• Title/Summary/Keyword: Pulse frequency

Search Result 1,949, Processing Time 0.029 seconds

Electrically-evoked Neural Activities of rd1 Mice Retinal Ganglion Cells by Repetitive Pulse Stimulation

  • Ryu, Sang-Baek;Ye, Jang-Hee;Lee, Jong-Seung;Goo, Yong-Sook;Kim, Chi-Hyun;Kim, Kyung-Hwan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.6
    • /
    • pp.443-448
    • /
    • 2009
  • For successful visual perception by visual prosthesis using electrical stimulation, it is essential to develop an effective stimulation strategy based on understanding of retinal ganglion cell (RGC) responses to electrical stimulation. We studied RGC responses to repetitive electrical stimulation pulses to develop a stimulation strategy using stimulation pulse frequency modulation. Retinal patches of photoreceptor-degenerated retinas from rd1 mice were attached to a planar multi-electrode array (MEA) and RGC spike trains responding to electrical stimulation pulse trains with various pulse frequencies were observed. RGC responses were strongly dependent on inter-pulse interval when it was varied from 500 to 10 ms. Although the evoked spikes were suppressed with increasing pulse rate, the number of evoked spikes were >60% of the maximal responses when the inter-pulse intervals exceeded 100 ms. Based on this, we investigated the modulation of evoked RGC firing rates while increasing the pulse frequency from 1 to 10 pulses per second (or Hz) to deduce the optimal pulse frequency range for modulation of RGC response strength. RGC response strength monotonically and linearly increased within the stimulation frequency of 1~9 Hz. The results suggest that the evoked neural activities of RGCs in degenerated retina can be reliably controlled by pulse frequency modulation, and may be used as a stimulation strategy for visual neural prosthesis.

Frequency Domain Processing Techniques for Pulse Shape Modulated Ultra Wideband Systems

  • Gordillo, Alex Cartagena;Kohno, Ryuji
    • Journal of Communications and Networks
    • /
    • v.9 no.4
    • /
    • pp.482-489
    • /
    • 2007
  • In this paper, two frequency domain signal processing techniques for pulse shape modulation(PSM) ultra wideband(UWB) systems are presented. Firstly, orthogonal detection of UWB PSM Hermite pulses in frequency domain is addressed. It is important because time domain detection by correlation-based receivers is severely degraded by many sources of distortion. Pulse-shape, the information conveying signal characteristic, is deformed by AWGN and shape-destructive addition of multiple paths from the propagation channel. Additionally, because of the short nature of UWB pulses, timing mismatches and synchronism degrade the performance of PSM UWB communication systems. In this paper, frequency domain orthogonality of the Hermite pulses is exploited to propose an alternative detection method, which makes possible efficient detection of PSM in dense multipath channel environments. Secondly, a ranging method employing the Cepstrum algorithm is proposed. This method is partly processed in the frequency domain and can be implemented without additional hardware complexity in the terminal.

A Study on the Microhole Machining Characteristics of the ${Al_2}{0_3}$ Ceramics using Excimer Laser (Excimer laser를 이용한 알루미나(${Al_2}{0_3}$) 세라믹의 미세구멍 가공 특성에 대한 연구)

  • 김병용;이건상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.1072-1075
    • /
    • 2001
  • $Al_2O_3$ ceramics are generally used as components in processing equipment, devices or machinery because it can perform some functions better than competing metals or polymers. Many of these applications rely on $Al_2O_3$ ceramics special electromagnetic properties, its relative chemical inertness, hardness, strength and its temperature capabilities. But $Al_2O_3$ ceramics are brittle materials, a fact that may cause problems and at the same time be helpful while machining with laser. This study described a basic study of the input parameters effect on the dimension of the microhole at the $Al_2O_3$ ceramics using Excimer laser. In the laser microhole machining of $Al_2O_3$ ceramics, major input parameters are pulse energy, pulse power, pulse frequency and pulse numbers. In conclusion, we can get a smaller microhole and diameter rate by an appropriate pulse energy, pulse frequency and pulse number.

  • PDF

Trichel Pulse in Negative DC Corona discharge and Its Electromagnetic Radiations

  • Zhang, Yu;Liu, Li-Juan;Miao, Jin-Song;Peng, Zu-Lin;Ouyang, Ji-Ting
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1174-1180
    • /
    • 2015
  • We investigate in this paper the radiated electromagnetic waves together with the discharge characteristics of Trichel pulse of negative DC corona discharge in air in pin-to-plate and wire-to-plate configurations. The feature of the current pulse and the frequency spectrum of the electromagnetic radiations were measured under various pressures and gas gaps. The results show that the repetition frequency and the amplitude of Trichel pulse current depend on the discharge conditions, but the rising time of the pulse relates only to the radius of needle or wire and keeps constant even if the other conditions (including the discharge current, the gas gap and the gas pressure) change. There exists the characterized spectrum of electromagnetic waves from negative corona discharge in Trichel pulse regime. These characterized radiations do not change their frequency at a given cathode geometry even if the averaged current, the gas gap or the air pressure changes, but the amplitude of radiations changes accordingly. The characterized electromagnetic radiations from Trichel pulse corona relate to the formation or the rising edge of current pulse. It confirms that the characterized radiations from Trichel pulse supply information of discharge system and provide a potential method for detecting charged targets.

Crystal Structure, Microstructure and Mechanical Properties of NbN Coatings Deposited by Asymmetric Bipolar Pulsed DC Sputtering

  • Chun, Sung-Yong;Im, Hyun-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.1
    • /
    • pp.33-37
    • /
    • 2017
  • Single phase niobium nitride (NbN) coatings were deposited using asymmetric bipolar pulsed dc sputtering by varying pulse frequency and duty cycle of pulsed plasmas. Crystal structure, microstructure, morphology and mechanical properties were examined using XRD, FE-SEM, AFM and nanoindentation. Upon increasing pulse frequencies and decreasing duty cycles, the coating morphology was changed from a pyramidal-shaped columnar structure to a round-shaped dense structure with finer grains. Asymmetric bipolar pulsed dc sputtered NbN coatings deposited at pulse frequency of 25 kHz is characterized by higher hardness up to 17.4 GPa, elastic modulus up to 193.9 GPa, residual compressive stress and a smaller grain size down to 27.5 nm compared with dc sputtered NbN coatings at pulse frequency of 0 kHz. The results suggest that the asymmetric bipolar pulsed dc sputtering technique is very beneficial to reactive deposition of transition-metal nitrides such as NbN coatings.

A Study On PIN Pulse Pattern Optimization In The Space Vector Notation Using Pulse Frequency Modulation (펄스 주파수 변조 방법을 이용한 공간 벡터 PWM 펄스 패턴최적화 기법에 관한 연구)

  • Jeon, Hi-Jong;Son, Jin-Geun;Kim, Dong-Joon;Lee, Suck-Tae;Choi, Woo-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.307-312
    • /
    • 1994
  • In this investigation the PFM(Pulse Frequency Modulation} will be used for optimizing PWM inverter pulse pattern. In traditional the pulse frequency of PWM is kept const. But modulated PWM's frequency in this study, the sinusoidal inverter's performance should be improved. The PWM pulsepatterns are definitely controlled so that the time-integral function of the voltage vectors in the space vector notation may show a circular locus. Further, performance index will be minimized because of minimizing distortion of output current. Finally, we will implement itusingsingle-chip microprocessor.

  • PDF

Study on the Human Influence according to RF Pulse Intensity by use Dental Implant on BRAIN MRI: Using the XFDTD Program (Brain MRI 검사 시 치아 임플란트 시술유무와 RF Pulse 세기에 따른 인체 영향에 관한 연구: XFDTD 프로그램을 이용)

  • Choe, Dea-yeon;Kim, Dong-Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.5
    • /
    • pp.361-370
    • /
    • 2017
  • In the Brain MRI, RF Pulse is irradiated on the human body in order to acquire an image. At this time, a considerable part of the irradiated RF Pulse energy is absorbed as it is in our body. This will raise the temperature of the human body, but depending on the extent of exposure, it will affect the human body. The change of the SAR and the temperature of the head according to the change of the magnetic field strength is examined. And to investigate the difference in results depending on the use of dental implant. In the human head model, 64 MHz RF Pulse frequency generated from 1.5 T, 128 MHz RF Pulse frequency generated from 3.0 T, and 298 MHz RF Pulse frequency generated from 7.0 T send a frequency and experiment was performed using dental implant using the XFDTD program, we measured the SAR and body temperature changes around the head. The SAR value showed up to about 5800 times the difference at the RF Pulse frequency of 256 MHz, when with dental implant than without dental implant and as the frequency increased, the use of the dental implant increased difference in the SAR value. The change of the temperature of the head showed a temperature rise nearly 2 to 4 times when with dental implant than without dental implant. As the RF Pulse frequency increase, the SAR value increase, but the change of the temperature of the head decrease. Because of as the frequency increase, wavelength is smaller and the more the amount absorbed by the surface of the human. Physiological and biochemical studies of the human body ar necessary through studies of the presence of dental implant and the cause of reaction caused by change in the RF Pulse frequency.

Fixed system of action waveform by pulse module special quality of obstetrics and gynecology pulse style $CO_2$ laser relationship embodiment (산부인과 펄스형 $CO_2$ 레이저의 펄스모듈 특성에 의한 동작파형의 일정한 시스템의 구현)

  • Kim, Whi-Young
    • Proceedings of the KIEE Conference
    • /
    • 2007.04c
    • /
    • pp.159-161
    • /
    • 2007
  • $CO_2$ laser sees that is most suitable to get this effect through minimum formation damage and advantage that is root enemy of effect that happen in minimum cellular tissue depth of 0.1mm is stable living body organization or internal organs institution. Formation damage by ten can be related in formation's kind or energy density, length of evaporation time. If shorten evaporation time, surroundings cellular thermal damage 200 - because happen within 400ums laser beam in rain focus sacred ground surroundings cellular tissue without vitiation me by evaporation Poe of very small floor as is clean steam can. Application is possible to vulva cuticle cousins by a paternal aunt quantity, uterine cancer, cuticle tumor by laser system that $CO_2$ laser gets into standard in obstetrics and gynecology application. Because effect that super pulse output is ten enemies of laser if uniformity one pulse durations are short almost is decreased, most of all pulse module special quality of pulse style $CO_2$ laser for obstetrics and gynecology mode stabilization by weight very, in this research to get into short pulse duration and higher frequency density, do switching by high frequency in DC-DC Converter output DC's ripple high frequency to be changed, high frequency done current ripple amount of condenser for output filter greatly reduce can. Ripple of output approximately to Zero realization applying possible inductor realization through a special quality experiment do.

  • PDF

Study of the RF Test signal generation methods for receiver performance verification (신호수신시스템 성능예측을 위한 신호원 모의발생 방안 연구)

  • Kim, Dong-Gyu;Yoon, Won-Sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.353-356
    • /
    • 2011
  • A Signal Receiving system to collect and analyze RF signals should be verified under simulated RF signal environment prior to verification on operation in fields and tested by using simulated RF signals in order to estimate its electrical performance. Generally, typical Signal Receiving system can measure, analyze frequency, pulse modulation, scan modulation, phase modulation on pulse, frequency modulation on pulse etc on RF signals. These RF signals should be generated from simulated RF sources in laboratory. Also the simultaneous RF signals should be simulated on laboratory. This paper describes the results of studying effective simulated RF signal source generation, the methods of the precise RF test signal generation in consideration of operational scenario.

  • PDF

A Stable 40 GHz Pulse Train Generation by Pulse Repetition-Frequency Quadruplication Using a Fiber Fabry-Perot Interferometer

  • Ruan, Wan-Yong;Park, Jae-Hyun;Seo, Dong-Sun
    • Journal of IKEEE
    • /
    • v.12 no.4
    • /
    • pp.234-238
    • /
    • 2008
  • We demonstrate a simple method to generate a stable 40 GHz pulse train at 1550 nm by spectral filtering of a 10 GHz mode.locked pulse source using a fiber Fabry-Perot interferometer (FFPI). A high finesse FFPI with a 40 GHz free spectral range blocks successfully unwanted spectral components of a 10 GHz pulse source and passes only 40 GHz spaced spectral lines ensuring pulse repetition-frequency quadruplication of the input pulses.

  • PDF