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CONTRACTIONS OF CLASS Q
AND INVARIANT SUBSPACES

B. P. DugcaL, C. S. KuBRUSLY, AND N. LEVAN

ABSTRACT. A Hilbert Space operator T is of class Q if T**T? —
27T*T + I is nonnegative. Every paranormal operator is of class
Q, but class-Q operators are not necessarily normaloid. It is shown
that if a class-Q contraction T has no nontrivial invariant subspace,
then it is a proper contraction. Moreover, the nonnegative operator
Q =T*T? —27*T + I also is a proper contraction.

1. Introduction

Let H be a nonzero complex Hilbert space. By a subspace M of H
we mean a closed linear manifold of H, and by an operator 7" on H we
mean a bounded linear transformation of H into itself. A subspace M
is invariant for T if T(M) C M, and nontrivial if {0} # M # H. Let
B[H] denote the algebra of all operators on H. For an arbitrary opera-
tor T in B[H] set, as usual, |T| = (T*T)? (the absolute value of T') and
[T*,T] = T*T ~ TT* = |T|? — |T*|? (the self-commutator of T'), where
T* is the adjoint of T', and consider the following standard definitions:
T is hyponormal if [T*, T is nonnegative (i.e., |T*|* < |T'|?; equivalently,
|T*z|| < ||Tz| for every z in H), T is of class U if |T?| — |T|* is non-
negative (i.e., |T|? < |T?|), paranormal if ||Tz||? < [|T?z||||z|| for every
z in H, and normaloid if r(T) = ||T|| (where r(T) denotes the spectral
radius of T'). These are related by proper inclusion:

Hyponormal C Class if C Paranormal C Normaloid.

A contraction is an operator T such that ||T|| <1 (i.e., |[Tz| < ||z|| for
every z in H; equivalently, 7*T < I). A proper contraction is an op-
erator T such that ||Tz|| < ||z| for every nonzero z in H (equivalently,
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T*T < I). A strict contraction is an operator T' such that |T]| <1
(i-e., supgs, (|Tz||/llz]]) <1 or, equivalently, T*T < I, which means
that T*T < ~I for some «y € (0,1)). Again, these are related by proper
inclusion: Strict Contraction C Proper Contraction C Contraction.

It was recently proved in [10] that if a hyponormal contraction T
has no nontrivial invariant subspace, then T 1is a proper contraction
and its self-commutator [T*,T) is a strict contraction. This was ex-
tended in [5] to contractions of class U (if a contraction T in U has no
nontrivial tnvariant subspace, then both T and the nonnegative opera-
tor |T?| — |T|? are proper contractions), and to paranormal contractions
in [6]: If a paranormal contraction T has no nontrivial invariant sub-
space, then T is a proper contraction and so is the nonnegative operator
|T2|2 — 2|T|? + I. In the present paper we extend this result to contrac-
tions of class Q. Operators of class Q are defined below. This is a class
of operators that properly includes the paranormal operators.

2. Operators of class Q

In this section we define operators of class Q and consider some basic
properties, examples and counterexamples, in order to put this class in
its due place. Recall that, for any real A and any operator T' € B[H],

MT?zl| |zl < 3(I1T%)? + 22||=))?)
and, in particular, for A =1,
172zl < 5(IT%2)? + ||=|?),
for every x € H. An operator T' € B[H] is paranormal if
ITz|? < || 72|l

for every = € H. Paranormal operators have been much investigated
since [8] (see e.g., [7] and [9]). The following alternative definition is
well-known. An operator T' € B[H| is paranormal if and only if

O < T*T? —2X\T*T + N\’I
for all A > 0 (cf. [1], also see [12]). Equivalently, T is paranormal if and
only if
MTzl* < 3(I1T%)* + A2||z)|?)
for every x € H, for all A > 0. Note that the above inequalities hold

trivially for every A < 0 for all operators T' € B[H]. Take any operator
T in B[H] and set
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Q =TH»T?-2T*T +1.

DEFINITION 1. An operator T is of class Q if O < Q. Equivalently,
TeQif
Tz < L(iT%|® + ||z]|*) for every z.

Since O < T2*T? — 2 \T*T + A2I if and only if A™2T € Q for any
A >0,

T is paranormal if and only if AT € @ for all A > 0.

Every paranormal operator is a normaloid of class Q. That is, with A
and P standing for the classes of all normaloid and paranormal operators
from B[H], respectively, it is clear that

P C ONN.

However, Q ¢ N and QNN ¢ P. Indeed, S = () ;) € Q for every

A€ (0,1/y/2] but S € N (nonzero nilpotent) for all A # 0. Moreover,
T =1®S liesin (QNAN)\P for any X € (0,1//2]. In fact, S is not
normaloid, and hence not paranormal, which implies that T is not para-
normal (restriction of a paranormal to an invariant subspace is again
paranormal), and 7(T') = ||T|| = 1. Thus 7T is a normaloid contraction
of class @ that is not paranormal.

PROPOSITION 1. Let T € B[H] be an operator of class Q.

(a) The restriction of T to an invariant subspace is again a class-Q
operator.

(b) If T is invertible, then T~! is of class Q.

Proof. Let T be an operator of class Q and let M be a T-invariant
subspace.
(a) Tfu € M, then 2||T|ssull® = 2|Tull? < [T2u]2 + |[ul]
= [[(T|pm)?u]|? + ||ul|?, and so T} is of class Q.
(b) If T is invertible, then 2|jz||? = 2)|TT'z|* < |T*(T 'z)|* +
|T~1z||? for every z € H. Take any y in H = ran(T) so that
y =Tz, z =T 'yand Tz = T2y for some z in H. Thus
21T y||2 < llyll? + |T~2yl|? by the above inequality, and so T*
is of class. O

Some properties that the paranormal operators inherit from the hy-
ponormals survive up to class Q, as in the case of Proposition 1. How-
ever, many important properties shared by the hyponormals do not
travel well up to class Q. For instance, there exist nonzero quasinilpo-
tent operators of class Q (a quasinilpotent normaloid is obviously null),
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compact operators of class @ that are not normal (every compact para-
normal is normal [11]), and also operators of class Q for which isolated
points of the spectrum are not eigenvalues (isolated points of the spec-
trum of a paranormal are eigenvalues [2]). Here is an example. The
compact weighted unilateral shift T = shift({—,;j_—l}iozl) is a quasinilpo-
tent (r(T) = 0) contraction (||T|| = 3) with no eigenvalues (0 is in the
residual spectrum of T'). Clearly, since T is not normaloid, it is not
paranormal. But it is of class Q. Indeed,

O < diag({1 - g&p o) = [ - 2T°T < T*T* —2T°T + L.

Another common property of hyponormal and paranormal operators
that does not apply to class Q is that a multiple of a class-Q opera-
tor may not be of class Q. For example, § = )\(g (1)) € Q for every

Ae (0,1/4/2], but § € Q for all A > 1/y/2. Actually, Q is not a cone in
B[H)], although its intersection with the closed unit ball is balanced (a
subset A of a linear space is balanced if aA C A whenever |of < 1).
ProPOSITION 2. Let T be a Hilbert space operator.

(a) If \T|| <1/4/2, thenT € Q.

(b) If T*> = O, then T € Q if and only if ||T|| < 1/v/2.

(c) If T € Q, T? # O and |o| < min{1, ||T?||"'}, then o T € Q.
In particular, if T € Q is a contraction, then o'T € Q whenever |a| < 1.

(d) A contraction T in Q is paranormal if and only if O < T#T? —
2NT*T + X2 for all X € (0,1).

Proof. Let T be any operator in B[H].

(a) Since O < I —2T*T (that is, 2T*T < I) if and only if a T for
|a| = /2 is a contraction, it follows that ||\/27'|| < 1implies T € Q
because

I-27*T < T*T? ~2T*T + 1.

(b) I T2 = O, then T € Q if and only if O < I — 2T*T.
(c) If T lies in Q, then

Aa)?T*T < |of’T*T? + |af’T
and hence, for every scalar «,

2a)?T*T — |o|*T>*T? - I < (1 - |af*) (|e*T>*T? - 1).
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Suppose T? # O. Note: |a| < ||T?||7! (ie.,, aT? is a contrac-
tion) if and only if |a|?T%*T2? < I. If, in addition, |a| < 1, then
(1 —|af?) (Ja|>*T?*T? — I) < O, and therefore o T € Q.

(d) f T € Q is a contraction, then aT lies in Q for all o € (0,1] or,
equivalently (with A =a™!), O < T#T? — 2AT*T + NI for all
A > 1. Thus, if T € @ is a contraction, then the above inequality
holds for all A > 0 if and only if it holds for all A € (0, 1). Therefore,
a contraction T of class Q is paranormal if and only if O < T272
2AT*T + A2] for all \ € (0, 1). O

COROLLARY 1. If T € Q is invertible, then aT € Q for every scalar
«a such that either o] < min{1, |T2||7'} or |a| > max{1,||T2|]}.

Proof. Take an invertible T' € @ and any scalar «. Proposition 2
ensures that

aT € Q whenever |af <min{I, ”T2||~1}v

and Proposition 1 says that 77! € Q. Then 377! ¢ Q for every
nonzero scalar (3 such that |8] < min{1,||T72||"}} by Proposition 2.
Put v = 7! so that (y7T)™! lies in @ for each scalar v such that
lv|7! < min{1, ||T~%||~'}; equivalently, such that |y| > max{1, || 72|}
Therefore, applying Proposition 1 again, it follows that

YT € @ whenever |y| > max{1,[|T7?|},
which completes the proof. O

If T is an invertible operator in Q and min{1, ||T?]|~1} = max{1, ||772|},
then the above corollary ensures that 7" is paranormal. In particular, if
T is an invertible contraction in @ for which the above min and max
coincide, then T is an invertible paranormal contraction; a unitary op-
erator, actually, as we shall see in Proposition 3 below (every invertible
contraction for which the above min and max coincide is unitary). Note
that there exist invertible normaloid contractions in @ that are not uni-
tary so that the above min and max do not coincide. For instance, a
weighted bilateral shift with increasing positive weights in (1/2,1) is a
nonunitary invertible hyponormal contraction, thus paranormal, and so
a normaloid of class Q.

ProrosIiTION 3. If T is an invertible contraction and
min{1, [T™] 7} = max{1,||T~ "}

for some positive integer n, then T is unitary.
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Proof. Take any positive integer n. If T is an invertible operator, then
so is T™. If |T|| < 1, then ||T™||~! > 1 and hence min{1, ||T"|"}} = 1.
But 1< |77 |IT"||, and so ||T7"| > 1, which implies that max{1,
IT~™|I} = |IT~™||. If min and max coincide, then ||T7"| = 1 and
T™ is unitary (reason: ||T"| <1, and an invertible operator U such
that U and U~! are both contractions must be unitary). But if T" is a
contraction and T is an isometry, then T is an isometry. Indeed, if T
is a contraction, then so is ("=, which means that T*®- D71 < T,
and therefore

[ = T*T" = T*(T*(n—l)T(n—l))T < T*T < I

so that T is an isometry. Dually, if T is a contraction and 7™ is a
coisometry, then T is a coisometry. Thus, if T contraction and T
unitary, then 7" unitary. O

PROPOSITION 4. Suppose T is an operator of class Q.
(a) If T? is a contraction, then so is T.
(b) If T? is an isometry, then T is paranormal.

Proof. Let T € B[H] be an operator of class Q.
(a) Observe that T is of class Q if and only if

2T*T —I) < T**T? — I

Thus T*2T? < I implies T*T < I; that is, T is a contraction whenever
T? is.
(b) Take any z in H and note that T is of class Q if and only if

2
2 T2l* < (172 — llell)” + 21 T*x|l||=]-
Hence ||T2z|| = ||z|| implies ||Tz||> < ||T2z]|||z|, for every z € H. O

Therefore, if T is an operator of class Q for which T? is an isom-
etry, then T is a paranormal contraction. Since T*?T? = I implies
Q = 2(I —T*T), it follows that if 7% is an isometry, then T € Q
if and only if T is a contraction and, in this case, T' is paranormal.
Note that the converses fail. For instance, the weighted unilateral shift
T = shift(2, %, 2, %, .-} is such that T2 coincides with the square of the
“unweighted” unilateral shift. Thus 72 is an isometry, but T is not a
contraction (||T|| = 2), and hence T ¢ Q by Proposition 4 (so that T is
not paranormal — in fact, T is not even normaloid: r(T') = 1).

A part of an operator is a restriction of it to an invariant subspace.
An operator T is hereditarily normaloid if every part of it is normaloid,
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and totally hereditarily normaloid if it is hereditarily normaloid and
every invertible part of it has a normaloid inverse [3]. The class of all
hereditarily normaloid operators from B[H] is denoted by HN/, and the
class of all totally hereditarily normaloid operators from HA is denoted
by THN. Recall that (see e.g., [4])

P Cc THN C HN c N.

Let M be any invariant subspace for T. Proposition 1 ensures that the
following assertions hold true.

(a) If T € QNHN, then T|ap € QNHN.

(b) If T € QNTHN then T p € QNTHN and, if T is invertible,
then (T|m)" 1 € QNN.

Note that T=1® S, with § = )\(8 (1)) for any XA € (0,1/4/2], is a con-
traction in (@QNN)\HN. In fact, S is not normaloid so that T" is not
in HN. There are two ways for an operator T to be in 7HN: either
T € HN has no invertible part, or it has invertible parts and all of them
have a normaloid inverse. The latter case prompts the question: are the
invertible operators in Q@ N 7HA paranormal? More generally, is it true
that, if 7 is an invertible normaloid operator with a normaloid inverse,
then T € Q implies T € P? (ie., T € Q implies AT € Q for all A > 07)

3. Invariant subspace theorem for contractions of class O

Take any operator T in B[H] and set D = I — T*T. Recall that T

is a contraction if and only if D is nonnegative. In this case, D# is the
defect operator of T.

PROPOSITION 5. A contraction T lies in Q if and only if |D3Tz| <
| D% x| for every x in H.

Proof. For any T € B[H] put Q = T#T? —2T*T + ] and D =
I —T*T. Since

Q=D —T*DT,

it follows that O < Q if and only if (T*DTz;z) < (Dx;x) for every
z € H or, equivalently, |D3Tz|?> < |D¥z|? for every x € Hif T is a
contraction. O
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If a contraction T has no nontrivial invariant subspace, then D is a
proper contraction. Indeed, if T is a contraction with no nontrivial in-
variant subspace, then ker(T) = {0} so that | D2 x| = ||z||2 - | Tz|? <
||| for every nonzero x in H, which means that D% (and so D) is a
proper contraction. If, in addition, T is of class Q, then more is true.

THEOREM 1. If a contraction T € Q has no nontrivial invariant sub-
space, then both T and () are proper contractions.

Proof. Let T # O be a contraction of class Q. Since ker(D) =
ker(D?), it follows by Proposition 5 that ker(D) is an invariant sub-
space for T. Suppose T has no nontrivial invariant subspace so that
either ker(D) = H or ker(D) = {0}. In the former case D = O; that is,
T*T = I, and so T is an isometry, which is a contradiction: isometries
have nontrivial invariant subspaces. In the latter case D > O; that is,
T*T < I, which means that T is a proper contraction. Moreover, If T is
a contraction of class @, then the nonnegative operator () is such that
the power sequence {Q"},>1 converges strongly to P (i.e., Q" = P),
where P is an orthogonal projection, and TP = O so that PT* = O (P
is self-adjoint) [6]. If T" has no nontrivial invariant subspace, then T*
has no nontrivial invariant subspace as well. Since ker(P) is a nonzero
invariant subspace for T* whenever PT* = O and T # O, it follows that
ker(P) = H. Hence P = O, and therefore Q" — O; that is, the non-
negative operator ) is strongly stable. But strong stability coincides
with proper contractiveness for quasinormal operators [6]; in particular,
for nonnegative operators. Thus @) also is a proper contraction. O
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