• Title/Summary/Keyword: Pumping Capacitor

Search Result 16, Processing Time 0.028 seconds

A Unified Voltage Generator Which Merges the Pumping Capacitor of Boosted Voltage Generator and Substrate Voltage Generator (내부 승압 전원 발생기와 기판 인가 전원 발생기의 펌핑 수단을 공유한 전원 전압 발생기)

  • 신동학;장성진;전영현;이칠기
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.11
    • /
    • pp.45-53
    • /
    • 2003
  • This paper describes a Unified Voltage Generator that merges the pumping capacitors of boosted voltage generator (VPP) and substrate voltage generator (VBB) for DRAM. This unified voltage generator simultaneously supplies VPP and VBB voltages by using one pumping capacitor and one oscillator. The proposed generator is realized by 0.14${\mu}{\textrm}{m}$DRAM process. The generator reduces the power consumption to 30%, the area of total generator to 40% and the area of pumping capacitor to 29.6%, and improves the pumping efficiency to 13.2% at 2.0V supply voltage. In addition, the generator adopts the charge recycling technique for precharging the pumping capacitor during the period of precharge, thatcan reduces the precharge current to 75%.

A Charge Pump Design with Internal Pumping Capacitor for TFT-LCD Driver IC (내장형 펌핑 커패시터를 사용한 TFT-LCD 구동 IC용 전하펌프 설계)

  • Lim, Gyu-Ho;Song, Sung-Young;Park, Jeong-Hun;Li, Long-Zhen;Lee, Cheon-Hyo;Lee, Tae-Yeong;Cho, Gyu-Sam;Park, Mu-Hun;Ha, Pan-Bong;Kim, Young-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.10
    • /
    • pp.1899-1909
    • /
    • 2007
  • A cross-coupled charge pump with internal pumping capacitor, witch is advantages from a point of minimizing TFT-LCD driver IC module, is newly proposed in this paper. By using a NMOS and a PMOS diode connected to boosting node from VIN node, the pumping node is precharged to the same value each pumping node at start pumping operation. Since the lust-stage charge pump is designed differently from the other stage pumps, a back current of pumped charge from charge pumping node to input stage is prevented. As a pumping clock driver is located the font side of pumping capacitor, the driving capacity is improved by reducing a voltage drop of the pumping clock line from parasitic resistor. Finally, a layout area is decreased more compared with conventional cross-coupled charge pump by using a stack-MIM capacitors. A proposed charge pump for TFT-LCD driver IC is designed with $0.13{\mu}m$ triple-well DDI process, fabricated, and tested.

A DC-DC Converter Design with Internal Capacitor for TFT-LCD Driver IC (TFT -LCD 구동 IC용 커패시터 내장형 DC-DC 변환기 설계)

  • Lim Gyu-Ho;Kang Hyung-Geun;Lee Jae-Hyung;Sohn Ki-Sung;Cho Ki-Seok;Baek Seung-Myun;Sung Kwan-Young;Li Long-Zhen;Park Mu-Hun;Ha Pan-Bong;Kim Young-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.7
    • /
    • pp.1266-1274
    • /
    • 2006
  • A non-overlap boosted-clock charge pump(NBCCP) with internal pumping capacitor, an advantageous circuit from a minimizing point of TFT-LCD driver IC module, is proposed in this paper. By using the non-overlap boosted-clock swinging in 2VDC voltage, the number of pumping stages is reduced to half and a back current of pumping charge from charge pumping node to input stage is also prevented compared with conventional cross-coupled charge pump with internal pumping capacitor. As a result, pumping current of the proposed NBCCP circuit is increased more than conventional cross-coupled charge pump, and a layout area is decreased. A proposed DC-DC converter for TFT-LCD driver IC is designed with $0.18{\mu}m$ triple-well CMOS process and a test chip is in the marking.

A study on reducing the harmonics in inverter system for fluorescent lamp (형광등용 인버터 시스템의 고조파 저감에 관한 연구)

  • Park, Chan-Kun;Kim, Jong-Yun;Jeon, Nae-Suck;Park, Jeung-Hwan;Lee, Sung-Geun
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1199-1201
    • /
    • 2000
  • This paper proposes a harmonics reducing circuit for fluorescent lamp inverters using hybrid type smoothing circuit with pumping and smoothing capacitors. A waveform of full-wave rectification used as a direct current power supply at fluorescent lamp inverters contains a lot of harmonic wave from inrush current which is generated near the maximum of input voltage with purse shape when voltage smoothing capacitor is charged. Therefore, in order to suppress inrush current which will result in harmonic wave. this paper proposes a method to control abrupt charging current by use of charging voltage at pumping capacitor. The suppression of harmonics generation at lamp current is confirmed through simulations.

  • PDF

Design of an Embedded Flash IP for USB Type-C Applications (USB Type-C 응용을 위한 Embedded Flash IP 설계)

  • Kim, Young-Hee;Lee, Da-Sol;Jin, Hongzhou;Lee, Do-Gyu;Ha, Pan-Bong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.3
    • /
    • pp.312-320
    • /
    • 2019
  • In this paper, we design a 512Kb eFlash IP using 110nm eFlash cells. We proposed eFlash core circuit such as row driver circuit (CG/SL driver circuit), write BL driver circuit (write BL switch circuit and PBL switch select circuit), read BL switch circuit, and read BL S/A circuit which satisfy eFlash cell program, erase and read operation. In addition, instead of using a cross-coupled NMOS transistor as a conventional unit charge pump circuit, we propose a circuit boosting the gate of the 12V NMOS precharging transistor whose body is GND, so that the precharging node of the VPP unit charge pump is normally precharged to the voltage of VIN and thus the pumping current is increased in the VPP (boosted voltage) voltage generator circuit supplying the VPP voltage of 9.5V in the program mode and that of 11.5V in the erase mode. A 12V native NMOS pumping capacitor with a bigger pumping current and a smaller layout area than a PMOS pumping capacitor was used as the pumping capacitor. On the other hand, the layout area of the 512Kb eFlash memory IP designed based on the 110nm eFlash process is $933.22{\mu}m{\times}925{\mu}m(=0.8632mm^2)$.

Design of a 512b Multi-Time Programmable Memory IPs for PMICs (PMIC용 512비트 MTP 메모리 IP설계)

  • Jang, Ji-Hye;Ha, Pan-Bong;Kim, Young-Hee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.1
    • /
    • pp.120-131
    • /
    • 2016
  • In this paper, a 512b MTP memory IP is designed by using MTP memory cells which are written by the FN (Fowler-Nordheim) tunneling method with only MV (medium voltage) devices of 5V which uses the back-gate bias, that is VNN (negative voltage). The used MTP cell consists of a CG (control gate) capacitor, a TG (tunnel gate) transistor, and a select transistor. To reduce the size of the MTP memory cell, just two PWs (P-wells) are used: one for the TG and the select transistors; and the other for the CG capacitor. In addition, just one DNW (deep N-well) is used for the entire 512b memory cell array. VPP and VNN generators supplying pumping voltages of ${\pm}8V$ which are insensitive to PVT variations since VPP and VNN level detectors are designed by a regulated voltage, V1V (=1V), provided by a BGR voltage generator.

Characteristics of repetitive operation of a N2 laser for pumping dye lasers (색소레이저 여기용 질소 레이저의 반복 동작 특성)

  • Park, Deuk-Il;Lee, Choo-Hie
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.509-511
    • /
    • 1989
  • In this paper the operation of a N2 laser using corona-preionization and capacitor transfer type excitation circuit is discussed. The laser tube is 24 cm in length and the distance between the electrodes is 1.5 cm. The charging voltage was kept constant 10 KV. This laser can be operated with a range of repetition rate 1 $\sim$ 30 Hz.

  • PDF

Design of Multi-time Programmable Memory for PMICs

  • Kim, Yoon-Kyu;Kim, Min-Sung;Park, Heon;Ha, Man-Yeong;Lee, Jung-Hwan;Ha, Pan-Bong;Kim, Young-Hee
    • ETRI Journal
    • /
    • v.37 no.6
    • /
    • pp.1188-1198
    • /
    • 2015
  • In this paper, a multi-time programmable (MTP) cell based on a $0.18{\mu}m$ bipolar-CMOS-DMOS backbone process that can be written into by using dual pumping voltages - VPP (boosted voltage) and VNN (negative voltage) - is used to design MTP memories without high voltage devices. The used MTP cell consists of a control gate (CG) capacitor, a TG_SENSE transistor, and a select transistor. To reduce the MTP cell size, the tunnel gate (TG) oxide and sense transistor are merged into a single TG_SENSE transistor; only two p-wells are used - one for the TG_SENSE and sense transistors and the other for the CG capacitor; moreover, only one deep n-well is used for the 256-bit MTP cell array. In addition, a three-stage voltage level translator, a VNN charge pump, and a VNN precharge circuit are newly proposed to secure the reliability of 5 V devices. Also, a dual memory structure, which is separated into a designer memory area of $1row{\times}64columns$ and a user memory area of $3rows{\times}64columns$, is newly proposed in this paper.

Design of Small-Area MTP Memory Based on a BCD Process (BCD 공정 기반 저면적 MTP 설계)

  • Soonwoo Kwon;Li Longhua;Dohoon Kim;Panbong Ha;Younghee Kim
    • Journal of IKEEE
    • /
    • v.28 no.1
    • /
    • pp.78-89
    • /
    • 2024
  • PMIC chips based on a BCD process used in automotive semiconductors require multi-time programmable (MTP) intellectual property (IP) that does not require additional masks to trim analog circuits. In this paper, MTP cell size was reduced by about 18.4% by using MTP cells using PMOS capacitors (PCAPs) instead of NMOS capacitors (NCAPs) in MTP cells, which are single poly EEPROM cells with two transistors and one MOS capacitor for small-area MTP IP design. In addition, from the perspective of MTP IP circuit design, the two-stage voltage shifter circuit is applied to the CG drive circuit and TG drive circuit of MTP IP design, and in order to reduce the area of the DC-DC converter circuit, the VPP (=7.75V), VNN (=-7.75V) and VNNL (=-2.5V) charge pump circuits using the charge pumping method are placed separately for each charge pump.

Design of MTP memory IP using vertical PIP capacitor (Vertical PIP 커패시터를 이용한 MTP 메모리 IP 설계)

  • Kim, Young-Hee;Cha, Jae-Han;Jin, Hongzhou;Lee, Do-Gyu;Ha, Pan-Bong;Park, Mu-Hun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.1
    • /
    • pp.48-57
    • /
    • 2020
  • MCU used in applications such as wireless chargers and USB type-C require MTP memory with a small cell size and a small additional process mask. Conventional double poly EEPROM cells are small in size, but additional processing masks of about 3 to 5 sheets are required, and FN tunneling type single poly EEPROM cells have a large cell size. In this paper, a 110nm MTP cell using a vertical PIP capacitor is proposed. The erase operation of the proposed MTP cell uses FN tunneling between FG and EG, and the program operation uses CHEI injection method, which reduces the MTP cell size to 1.09㎛2 by sharing the PW of the MTP cell array. Meanwhile, MTP memory IP required for applications such as USB type-C needs to operate over a wide voltage range of 2.5V to 5.5V. However, the pumping current of the VPP charge pump is the lowest when the VCC voltage is the minimum 2.5V, while the ripple voltage is large when the VCC voltage is 5.5V. Therefore, in this paper, the VPP ripple voltage is reduced to within 0.19V through SPICE simulation because the pumping current is suppressed to 474.6㎂ even when VCC is increased by controlling the number of charge pumps turned on by using the VCC detector circuit.