Frequency Domain Processing Techniques for Pulse Shape Modulated Ultra Wideband Systems

  • Gordillo, Alex Cartagena (Division of Electrical and Computer Engineering, Yokohama National University) ;
  • Kohno, Ryuji (Division of Electrical and Computer Engineering, Yokohama National University)
  • Published : 2007.12.31

Abstract

In this paper, two frequency domain signal processing techniques for pulse shape modulation(PSM) ultra wideband(UWB) systems are presented. Firstly, orthogonal detection of UWB PSM Hermite pulses in frequency domain is addressed. It is important because time domain detection by correlation-based receivers is severely degraded by many sources of distortion. Pulse-shape, the information conveying signal characteristic, is deformed by AWGN and shape-destructive addition of multiple paths from the propagation channel. Additionally, because of the short nature of UWB pulses, timing mismatches and synchronism degrade the performance of PSM UWB communication systems. In this paper, frequency domain orthogonality of the Hermite pulses is exploited to propose an alternative detection method, which makes possible efficient detection of PSM in dense multipath channel environments. Secondly, a ranging method employing the Cepstrum algorithm is proposed. This method is partly processed in the frequency domain and can be implemented without additional hardware complexity in the terminal.

Keywords

References

  1. M. Ghavami, L. B. Michael, and R. Kohno, 'Hermite function based orthogonal pulses for ultra wideband communications,' in Proc. Wireless Personal Multimedia Communications (WPMC), Alborg, Denmark, Sept. 2001, pp. 437-440
  2. C. J. Mitchell and R. Kohno, 'Combined pulse shape and pulse position modulation for high data rate transmissions in UWB communications,' in Proc. International Workshop on Ultra Wideband Systems (IWUWBS), Oulu, Finland, June 2003
  3. J. Foerster, 'Channel modeling sub-committee report final,' IEEE P802.15 Wireless Personal Area Networks, IEEE P802.15-02/490rl-SG3a, Feb. 2003
  4. A. F. Molisch, '802.15.4a channel model subgroup final report,' IEEE P802.15 Wireless Personal Area Networks, IEEE P802.15-04-0535-00004a, Sept. 2004
  5. C. Gangyaokuang and S. Zhonglianglu, 'A way of multi-channel A/D for UWB signal,' in Proc. IEEE National Aerospace and Electronics Conf. (NAECON), Dayton, Ohio, USA, May 1995, pp. 206-209
  6. S. Hoyos, B. M. Sadler, and G. R. Arce, 'Analog to digital conversion of ultra-wideband signals in orthogonal spaces,' in Proc. IEEE Conference on Ultra Wideband Systems and Techniques (UWBST), Reston, Virginia, USA, Nov. 2003, pp. 47-51
  7. F. Furuta, K. Saitoh, and K. Takagi, 'Design of front-end circuit for superconductive AID converter and demonstration of operation up to 43 GHz,' IEEE Trans. Appl. Superconduct., vol. 14, pp. 40-45, Mar. 2004 https://doi.org/10.1109/TASC.2004.824343
  8. S. Hoyos, B. M. Sadler, and G. R. Arce, 'Ultra-wideband multicarrier communication receiver based on analog to digital conversion in the frequency domain,' in IEEE Wireless Commun. and Netw. Conf. (WCNC), New Orleans, LA, USA, Mar. 2005, pp. 782-787
  9. W. Namgoong, 'A channelized digital ultra wideband receiver,' IEEE Trans. Wireless Commun., vol. 2, pp. 502-510, May 2003 https://doi.org/10.1109/TWC.2003.811177
  10. H.-J. Lee, D. S. Ha, and H.-S. Lee, 'A frequency-domain approach for all-digital CMOS UWB wideband receivers,' in Proc. IEEE Conf. on Ultra Wideband Systems and Techniques (UWBST), Reston, Virginia, USA, Nov. 2003
  11. H.-J. Lee, D. S. Ha, and H.-S. Lee, 'Toward digital UWB radios: Part I - Frequency domain UWB receiver with 1 bit ADCs,' in Proc. Int. Workshop on Ultra Wideband Systems Joint with Con! on Ultra Wideband Systems and Technologies (Joint UWBST & IWUWBS), Kyoto, Japan, May 2004
  12. H.-J. Lee, D. S. Ha, and H.-S. Lee, 'Toward digital UWB radios: Part II - A system design to increase data throughput for a frequency domain UWB receiver,' in Proc. Int. Workshop on Ultra Wide band Systems Joint with Con]. on Ultra Wideband Systems and Technologies (Joint UWBST & IWUWBS), Kyoto, Japan, May 2004
  13. T. Bianchi and S. Morosi, 'Frequency domain detection for ultrawideband communications in the indoor environment,' in Proc. IEEE Int. Symp. on Spread Spectrum Techniques and Applications (ISSSTA), Sydney, Australia, Sept. 2004, pp. 493-497
  14. J. R. Andrews, 'UWB signal sources, antennas & propagation,' 2003, extended Version of the paper at 2003 IEEE Tropical Conf. on Wireless Commun. Technology. [Online]. Available: http://www.ccsds.org/documents/pdf/CCSDS-101.0-B-4.pdf
  15. H. G. Schantz, 'Dispersion and UWB Antennas,' in Proc. Int. Workshop on Ultra Wideband Systems Joint with Conf. on Ultra Wide band Systems and Technologies (Joint UWBST & IWUWBS), Kyoto, Japan, May 2004, invited Talk
  16. A. H. Mohammadian, A. Rajkotia, and S. S. Soliman, 'Characterization of UWB transmit-receive antenna system,' in Proc. IEEE Conf. on Ultra Wideband Systems and Techniques (UWBST), Virginia, USA, Nov. 2003
  17. J. Powell and A. Chandrakasan, 'Differential and single ended elliptical antennas for 3.1-10.6 GHz ultra wideband communication,' in Antennas and Propagation Society Int. Symp., IEEE, Monterrey, California, USA, June 2004
  18. S. Nikolaou, L. Marcaccioli, G. E. Ponchak, J. Papapolymerou, and M. M. Tentzeris, 'Conformal double exponentially tappered slot antennas (DETSA) for UWB communications systems' front-ends,' in Proc. IEEE Int. Conf. on Ultra-Wideband (ICU), Zurich, Switzerland, Sept. 2005
  19. A. Cartagena Gordillo, G. T. F. de Abreu, and R. Kohno, 'Band-limited frequency efficient orthogonal pulse shape modulation for UWB communications,' in Proc. IEEE Int. Symp. on Spread Spectrum Techniques and Applications (ISSSTA), Sydney, Australia, Sept. 2004, pp. 498-502
  20. G. T. F. de Abreu, C. J. Mitchell, and R. Kohno, 'On the design of orthogonal-shape modulation for UWB systems using Hermite pulses,' Journal of Commun. and Networks, vol. 5, pp. 100-124, Dec. 2002
  21. G. G. Walter, Wavelets and Other Orthogonal Systems With Applications. Boca Raton, FL:CRC Press, 1994
  22. A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, 2nd Ed. Upper Saddle River, NJ: Prentice Hall, 1998
  23. R. W. Schafer, 'Echo removal by discrete generalized linear filtering,' Ph.D. dissertation, Massachusetts Institute of Technology, Cambridge, Jan. 1968
  24. M. A. Rahman, S. Sasaki, J. Zhou, and H. Kikuchi, 'On rake reception of ultra wideband signals over multipath channels from energy capture perspective,' IEICE TRANS. FUNDAMENTALS. Special Section on Ultra Wideband Systems, vol. E88, pp. 2339-2349, Sept. 2005
  25. I. Guvenc and H. Arslan, 'Performance analysis of UWB systems in the presence of timing jitter,' Journal of Commun. and Networks, vol. 6, pp. 182-191, June 2004 https://doi.org/10.1109/JCN.2004.6596639
  26. R. C. Qiu and I.-T. Lu, 'Wideband wireless multipath channel modeling with path frequency dependence,' in IEEE Int. Conf. on Commun. (ICC), Dallas, TX, June 1996
  27. R. C. Qiu, 'A study of the ultra-wideband wireless propagation channel and optimum (UWB) receiver design,' IEEE J. Sel. Areas Commun., vol. 20, pp. 1628-1637, Dec. 2002 https://doi.org/10.1109/JSAC.2002.805249
  28. R. C. Qiu, J. Q. Zhang, and N. Guo, 'Detection of physics-based ultra-wideband signals using generalized rake with multiuser detection (MUD) and time-reversal mirror,' IEEE J. Sel. Areas Commun., vol. 24, pp. 724-730, Apr. 2006 https://doi.org/10.1109/JSAC.2005.863813
  29. S. Xu, K. C. Wee, B. Kannan, and F. Chin, 'Channel-model-matlab-code-ver-9.zip,' IEEE 802.15-4a, Tech. Rep. 15-05-0114-00-004a, Feb. 2005. [Online]. Available: ftp://ftp.802wirelessworld.com/15/05/