DOI QR코드

DOI QR Code

DCM DC-DC Converter for Mobile Devices

모바일 기기용 DCM DC-DC Converter

  • Jung, Jiteck (School of Electrical and Computer Engineering, University of Seoul) ;
  • Yun, Beomsu (School of Electrical and Computer Engineering, University of Seoul) ;
  • Choi, Joongho (School of Electrical and Computer Engineering, University of Seoul)
  • Received : 2020.03.11
  • Accepted : 2020.03.15
  • Published : 2020.03.31

Abstract

In this paper, a discontinuous-conduction mode (DCM) DC-DC buck converter is presented for mobile device applications. The buck converter consists of compensator for stable operations, pulse-width modulation (PWM) logic, and power switches. In order to achieve small hardware form-factor, the number of off-chip components should be kept to be minimum, which can be realized with simple and efficient frequency compensation and digital soft start-up circuits. Burst-mode operation is included for preventing the efficiency from degrading under very light load condition. The DCM DC-DC buck converter is fabricated with 0.18-um BCDMOS process. Programmable output with external resistors is typically set to be 1.8V for the input voltage between 2.8 and 5.0V. With a switching frequency of 1MHz, measured maximum efficiency is 92.6% for a load current of 100mA.

본 논문에서 모바일 기기에 적용하는 DCM DC-DC 벅 변환기를 설계하였다. 이 변환기는 안정된 동작을 위한 보상기, PWM 로직과 파워 스위치로 구성되어 있다. 작은 하드웨어 폼-팩터를 얻기 위하여 칩 외부에서 사용하는 소자의 갯수를 최소화하여야 하며 이는 효율적인 주파수 보상과 디지털 스타트-업 회로로 구현하였다. 매우 작은 부하 전류에서 효율의 감소를 막기 위하여 버스트-모드 동작도 구현하였다. DCM 벅 변환기는 0.18um BCDMOS 공정으로 제작되었다. 2.8~5V의 입력 전압 범위에 대하여 출력 전압 값은 외부 저항 소자를 사용하여 1.8V로 프로그램 되었다. 1MHz의 스위칭 주파수 및 100mA의 부하 전류에서 측정된 최대 효율은 92.6%이다.

Keywords

References

  1. Y. Yokoyama et al., "40-nm 64-kbit Buffer/Backup SRAM with 330 nW Standby Power at $65^{\circ}C$ Using 3.3 V IO MOSs for PMIC less MCU in IoT Applications," 2018 IEEE Asian Solid-State Circuits Conference (A-SSCC), pp.9-12, 2018. DOI: 10.1109/ASSCC.2018.8579327
  2. C. Shi, B. C. Walker, E. Zeisel, B. Y. Hu, and G. H. McAllister, "A Highly Integrated Power Management IC for Advanced Mobile Applications," IEEE Journal of Solid-State Circuits, Vol.42, No.8, pp.1723-1731, 2007. DOI: 10.1109/CICC.2006.320982
  3. S. Kim et al., "A Single-Stage, Single-Inductor, 6-Input 9-Output Multi-Modal Energy Harvesting Power Management IC for $100{\mu}W$-120MW Battery-Powered IoT Edge Nodes," 2018 IEEE Symposium on VLSI Circuits, pp.195-196, 2018. DOI: 10.1109/VLSIC.2018.8502301
  4. R. W. Erickson, D. Maksimovic, Fundamentals of Power Electronics, 2nd ed., Kluwer Academic Publishers, 2001.
  5. K. Shibata and C. Pham, "A DC-DC Converter using a high speed soft-start control circuit," in Proc. of 2010 IEEE International Symposium on Circuits and Systems, pp.833-836, 2010. DOI: 10.1109/ISCAS.2010.5537434
  6. S. Zhou and G. A. Rincon-Mora, "A high efficiency, soft switching DC-DC converter with adaptive current-ripple control for portable applications," in IEEE Transactions on Circuits and Systems II: Express Briefs, Vol.53, No.4, pp.319-323, 2006. DOI: 10.1109/TCSII.2005.859572
  7. F. Reverter and M. Gasulla, "Optimal Inductor Current in Boost DC/DC Converters Operating in Burst Mode Under Light-Load Conditions," IEEE Trans. Power Electronics, Vol.31, No.1, pp.15-20, 2016. DOI: 10.1109/TPEL.2015.2454331
  8. L. Mei, D. Williams and W. Eberle, "A predictive analog dead-time control circuit for a buck converter," 2013 26th IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), pp.1-5, 2013. DOI: 10.1109/CCECE.2013.6567695