• Title/Summary/Keyword: Pulse-width modulation DC-DC converter

Search Result 182, Processing Time 0.024 seconds

A Secondary Resonance Soft Switching Half Bridge DC-DC Converter with an Inductive Output Filter

  • Chen, Zhang-yong;Chen, Yong
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1391-1401
    • /
    • 2017
  • In this paper, a secondary resonance half-bridge dc-dc converter with an inductive output filter is presented. The primary side of such a converter utilizes asymmetric pulse width modulation (APWM) to achieve zero-voltage switching (ZVS) of the switches, and clamps the voltage of the switch to the input voltage. In addition, zero current switching (ZCS) of the output diode is achieved by a half-wave rectifier circuit with a filter inductor and a resonant branch in the secondary side of the proposed converter. Thus, the switching losses and diode reverse-recovery losses are eliminated, and the performance of the converter can be improved. Furthermore, an inductive output filter exists in the converter reduce the output current ripple. The operational principle, performance analysis and design equation of this converter are given in this paper. The analysis results show that the output diode voltage stress is independent of the duty cycle, and that the voltage gain is almost linear, similar to that of the isolation Buck-type converter. Finally, a 200V~380V input, 24V/2A output experimental prototype is built to verify the theoretical analysis.

The Control of Z-Source Inverter for using DC Renewable Energy (직류 대체에너지 활용을 위한 Z-원 인버터 제어)

  • Park, Young-San;Bae, Cherl-O;Nam, Taek-Kun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.13 no.2 s.29
    • /
    • pp.169-172
    • /
    • 2007
  • This paper presents circuit models and control algorithms of distributed generation system(DGS) which consists of Z-type converter and PWM inverter. Z-type converter which employs both the L and C passive components and shoot-through zero vectors instead qf the conventional DC/DC converter in order to step up DC-link voltage. Discrete time sliding mode control with the asymptotic observer is used for current control. This system am be used for power conversion of DC renewable energy.

  • PDF

A Novel Modulation Scheme and a DC-Link Voltage Balancing Control Strategy for T-Type H-Bridge Cascaded Multilevel Converters

  • Wang, Yue;Hu, Yaowei;Chen, Guozhu
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2099-2108
    • /
    • 2016
  • The cascaded multilevel converter is widely adopted to medium/high voltage and high power electronic applications due to the small harmonic components of the output voltage and the facilitation of modularity. In this paper, the operation principle of a T-type H-bridge topology is investigated in detail, and a carrier phase shifted pulse width modulation (CPS-PWM) based control method is proposed for this topology. Taking a virtual five-level waveform achieved by a unipolar double frequency CPS-PWM as the output object, PWM signals of the T-type H-bridge can be obtained by reverse derivation according to its switching modes. In addition, a control method for the T-type H-bridge based cascaded multilevel converter is introduced. Then a single-phase T-type H-bridge cascaded multilevel static var generator (SVG) prototype is built, and a repetitive controller based compound current control strategy is designed with the DC-link voltage balancing control scheme analyzed. Finally, simulation and experimental results validate the correctness and feasibility of the proposed modulation method and control strategy for T-type H-bridge based cascaded multilevel converters.

Deadbeat Direct Active and Reactive Power Control of Three-phase PWM AC/DC Converters

  • Gandomkar, Ali;Seok, Jul-Ki
    • Journal of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.1634-1641
    • /
    • 2018
  • This study focuses on a high-performance direct active and reactive power controller design that is successfully applicable to three-phase pulse width modulation (PWM) AC/DC converters used in renewable distributed energy generation systems. The proposed controller can overcome the sluggish transient dynamic response of conventional controllers to rapid power command changes. Desired active and reactive powers can be thoroughly obtained at the end of each PWM period through a deadbeat solution. The proposed controller achieves an exact nonlinear cross-coupling decoupling of system power without using a predefined switching table or bang/bang hysteresis control. A graphical and analytical analysis that naturally leads to a control voltage vector selection is provided to confirm the finding. The proposed control strategy is evaluated on a 3 kW PWM AC/DC converter in the simulation and experiment.

Rapid Dynamic Response Flyback AC-DC Converter Design

  • Chang, Changyuan;Wu, Menglin;He, Luyang;Zhao, Dadi
    • Journal of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.1627-1633
    • /
    • 2018
  • A constant voltage AC-DC converter based on digital assistant technology is proposed in this paper, which has rapid dynamic response capability. The converter operates in the PFM (Pulse Frequency Modulation) mode. According to the load state, the compensation current produced by the digital compensation module was injected into the CS pin to adjust the switching pulse width dynamically and improve the dynamic response. The control chip is implemented based on NEC $1{\mu}m$ 5V/40V HVCMOS process. A 5V/1.2A prototype has been built to verify the proposed control method. When the load jumps from idle to heavy, the undershoot time is only 7.4ms.

A Wide Input Range, 95.4% Power Efficiency DC-DC Buck Converter with a Phase-Locked Loop in 0.18 ㎛ BCD

  • Kim, Hongjin;Park, Young-Jun;Park, Ju-Hyun;Ryu, Ho-Cheol;Pu, Young-Gun;Lee, Minjae;Hwang, Keumcheol;Yang, Younggoo;Lee, Kang-Yoon
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2024-2034
    • /
    • 2016
  • This paper presents a DC-DC buck converter with a Phase-Locked Loop (PLL) that can compensates for power efficiency degradation over a wide input range. Its switching frequency is kept at 2 MHz and the delay difference between the High side driver and the Low side driver can be minimized with respect to Process, Voltage and Temperature (PVT) variations by adopting the PLL. The operation mode of the proposed DC-DC buck converter is automatically changed to Pulse Width Modulation (PWM) or PWM frequency modes according to the load condition (heavy load or light load) while supporting a maximum load current of up to 1.2 A. The PWM frequency mode is used to extend the CCM region under the light load condition for the PWM operation. As a result, high efficiency can be achieved under the light load condition by the PWM frequency mode and the delay compensation with the PLL. The proposed DC-DC buck converter is fabricated with a $0.18{\mu}m$ BCD process, and the die area is $3.96mm^2$. It is implemented to have over a 90 % efficiency at an output voltage of 5 V when the input range is between 8 V and 20 V. As a result, the variation in the power efficiency is less than 1 % and the maximum efficiency of the proposed DC-DC buck converter with the PLL is 95.4 %.

DCM DC-DC Converter for Mobile Devices (모바일 기기용 DCM DC-DC Converter)

  • Jung, Jiteck;Yun, Beomsu;Choi, Joongho
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.319-325
    • /
    • 2020
  • In this paper, a discontinuous-conduction mode (DCM) DC-DC buck converter is presented for mobile device applications. The buck converter consists of compensator for stable operations, pulse-width modulation (PWM) logic, and power switches. In order to achieve small hardware form-factor, the number of off-chip components should be kept to be minimum, which can be realized with simple and efficient frequency compensation and digital soft start-up circuits. Burst-mode operation is included for preventing the efficiency from degrading under very light load condition. The DCM DC-DC buck converter is fabricated with 0.18-um BCDMOS process. Programmable output with external resistors is typically set to be 1.8V for the input voltage between 2.8 and 5.0V. With a switching frequency of 1MHz, measured maximum efficiency is 92.6% for a load current of 100mA.

A NOVEL ZVS-CV PWM AC-DC CONVERTER

  • Yan, Baiping;Chen, Zhiming;Liu, Jian
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.709-712
    • /
    • 1998
  • A new ZVS-CV PWM converter with power factor correction (PFC) function is presented in this paper. The new topology is a integration of a boost converter and a ZVS-CV topology in a single power conversion stage. The new converter can be regulated in pulse-width modulation (PWM) by universal integrated control circuits. Some design considerations are given in detail. A laboratory prototype has been implemented to show the feasibility of the approach and the analysis.

  • PDF

Fault Diagnosis Method of Voltage Sensor in 3-phase AC/DC PWM Converters

  • Kim, Hyung-Seop;Im, Won-Sang;Kim, Jang-Mok;Lee, Dong-Choon;Lee, Kyo-Beum
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.3
    • /
    • pp.384-390
    • /
    • 2012
  • This paper proposes a fault diagnosis method of the line-to-line voltage sensors in 3-phase AC/DC pulse width modulation (PWM) converters. The line-to-line voltage sensors are an essential device to obtain the information of the grid voltages for controlling the 3-phase AC/DC PWM converters. If the line-to-line voltage sensors are mismeasured by various faults, the voltage sensors can obtain wrong information of the grid voltage. It has an adverse effect on the control of the converter. Therefore, the converter causes the unbalance input AC current and the DC-link voltage ripple in the 3-phase AC/DC PWM converter. Hence, fast fault detection and fault tolerant control are needed. In this paper, the fault diagnosis method is proposed and verified through simulations and experiments.

A Single-Input Single-Output Approach by using Minor-Loop Voltage Feedback Compensation with Modified SPWM Technique for Three-Phase AC-DC Buck Converter

  • Alias, Azrita;Rahim, Nasrudin Abd.;Hussain, Mohamed Azlan
    • Journal of Power Electronics
    • /
    • v.13 no.5
    • /
    • pp.829-840
    • /
    • 2013
  • The modified sinusoidal pulse-width modulation (SPWM) is one of the PWM techniques used in three-phase AC-DC buck converters. The modified SPWM works without the current sensor (the converter is current sensorless), improves production of sinusoidal AC current, enables obtainment of near-unity power factor, and controls output voltage through modulation gain (ranging from 0 to 1). The main problem of the modified SPWM is the huge starting current and voltage (during transient) that results from a large step change from the reference voltage. When the load changes, the output voltage significantly drops (through switching losses and non-ideal converter elements). The single-input single-output (SISO) approach with minor-loop voltage feedback controller presented here overcomes this problem. This approach is created on a theoretical linear model and verified by discrete-model simulation on MATLAB/Simulink. The capability and effectiveness of the SISO approach in compensating start-up current/voltage and in achieving zero steady-state error were tested for transient cases with step-changed load and step-changed reference voltage for linear and non-linear loads. Tests were done to analyze the transient performance against various controller gains. An experiment prototype was also developed for verification.