• Title/Summary/Keyword: Q/T

Search Result 1,730, Processing Time 0.031 seconds

RELATIVE (p, q, t)L-TH TYPE AND RELATIVE (p, q, t)L-TH WEAK TYPE ORIENTED GROWTH PROPERTIES OF WRONSKIAN

  • Biswas, Tanmay;Biswas, Chinmay
    • The Pure and Applied Mathematics
    • /
    • v.29 no.1
    • /
    • pp.69-91
    • /
    • 2022
  • In the paper we establish some new results depending on the comparative growth properties of composite transcendental entire and meromorphic functions using relative (p, q, t)L-th order, relative (p, q, t)L-th type and relative (p, q, t)L-th weak type and that of Wronskian generated by one of the factors.

CONTRACTIONS OF CLASS Q AND INVARIANT SUBSPACES

  • DUGGAL, B.P.;KUBRUSLY, C.S.;LEVAN, N.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.1
    • /
    • pp.169-177
    • /
    • 2005
  • A Hilbert Space operator T is of class Q if $T^2{\ast}T^2-2T{\ast}T + I$ is nonnegative. Every paranormal operator is of class Q, but class-Q operators are not necessarily normaloid. It is shown that if a class-Q contraction T has no nontrivial invariant subspace, then it is a proper contraction. Moreover, the nonnegative operator Q = $T^2{\ast}T^2-2T{\ast}T + I$ also is a proper contraction.

RELATIVE (p, q, t)L-TH ORDER AND RELATIVE (p, q, t)L-TH TYPE BASED SOME GROWTH ASPECTS OF COMPOSITE ENTIRE AND MEROMORPHIC FUNCTIONS

  • Biswas, Tanmay
    • Honam Mathematical Journal
    • /
    • v.41 no.3
    • /
    • pp.463-487
    • /
    • 2019
  • In the paper we establish some new results depending on the comparative growth properties of composite entire and meromorphic functions using relative (p, q, t)L-th order and relative (p, q, t)L-th type of entire and meromorphic function with respect to another entire function.

CLASSIFICATIONS OF (α, β)-FUZZY SUBALGEBRAS OF BCK/BCI-ALGEBRAS

  • Jun, Young Bae;Ahn, Sun Shin;Lee, Kyoung Ja
    • Honam Mathematical Journal
    • /
    • v.36 no.3
    • /
    • pp.623-635
    • /
    • 2014
  • Classications of (${\alpha},{\beta}$)-fuzzy subalgebras of BCK/BCI-algebras are discussed. Relations between (${\in},{\in}{\vee}q$)-fuzzy subalgebras and ($q,{\in}{\vee}q$)-fuzzy subalgebras are established. Given special sets, so called t-q-set and t-${\in}{\vee}q$-set, conditions for the t-q-set and t-${\in}{\vee}q$-set to be subalgebras are considered. The notions of $({\in},q)^{max}$-fuzzy subalgebra, $(q,{\in})^{max}$-fuzzy subalgebra and $(q,{\in}{\vee}q)^{max}$-fuzzy subalgebra are introduced. Conditions for a fuzzy set to be an $({\in},q)^{max}$-fuzzy subalgebra, a $(q,{\in})^{max}$-fuzzy subalgebra and a $(q,{\in}{\vee}q)^{max}$-fuzzy subalgebra are considered.

STABILITY OF HAHN DIFFERENCE EQUATIONS IN BANACH ALGEBRAS

  • Abdelkhaliq, Marwa M.;Hamza, Alaa E.
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.4
    • /
    • pp.1141-1158
    • /
    • 2018
  • Hahn difference operator $D_{q,{\omega}}$ which is defined by $$D_{q,{\omega}}g(t)=\{{\frac{g(gt+{\omega})-g(t)}{t(g-1)+{\omega}}},{\hfill{20}}\text{if }t{\neq}{\theta}:={\frac{\omega}{1-q}},\\g^{\prime}({\theta}),{\hfill{83}}\text{if }t={\theta}$$ received a lot of interest from many researchers due to its applications in constructing families of orthogonal polynomials and in some approximation problems. In this paper, we investigate sufficient conditions for stability of the abstract linear Hahn difference equations of the form $$D_{q,{\omega}}x(t)=A(t)x(t)+f(t),\;t{\in}I$$, and $$D^2{q,{\omega}}x(t)+A(t)D_{q,{\omega}}x(t)+R(t)x(t)=f(t),\;t{\in}I$$, where $A,R:I{\rightarrow}{\mathbb{X}}$, and $f:I{\rightarrow}{\mathbb{X}}$. Here ${\mathbb{X}}$ is a Banach algebra with a unit element e and I is an interval of ${\mathbb{R}}$ containing ${\theta}$.

SOME RESULTS RELATING TO SUM AND PRODUCT THEOREMS OF RELATIVE (p, q, t) L-TH ORDER AND RELATIVE (p, q, t) L-TH TYPE OF ENTIRE FUNCTIONS

  • Biswas, Tanmay
    • Korean Journal of Mathematics
    • /
    • v.26 no.2
    • /
    • pp.215-269
    • /
    • 2018
  • Orders and types of entire functions have been actively investigated by many authors. In this paper, we investigate some basic properties in connection with sum and product of relative (p, q, t) L-th order, relative (p, q, t) L-th type, and relative (p, q, t) L-th weak type of entire functions with respect to another entire function where $p,q{\in}{\mathbb{N}}$ and $t{\in}{\mathbb{N}}{\cup}\{-1,0\}$.

TWO DIMENSIONAL ARRAYS FOR ALEXANDER POLYNOMIALS OF TORUS KNOTS

  • Song, Hyun-Jong
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.1
    • /
    • pp.193-200
    • /
    • 2017
  • Given a pair p, q of relative prime positive integers, we have uniquely determined positive integers x, y, u and v such that vx-uy = 1, p = x + y and q = u + v. Using this property, we show that$${\sum\limits_{1{\leq}i{\leq}x,1{\leq}j{\leq}v}}\;{t^{(i-1)q+(j-1)p}\;-\;{\sum\limits_{1{\leq}k{\leq}y,1{\leq}l{\leq}u}}\;t^{1+(k-1)q+(l-1)p}$$ is the Alexander polynomial ${\Delta}_{p,q}(t)$ of a torus knot t(p, q). Hence the number $N_{p,q}$ of non-zero terms of ${\Delta}_{p,q}(t)$ is equal to vx + uy = 2vx - 1. Owing to well known results in knot Floer homology theory, our expanding formula of the Alexander polynomial of a torus knot provides a method of algorithmically determining the total rank of its knot Floer homology or equivalently the complexity of its (1,1)-diagram. In particular we prove (see Corollary 2.8); Let q be a positive integer> 1 and let k be a positive integer. Then we have $$\begin{array}{rccl}(1)&N_{kq}+1,q&=&2k(q-1)+1\\(2)&N_{kq}+q-1,q&=&2(k+1)(q-1)-1\\(3)&N_{kq}+2,q&=&{\frac{1}{2}}k(q^2-1)+q\\(4)&N_{kq}+q-2,q&=&{\frac{1}{2}}(k+1)(q^2-1)-q\end{array}$$ where we further assume q is odd in formula (3) and (4). Consequently we confirm that the complexities of (1,1)-diagrams of torus knots of type t(kq + 2, q) and t(kq + q - 2, q) in [5] agree with $N_{kq+2,q}$ and $N_{kq+q-2,q}$ respectively.

OPTIMAL CONTROL PROBLEMS FOR THE SEMILINEAR SECOND ORDER EVOLUTION EQUATIONS

  • Park, Jong-Yeoul;Park, Sun-Hye
    • Journal of the Korean Mathematical Society
    • /
    • v.40 no.5
    • /
    • pp.769-788
    • /
    • 2003
  • In this paper, we study the optimal control for the damped semilinear hyperbolic systems with unknown parameters (C(t)y')'+ $A_2$(t, q)y'+ $A_1$(t, q)y = f(t, q, y, u). We will prove the existence of weak solution of this system and is to find the optimal control pair (q, u) $\in$ $Q_{t}$ ${\times}$ $U_{ad}$ such that in $f_{u}$$\in$ $Q_{t}$/ J(q, u) = J(q, u).$_{t}$/ J(q, u) = J(q, u).

BOUNDARY-VALUED CONDITIONAL YEH-WIENER INTEGRALS AND A KAC-FEYNMAN WIENER INTEGRAL EQUATION

  • Park, Chull;David Skoug
    • Journal of the Korean Mathematical Society
    • /
    • v.33 no.4
    • /
    • pp.763-775
    • /
    • 1996
  • For $Q = [0,S] \times [0,T]$ let C(Q) denote Yeh-Wiener space, i.e., the space of all real-valued continuous functions x(s,t) on Q such that x(0,t) = x(s,0) = 0 for every (s,t) in Q. Yeh [10] defined a Gaussian measure $m_y$ on C(Q) (later modified in [13]) such that as a stochastic process ${x(s,t), (s,t) \epsilon Q}$ has mean $E[x(s,t)] = \smallint_{C(Q)} x(s,t)m_y(dx) = 0$ and covariance $E[x(s,t)x(u,\upsilon)] = min{s,u} min{t,\upsilon}$. Let $C_\omega \equiv C[0,T]$ denote the standard Wiener space on [0,T] with Wiener measure $m_\omega$. Yeh [12] introduced the concept of the conditional Wiener integral of F given X, E(F$\mid$X), and for case X(x) = x(T) obtained some very useful results including a Kac-Feynman integral equation.

  • PDF

ON SOLVABILITY OF A CLASS OF DEGENERATE KIRCHHOFF EQUATIONS WITH LOGARITHMIC NONLINEARITY

  • Ugur Sert
    • Journal of the Korean Mathematical Society
    • /
    • v.60 no.3
    • /
    • pp.565-586
    • /
    • 2023
  • We study the Dirichlet problem for the degenerate nonlocal parabolic equation ut - a(||∇u||2L2(Ω))∆u = Cb ||u||βL2(Ω) |u|q(x,t)-2 u log |u| + f in QT, where QT := Ω × (0, T), T > 0, Ω ⊂ ℝN, N ≥ 2, is a bounded domain with a sufficiently smooth boundary, q(x, t) is a measurable function in QT with values in an interval [q-, q+] ⊂ (1, ∞) and the diffusion coefficient a(·) is a continuous function defined on ℝ+. It is assumed that a(s) → 0 or a(s) → ∞ as s → 0+, therefore the equation degenerates or becomes singular as ||∇u(t)||2 → 0. For both cases, we show that under appropriate conditions on a, β, q, f the problem has a global in time strong solution which possesses the following global regularity property: ∆u ∈ L2(QT) and a(||∇u||2L2(Ω))∆u ∈ L2(QT ).