a49, where a; € R and ay = 0 almost
everywhere, that is, only a finite number of coefficients are different from 0
in each of these sums. Notice that it follows from our definition that given
two elements, o = dec agg and § = deG byg € RG, we have that a = 8
if and only if ay = by, V g € G. We define the sum of two elements in RG
componentwise:

Zagg + Zbgg :Z(ag+bg)g-

geG geG geG

Also, given two elements o = ) _~ay9 and B = >, _~bph € RG we define

their product by

geqG

af = Z agbngh.
g, heG
The commuting graph of an arbitrary ring R denoted by I'(R), is a graph
with vertex set R\ Z(R), where Z(R) is the center of R, and two distinct
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vertices a and b are adjacent if and only if ab = ba. In 2004, the notion of
commuting graph of a ring was first introduced by Akbari, Ghandehari, Hadian
and Mohammadian in [2]. The commuting graphs of semisimple rings have
been studied in [1, 2, 4, 3]. And in this paper, we investigate some properties
of I'(Z,Qs), where Z,Qg = {x1+x2a+130> + 140> +25b+160b+T70°b+180°D |
x; € Zpyi=1,2,...,8} and Z, = {0,1,...,n—1} is the module n residue class
ring, Qs = (a,bla* = 1,b> = 1,ab = ba™1) = {1,a,a?,a>,b,ab, a®b,a3b} is the
quaternion group.

Let R be aring and R* = R\{0}. Given integers a and b, we denote by (a,b)
the greatest common divisor of a and b. If p is a prime and ¢ is a nonnegative
integer, then we use the notation p’||a to mean that pt|a and p'*'fa. The ring
of n by n full matrices over a ring R is denoted by M, (R).

In this paper, all graphs are simple and undirected and |G| denotes the
number of vertices of the graph G. In a graph G, the degree of a vertex v
is denoted by d(v). And the minimum degree and maximum degree of G are
denoted by §(G) and A(G), respectively. A path of length r from a vertex z
to another vertex y in G is a sequence of r + 1 distinct vertices starting with x
and ending with y such that consecutive vertices are adjacent. For a connected
graph H, the diameter of H is denoted by diam(H). An induced subgraph of G
that is maximal, subject to being connected, is called a connected component
of G.

In this paper, we investigate the connectivity, the diameter, the maximum
degree and the minimum degree of the commuting graph of group ring Z,,Qs.
In Section 2, we show that I'(Z,,Qs) is connected if and only if n is not a prime.
If I'(Z,Qs) is connected, then diam(Z,Qs)= 3, while I'(Z,,Qs) is disconnected
then every connected component of I'(Z,,Qs) must be a complete graph with a
same size. In Section 3, we obtain the degree of every vertex in I'(Z,Qs), the
maximum degree and the minimum degree of I'(Z,,Qs).

2. The connectivity and diameter of I'(Z,,Qs)

Lemma 2.1 ([2, Theorem 2]). If F is a finite field, then T'(My(F)) is a graph
with |F|? + |F| + 1 connected components of size |F|?> — |F| which each of them
is a complete graph.

Lemma 2.2. Let n be an arbitrary positive integer. Then Z(Z,Qs) = {a =
21+ w20+ 230° +220% + 250+ 1600+ 15020+ 16030 | T1, T2, T3, T, T6 € Zn},
|Z2(Z,Q3)| =n® and |T'(Z,Qs)| = n® —n®, where Z(Z,Qs) denotes the center
of the group ring Z,Qs.

Proof. ¥V o = x1 + xoa + x30% + 2403 + 250 + 260b + 270%b + 280%D, B =
Y1 + Y20 + y3a® + yaa® + ysb + yeab + y7a®b + ysa®b € I'(Z,Qs), we have
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af} = Ba if and only if the following system of congruence equations () holds.

(z6 — 8)ys — (w5 — 27)ys — (v6 — T8)y7r + (¥5 — x7)ys =0 (mod n) (1)
(%) ¢ (w6 — w8)y2 — (v6 — ¥8)ya — (T2 — T4)Ys + (T2 — 24)ys =0 (mod n) (2)
(r5 — x7)y2 — (x5 — 27)ys — (T2 — 24)Ys + (v2 —24)yr =0 (mod n) (3)

Suppose that o = @1 + z2a + z3a® + 240° + T5b + zeab + x7a%b + xga’b €
Z(Z,Qs), then it is clear that ac = ca. Thus by the system (x), it follows
that

26 —xg =0 (mod n)
{ x5 —x7 =0 (mod n)

ie., z¢ =xs (mod n), and z5 = x7 (mod n).
In addition, we also have bac = ab, hence we have that

26— 23 =0 (mod n)
29 —x4 =0 (mod n)

ie., g =23 (mod n), and 2 = 24 (mod n).

Therefore, we have zo = 24 (mod n), x5 = x7 (mod n) and ¢ = zs (mod
n). Hence, a = z1 + w2a + x3a® + w20 + 250 + w60b + 25020 + 1603b and it is
easy to verify that such « is in the center of Z,,Qs.

Thus Z(Z,Qs) = {a = x1 +x2a+ 30> + 190> + 250+ 60b+ T50%b + 603D |
Ty, To, T3, Ts, Te € Zp} and | Z2(Z,Qg) |=n°, | T(Z,Qs) |=n® — nd. O

Theorem 2.3. Suppose n = p*, where p > 2 is a prime and t > 2. Then
I'(Z,Qs) is a connected graph and diam(I'(Z,Qs)) = 3.

Proof. For o, 8 € T'(Z,Qg), let a = x1 + x2a + w30 + 140> + 5b + T60b +
27ab + x3a3b and B = y1 + yaa + y3a® + yaa® + ysb + yeab + yra?b + yza’b.

Case 1 Assume that p' | (vo, 14, 75, T6, T7,78), P | (Y2, Y4, Y5, Y6, Y7, ys) for
some i,7 € {1,2,...,t — 1}. Hence, if i + j > ¢, then a — § is an edge of
I'(Z,Qg). Otherwise, a — p*~7a — A is a path of I'(Z,,Qg).

Case 2 Assume that p { (z2, 24, 5, 6, X7, 28), D | (Y2, Y4, Y5, Y6, Y7, Ys). We
know p'ta & Z(Z,Qs). Then a — p'~la — B is a path of I'(Z,Qs).

Case 3 Assume that p | (22,24, 25, %6, 7, 8), D1 (Y2, Y4, Y5, Y6, Y7, Ys). We
know p' =18 & Z(Z,Qs). Then a — p'~13 — 3 is a path of I'(Z,,Qs).

Case 4 Assume that p { (z2, x4, x5, T6, X7, Ts), P 1 (Y2, Y4, Y5, Y6, Y7, Ys ), then
pla, ptB € Z(Z,Qg). Then o — pt~ta — pt=13 — B is a path of I'(Z,,Qsg).

Therefore, I'(Z,,Qs) is a connected graph and diam(I'(Z,Qs)) <3. In addi-
tion, note that a,b € I'(Z,Qsg), suppose v = z1 + z9a + z3a® + z4a> + z5b +
z6ab + 27a%b + 23a®b € T'(Z,Qs) such that ay = va and by = ~b. Since
ay = ya < zg = 28 (mod p') and 25 = 27 (mod p') while by = yb <= 25 = 24
(mod p') and zg = 25 (mod p'), we have zo = z4 (mod p'), 25 = 27 (mod p?)
and zg = 23 (mod p'). By Lemma 2.2, we know v € Z(Z,Qg). Hence, there
does not exist a vertex v of I'(Z,,Qs) such that a —v — b is a path of I'(Z,,Qs).
Hence, diam(I'(Z,Qs))=3. O
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Lemma 2.4 ([7, Lemma 7.4.9]). Let F' be a field of characteristic different
from 2. Then
FQs=FaFaFaFaH(F).

Lemma 2.5 ([7, Lemma 7.4.6]). Assume that char(F)# 2. Then the quater-
nion algebra H(F) is either a division ring or is isomorphic to Ms(F), the ring
of 2 x 2 matrices over F. The last possibility arises if and only if the equation
X2 4+Y?%=—1 can be solved in F.

Theorem 2.6. Letp > 3 be a prime. Then Z,Qs = Z,$Z,®Z,®Z,PMo(Zp).

Proof. We know that the equation X2 + Y2 = —1 can always be solved in Z,,.
Owing to Lemma 2.4 and Lemma 2.5, the result follows. O

Theorem 2.7. If p > 3 is a prime, then I'(Z,Qs) is a graph with p* +p + 1
connected components of size p*(p* —p) which each of them is a complete graph.

Proof. By Lemma 2.4, we have Z,Qs = Z, ® Z, & Z, & Z, & Ms(Z,). For
a = (a1, a,a3,04,05), B = (B1, B2, 83,54, B5) € I'(Z,Qs), i, Bi € Zp, i =
1,2,3,4, and a5, 85 € Ma(Z,), we can easily conclude that as # 0, 85 # 0.
If a5 and S5 are not in the same connected component of My(Z,), then there
is no edge between a and §. By Lemma 2.1, we know that I'(M2(Z,)) is a
graph with p? + p + 1 connected components of size p? — p which each of them
is a complete graph. Hence, I'(Z,Qsg) is a graph with p? + p + 1 connected
components of size p*(p? — p) which each of them is a complete graph. O

Theorem 2.8. T'(Z2Qs) is a graph with 7 connected components of size 32
which each of them is a complete graph.

Proof. First, we construct 7 subsets of I'(Z3Qg) as below:

A1 = {CV =1 +l’2&+l’3&2 +IZ?4CL3 +x5b+x6ab+x7a2b+x8a3b S F(ZQQS) ‘
9 =24 (mod 2),z5 = x7 (mod 2), x; € Za}.

Ay = {a = 21 + w20+ 230% + 240% + 150+ 1600 + 17020 + 1303b € T(Z2Q3) |
xo = x4 (mod 2), g =g (mod 2), x; € Zs}.

Az = {a = 21 + 320+ 230% + 240% + 150+ 1600 + 17020 + 2303b € T(Z2Q8) |
x5 =27 (mod 2), xg = xg (mod 2), x; € Zs}.

Ay ={a =21 + 220+ 230% + 240% + 250+ 1600 + T70%b + 1303b € T'(Z2Q3) |
29 = x4 (mod 2), x5+ x6 + a7+ 283 =0 (mod 2), x; € Z5}.

As = {a = 21 + 220+ 230% + 240% + 150+ 1600 + 27020 + 2803b € T'(Z2Q8) |
x5 =7 (mod 2), xo+ x4 + 26+ 23 =0 (mod 2), x; € Zo}.

AG = {OI =X +1'2a+1'3&2 —|—1:4a3 +x5b+x6ab+x7a2b+x8a3b S F(ZQQS) ‘
26 =g (mod 2), xo + x4 + x5 + 27 =0 (mod 2), z; € Zs}.

A7 = {a = x1 + x20+ x30% + 140 + 150 + T60b + T7a*b + 28303b € T'(Z2Q38) |
T5+xe+x7+rs =0 (mod 2), zo+xs+a6+xs =0 (mod 2), zo+z4+a5+27 =
0 (mod 2), x; € Zs}.

Clearly, Ay UAsU---U A7y = Z5Qs \ Z(Z2Qs), A; N Aj =0, Vi#jand
| Ay |=| As |= - =| A7 |= 32.
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Second, V o = x1 + x9a + x30% + x4a® + 25b + xgab + 7ab + x3a3b € A;
and V 8 = y1 + yaa + y3a® + yaa® + ysb + yeab + yra*b + ysa®b € T'(Z2Qs), we
can conclude that af = fa <= 8 € A;. Moreover, we can conclude that each
connected component A; (1 =1,2,...,7) is a complete graph. This completes
our proof. O

Lemma 2.9 ([9, Proportion 8.1.20]). Let R be a commutative Noetherian ring
and let G be an arbitrary group. Then there exist finitely many indecomposable
rings Ry, Ro, ..., Ry such that RG = R1G X RoG X --- X R,G. In particular,
% (RG) =2 U (R1G) X % (R2G) X -+ X U (R,G).

Theorem 2.10. Let p be a prime. Then I'(Z2,Qs) is a connected graph and
dlam(F(ngQg)) =3.

Proof. (1) If p = 2, by Theorem 2.3, the result follows.

(2) If p > 3, by Lemma 2.6 and Lemma 2.9, we have Z,Qs = Z2Qs & Z, ®
Zp D Zp D Zp D MQ(ZP) Then V o = (Oél, g, X3, 04,05, Oéﬁ) € ZQPQS and B =
(B1, B2, B3, Ba, Bs, Bs) € Z2pQs, where au, B1 € ZoQs, az, Ba, a3, B3, g, Ba, a5, B
€ Zy, a6, 06 € Ma(Zp). By symmetry, we have the following cases to consider.

First, let Aq, Ao, ..., A7 are the sets of vertices of the connected components
of I'(Z2Qs). By Lemma 2.1, we know that there are p? + p + 1 connected
components in I'(M>(Z,)) and we denotes them as B;, i=1,2,...,p>+p+1.

Case 1 Assume that a1 € Z(Z2Qsg), B1 € [(Z2Qs), a6 € I'(M2(Z,)), Bs €
Z(M2(Zy)), then a-f is an edge of I'(Z2,Qs).

Case 2 Assume that oy, 51 € Z(Z2Qs), as, B € T'(M2(Z,)). If g, Bs €
B; for some i, then a-3 is an edge of I'(Z5,Qsg). Otherwise, (a1, ag, as, o, o,
(16)—(0, 0, O7 0, O, aé)—(ﬁl, 0, O, 07 O, O)—(,B1, 52, ,83, 64, ﬁ5, /86) isa path OfF(ngQg),
where o5, a5 € B;.

Case 3 Assume that oy € Z(Z2Qsg), 1 € I'(Z2Qs), s, Ps € T'(M2(Z,)).
By similar argument above, we have the same results.

Case 4 Let a1, 61 S F(ZQQg), g, 56 S F(Mg(Zp))

Subcase 4.1 Suppose that a1, 1 € 4;, as, B € B; for some 4, j, then o — 8

is an edge of I'(Z3,Qs).

Subcase 4.2 Suppose that a1,81 € A;, ag € By, 86 € By for some 1,7, k,

J # k, then (a1, as, a3, a4, a5, a6)-(1,0,0,0,0,0)-(81, B2, B3, Ba, Bs, B6) is a

path of F(ZQpQ8)~

Subcase 4.3 Suppose that a; € A;, 51 € A;, ag € By, B¢ € By, for some 1, j, k, t

and i # j, t # k, then (a1, az, a3, a4, as, as)-(a4,0,0,0,0,0)-(0,0,0,0,0, 5)-

(617ﬁ23537ﬁ43 65756) is a path of F(Z2pQ8)7 where 05/1 € Aia ﬁé € Bk'
Therefore, I'(Z2,Qsg) is a connected graph and diam(I'(Z2,Qs))= 3. O

Theorem 2.11. If n(> 1) is not a prime, then I'(Z,Qs) is a connected graph
and diam(I'(Z,Qs)) = 3.

Proof. Let n = p''p% ---plm with m > 2 and t1,t9, ..., tm > 1, p1,02, .-+, Pm

are distinct primes and 2 < p; < ps < -+ < ppy.
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(1) When m=1, n= pﬁl, t1 > 1, by Theorem 2.3, the result follows.
(2) If n = 2p, p is a prime, by Theorem 2.10, the result follows.
(3) We suppose m > 1,n # 2p. Let R; denotes Zpt_i Qs, then by Lemma 2.9,

we have Z,Qs 2 Ry @Ry ®---® R,, 2 R. Note that V a = (ay,ag,...,qn,) €
R,ao€ Z(R) if and only if o; € Z(R;),Vi=1,2,...,m. SoV o = (a3, a2,...,
am) € T(R),8 = (B1,0P2,-.-,0m) € T'(R), we should consider the following
three cases:

Case 1 Assume that V i = 1,2,....,m, oy € Z(R;) or B; € Z(R;), then
a — f is an edge of I'(R).

Case 2 Assume that there exists ¢ € {1,2,...,m} such that a; € Z(R;)
or B; € Z(R;). Without loss of generality, we can assume that «; € Z(R;),
and take v; € R; \ Z(R;) such that 8;v; = v:0;, where v; # ;. Set v =
(0,0,...,7,0,...,0) € R, then v € Z(R) and v # «, 5. So a« — v — [ is an
path of T'(R).

Case 3 Assume that Vi = 1,2,...,m, neither o; nor g; belongs to Z(R;).
If there exists v; € R; \ Z(R;), where i =1, 2, ..., m, such that o; —v; — 5
is a path of T'(R;), then we put v = (0,0,...,7;,0,...,0) € R. Tt is obvious
that o — v — f is an path of I'(R). Otherwise, taking v = (4,0,...,0) € T'(R)
with aqaf = ajaq and v’ = (0,...,0,8],) € T'(R) with 8,0, = B.,5m, then
a—7' —~" — B is an path of I'(R).

Consequently, we must have I'(R) is a connected graph and diam(I'(R)) < 3.
Furthermore, note that there must exist an odd prime ¢ such that ¢ # p;, Vi =
1,2,...,m, we have qa, ¢gb € I'(R), then by the similar argument of Theorem
2.3, we can conclude that there doesn’t exist a vertex « of I'(R) such that
ga — a — ¢b is a path of I'(R). Thus diam(I'(R)) = 3. This completes the
proof. O

3. The maximum degree and the minimum degree of I'(Z,,Q5)

Lemma 3.1 ([8, Exercise 12]). The number of solutions of congruence equation

iNT1,Tay ..., Tk 1T +agTa+ - Farry = b (mod m) whichay,as,...,ar,b,m
are integers and m > 1, is equal to mF~1 (a1, as, ..., ar,m), if (a1, az, ..., ax, m)
| 0.

Lemma 3.2. Assume that n = p', xs, x4, x5, 76, x7,28 € {0,1,2,...,p" — 1},

where t > 2,p > 2 is a prime.

(1) Suppose pt (xo — x4, x5 — x7,26 — x8). Then the number of solutions of
congruence system (x) in Y2, Ya, Ys, Yo, Y7, Yg s p*t.

(2) Suppose p™ || (x2 — x4, x5 — 7,26 — 3), where 1 <7 <t —1. Then the
number of solutions of congruence system (x) in y2, Ya, Ys, Yo, Y7, yg s pH27.

Proof. (1) First of all, since p 1 (z2 — x4, 25 — 27,26 — xg), without loss of
generality, we can suppose p{ (2 — x4).

Case 1.1 Assume that x5 — 27 Z 0 (mod p?), 26 — xg Z 0 (mod p?). Since
(zo—14,x6—18,p') = 1, so by Lemma 3.1, we know that the number of solutions
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of the equation (2) is p3'. Suppose y, = yf) (mod pt), yy = yg4) (mod pt),
Yo = y§6> (mod p'), yg = ygg) (mod p') are the solutions of the equation (2),
s=1,2,...,p%. So we have
(4)

(w6 — 28)y$? + (w5 — 26)y(Y + (24 — 22)y'") + (22 — 24)y® = 0 (mod p").

Substituting yo = y( )(mod ph), Y4 = ys (mod p!) into the equation (3),

and note that (z3 —z4, p') = 1, thus the equation (3) in ys5, y7 has p' solutions,

denoted by y5 =y (mod pt), y; = g7 (mod p'), m = 1,2,...,p". So we

have
(5)
(25 — 27)y P + (27 — 25)y'Y + (24 — 22)yD) + (22 — 24)yD = 0 (mod pt).

In addition, note that x5 — 7 #Z 0 (mod p'), g — xg Z 0 (mod p'), so by
equations (4) and (5), we have

(x5 — 27) (w6 — 28)y”) + (w5 — 27) (25 — 76 )yl

+ (5 — x7) (24 — 22)y; ©) 4 (x5 — 7)) (22 — x4)y£8) = 0 (mod p"),

(6)

(6 — 28) (w5 — 27)y?) + (w6 — 28) (27 — w5)y'Y

7
@) + (xg — xg) (x4 — xg)ygn) + (xg — ws) (22 — x4)y7(,z) = 0 (mod p").

From the above equations (6) and (7), we get

(5) _

(6 — 28)(Ta — T2)Yy, ©

(5 — z7) (24 — T2)Ys
+ (z6 — xg)(x2 — x4)y,(,p + (z5 — z7)(z2 — x4)y§8) = 0 (mod pt).
Since p f (x2 — x4), thus we have

(zg — xg)yﬁs) + (27 — x5)y§6) + (zg — xG)y(7) + (x5 — x7)yg8) = 0 (mod pt).
It follows that ys = &' (mod p'), ys = y<* (mod p'),y7 = y& (mod pt),

U8 § ) (mod p') satisfy the equation (1). Consequently,

yo =y (mod p'), ya =y (modp'), ys =y (vp'),

ye =y¥ (modp’), yr =yP (modp'), ys =y® (mod p')

are solutions of the system (x).

Therefore, the number of solutions of the system (x) is p3t x p! = ptt.

Case 1.2 Assume that 5 —x7 = 0 (mod p'), z6—xs # 0 (mod p'). With the
same argument of Case 1.1, we know that the equation (2) has p® solutions.
Moreover, note that p 1 (z2 — x4), so the equation (3) has and only has p,
solutions, i.e., y5 = y; = 0,1,...,p" — 1 (mod p’), and all of them satisfy the
equation (1). Hence, the system (*) has and only has p3! x p* = p** solutions.

Similarly, if x5 — x7 #Z 0 (mod p'), 26 — 28 = 0 (mod p'), we also have the
same result.
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Case 1.3 Assume that x5 — 27 = 0 (mod p'), ¢ — x5 = 0 (mod p?).
Notice that p { (x2 — x4), thus y¢ = ys = 0,1,...,p! — 1 (mod p?) and
y2= y2 =0,1,...,pt =1 (mod p?) satisfy the equation (2). And ys = y7 =
0,1,...,p" =1 (mod p') and y2 = y4 = 0,1,...,p" — 1 (mod p?) satisfy
the equation (3). Thus yo = y4 = 0,1,...,p" =1 (mod p'), y5 = y; =
0,1,...,p" =1 (mod p*), ys = ys = 0,1,...,p' — 1 (mod p') satisfy the
equation (x). Hence, the system (x) has p%* x p* x p' = p*® solutions.

(2) We will consider it from two cases:

Case 2.1 Suppose T3 — x4, T5 — 7, 6 — xg Z 0 (mod pt). Since p7 || (w2 —
Z4,%5 — X7, T — xg), without loss of generality, we assume that zo — x4 = pTu,
x5—x7:p>‘v, x6 —xg = p°w, where pfu, v, wandt—1>c>A>72> 1.
Since (zy — w4,w6 — w8,p") = (p"u,p°w,p') = p”, thus by Lemma 3.1, the
total number of solutions of the equation (2) is p3' x p7 = p3**7. Suppose

2 4 6 8
y2 =y (modpt), ya =yt (mod p'), yo = yi¥ (mod p), ys =y (mod p")
are the solutions of the equation (2), s = 1,2,...,p3*7. So we have

(2)

(8) P wyg v )

— 7wy — pTuy® 4+ pTuy® = 0 (mod pt).
Substituting y» = y§2) (mod p'), ys = yg4) (mod p') into the equation (3),
then we will conclude the following equation:

©)) puys — pTuyr = pAvng) —|—p)‘vy£4) (mod p").

Since (p7,p!) = p” and p” | p*, thus the equation (3) in s,y has p' x

p™ = pt*T solutions. And we denote the solutions as y5 = y& (mod pt),
yr = yg) (mod p'), where m = 1,2,...,p"T™. So we have
(10) proy® — proy(Y + pTuy) +pTuyl) = 0 (mod p).

Moreover, notice that v, w # 0, so by the equations (8) and (10), we have

(11)  pTwoy® — 7wy — pTuvy(® + pTuvy® = 0 (mod p'),

(12)  prowy? — prowyV + pTuwyl) + pTuwyly) = 0 (mod p').
Furthermore, we can get

(13) P woy® — P woy® — pruvyl® + pruvy® = 0 (mod p'),

(14) p7 " Powy —p7 T Powy(M 4 pTuwy ) + pTuwyl) = 0 (mod pt).
So by the equations (13) and (14), we have

pTuwy’y) — pruvy’® — puwy() + pruvy® = 0 (mod p).

S
Notice that p { u, we get

P wylY — proyl® — p7wylD + proy® = 0 (mod p').
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Consequently, y5 = yﬁs) (mod p'), yg = y§6) (mod p'), y7 = yg) (mod pt),

Ys = ygs) (mod p') satisfy the equation (1). Thus,
y2 =y (mod p'), ys =y (mod p), ys =y (mod p),
yo =y¥ (mod p'), yr =y (mod p'), ys =y (mod p')
are solutions of the system (x).
Therefore, the number of solutions of the system () is p?'*7 xp!*™ = p
Case2.2 If at least one of xo — x4, =5 — 7, 6 — v is 0 in Zy,:, then the
similar argument of Case 2.1 can be applied in here. (I

At+21

Theorem 3.3. Suppose n = p' where p > 2 is a prime and t > 2. ¥V o =

21 + 20 + x30% + 240% + 250 + w60 + 17020 + 180°b € T(Z,Q8).
(1) If pt (w2 — w4, x5 — 27, T6 — T8), then d(a) = pbt — p°t — 1;

(2) If p” || (w2 — x4, x5 — 27, T6 — X38), Where 1 < 7 <t —1, then d(a) =

6t+27 p5t _ 1’

(3) The minimum degree §(T'(Z,Qs)) = p —p°* —1, while d(a=5§(1'(Z,Qs))
if and only if pt (20 — x4, 25 — T7, 26 — T3).

(4) The maximum degree A(T(Z,Qs)) = p¥=2 — p° — 1, while d(a) =
A(T(Z,Qg)) if and only if p'=1 || (w2 — x4, x5 — 27, T6 — T8).

Proof. (1) Assume that p t (2o — x4, 5 — 27, g — 23), then by Lemma 3.2,
we have d(a) = p?t - p1t — pPt — 1 = pbt — pPt — 1.

(2) Assume that p” || (xo — x4, ©5 — x7, Tg — s), then by Lemma 3.2, we
have d(Oé) — p2t . p4t+27' o p5t 1= p6t+2‘r _ p5t —1.

(3) and (4) follows directly by (1) and (2). O

p

Theorem 3.4. Suppose n = p where p is a prime. ¥ o = 1 + Toa + r3a° +
:c4a3 + 1’5() + IﬁCLb + Cﬂ7CL2b + l’ga?’b € F(Zan)

(2) If p7 || (2 — 24, x5 — 27, 6 — xg), where 1 < 7 < t — 1, then
A(2,Qs)) = 3(D(ZuQs)) = p° —p° — 1.

Proof. (1) Owing to Theorem 2.8, the results follows.

(2) By the condition (1) of Lemma 3.2 for ¢t= 1, we can conclude that the
number of solutions of congruence system () in y2, y4, ys, Y6, Y7, ys is p*. Hence,
A(T(ZnQs)) = 0(T(ZnQs)) = d(a) = p* - p* —p° =1 =p° —p° — 1. O

Remark 3.5. Suppose n > 1 and n has unique normal decomposition n =
pﬁlpgz <ooplm o with m > 2, t,t9,...,tym > 1and 2 <p; < py < -+ < p,, where
P1,P2, - - -, Pm are distinct primes. By Lemma 2.9, we have

ZnQg = pril Qs & Zp;,z Qs ® -+ @ Z,tm Qs.

Moreover, we denote this isomorphism by 1. ¥ a = 21 4+ 290+ x3a + 40> +
x5b + xgab + x70%b + 23030 € T'(Z2Q3), let f; = x; and let fi1, fiz, ..., fim
are the remainder of f; mod pi',pt, ... ptm respectively. Then (o) =
(Oél7 Qa2,. .., Oém) where Q; = Ti1 + X0+ $i3a2 + ;1:14a3 +xi5b+xiﬁab+ a:i7a2b+
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xi8a%b € F(Zpt/\Q8>, A =1,2,...,m. By ([11], Remark 3.6), we have the
A
following results:
(1) let ¢° denotes any term of p'*, p%, ... plm then we can claim that if
there exists 1 <7 < o — 1 such that ¢7 | f;, then we must have ¢” | f;s where

fis is the remainder of f; mod ¢°.
(2) If ¢" || f;, then we also have ¢7 | fis.

Corollary 3.6. Suppose n has at least two distinct prime divisors and the
normal decomposition of n and « have been given in Remark 3.5. Let Ay =
{B Epg\’\ | axfB = Barh,A=1,2,...,m.

(1) Assume that ty = 1,py = 2. Then |A\] = 32.

(2) Assume that ty =1, py > 3.
Then |Ay|= { P& PA1 (22 =2y @5 — a7, w6 —a5)

Py Pl (w2 — 74, x5 — 27, T6 — T8).

(3) Assume that ty > 2, px { (xo — x4, x5 — 7, 16 —x8). Then |A\] = pS™*.

(4) Assume that ty > 2, pi* || (x2 — x4, @5 —x7, 6 —w8), 1 <7\ <ty — 1
Then |A)\| _ p(}i\t)&‘r?Tk .

8t

(5) Assume that ty > 2, p | (x2 — x4, x5 — 27, 16 —x5). Then |Ay\| = p}

Theorem 3.7. Supposen > 1, n # p* where p > 2 is a prime and X > 1. The
normal decomposition of n has been given in Remark 3.5. ¥ a = z1 + z2a +
x3a? + 2403 + 150+ x60b+ 27020 + 1803 € T'(Z,Q8) and we define two subsets
I, I of I ={1,2,...,m} as following:
L ={cel|3r,, 1<7, <t,—1, such that pl¢ || (xa—x4, T5—x7, T6—Ts)},
I ={\el|p}|(x2 — 24, x5 — 27, x6 —28)}. Then

(1) Assume that p; # 2. Then d(a) = n® nglﬁ{l}p?” l_hejr{l}pffA -
nd —1;

(2) Assume that p; = 2,t; = 1. Then d(a) = 32n° Haeh_{l}pgﬂ’ [Len—q;
P> 0?1

(3) Assume that py = 2, t; > 2. Then d(a) = n°[[,c;, P77 [1rer, » -
nd — 1.
Proof. (1)V a, B € Z,Qs, (), p(B) are defined in Remark 3.5. Then

aff = fa

— (041,042, cee 7am)(ﬁ17625 e aﬁm) = (615625 cee 7Bm)(a17a27 e aam)

= ;0 :ﬁiai, 1=1,2,...,m.
B6y C;)rollary 3.6, an;i note that \Z(Zane))J = n:, we havs d(a) = Ha€21r{1}
Pyt H)\Elz—{l}p)\ * er]—11—12—{1}1’k Fen?—l=n Haeh—g}PaT"

27
H)\elz—{l}p/\ Y —n® -1
By the similar argument above, we can conclude that the formulas of (2)
and (3). O
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Theorem 3.8. Supposen > 1, n # p* where p > 2 is a prime and X > 1. The
normal decomposition of n has been given in Remark 3.5. ¥ a = z1 + z2a +
x3a? + w403 + w50 + x60b + 170%b + 18303b € T(Z,,Q%).

(1) Assume that p; # 2, then §(I'(Z,Qg)) = n® —n® —1 and A(I'(Z,Qg)) =
Ls _ n5 —1:
P3 ’

(2) Assume that p1 = 2, t; = 1, then §(I'(Z,Qg)) = 32n® —n® — 1 and

A(D(Z,Qs)) = 222" —n® — 1

P3
(3) Assume that p1 = 2, t1 > 2, then §(I'(Z,Qs)) = n® —n® — 1 and
8
A(Z,Q) = % —n° 1.

Proof. (1) By Theorem 3.7, we have d(a) = 6(I'(Z,Qs)) <= I; = 0 and
I, = (. Thus 6(I'(Z,Qg)) = n® — n® — 1. Moreover, if to = 1, then d(a) =
AT(Z,Qs)) =11 ={2} and [,={3,4,...,m}. So we derive that

8

n
A(Z,Qs))= — —n° — L.
)
By the similar argument above, we can conclude that the formulas of (2)
and (3). O
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