• 제목/요약/키워드: Prey-predator model

검색결과 67건 처리시간 0.029초

A STUDY OF TWO SPECIES MODEL WITH HOLLING TYPE RESPONSE FUNCTION USING TRIANGULAR FUZZY NUMBERS

  • P. VINOTHINI;K. KAVITHA
    • Journal of applied mathematics & informatics
    • /
    • 제41권4호
    • /
    • pp.723-739
    • /
    • 2023
  • In this paper, we developed three theoretical models based on prey and predator that exhibit holling-type response functions. In both a fuzzy and a crisp environment, we have provided a mathematical formulation for the prey predator concept. We used the signed distance method to defuzzify the triangular fuzzy numbers using the alpha-cut function. We can identify equilibrium points for all three theoretical models using the defuzzification technique. Utilizing a variational matrix, stability is also performed with the two species model through three theoretical models. Results are presented, followed by discussion. MATLAB software is used to provide numerical simulations.

SPIRAL WAVE GENERATION IN A DIFFUSIVE PREDATOR-PREY MODEL WITH TWO TIME DELAYS

  • GAN, WENZHEN;ZHU, PENG
    • 대한수학회보
    • /
    • 제52권4호
    • /
    • pp.1113-1122
    • /
    • 2015
  • This paper is concerned with the pattern formation of a diffusive predator-prey model with two time delays. Based upon an analysis of Hopf bifurcation, we demonstrate that time delays can induce spatial patterns under some conditions. Moreover, by use of a series of numerical simulations, we show that the type of spatial patterns is the spiral wave. Finally, we demonstrate that the spiral wave is asymptotically stable.

A BIOECONOMIC MODEL OF A RATIO-DEPENDENT PREDATOR-PREY SYSTEM AND OPTIMAL HARVESTING

  • Kar T.K.;Misra Swarnakamal;Mukhopadhyay B.
    • Journal of applied mathematics & informatics
    • /
    • 제22권1_2호
    • /
    • pp.387-401
    • /
    • 2006
  • This paper deals with the problem of a ratio-dependent prey- predator model with combined harvesting. The existence of steady states and their stability are studied using eigenvalue analysis. Boundedness of the exploited system is examined. We derive conditions for persistence and global stability of the system. The possibility of existence of bionomic equilibria has been considered. The problem of optimal harvest policy is then solved by using Pontryagin's maximal principle.

제주도 노루의 개체수 관리를 위한 확장적 피식-포식모형의 적용에 관한 연구 (Application of an Augmented Predator-Prey Model to the Population Dynamics of Roe Deer in Jeju)

  • 전대욱;김도훈
    • 한국시스템다이내믹스연구
    • /
    • 제12권2호
    • /
    • pp.95-126
    • /
    • 2011
  • This paper aims at developing a System Dynamics model with an augmented predator-prey interaction structure to deal with the population management of roe deer in Jeju, Korea. Although people still regard the creature as one of the important tourist attractions, there has been much debate on the issues of the appropriateness of the population size of roe deers because they have been stigmatized as crop damagers, and roadkill/poaching victims due to their natural habit to move around from the top mountain to the lowland of the island. The model is therefore to incorporate these migrating and grazing behaviors into an augmented Lotka-Volterra model coupling roe deer population in both parts of the island to that of predators and preys of the species. The authors also provide a comprehensive set of dynamic hypotheses and relevant CLD/SFD to understand the population dynamics of roe deer and co-evolving species and perform the steady-state analysis of the proposed equation system to verify the model behavior of the numerical example lastly presented in this paper.

  • PDF

DIFFUSIVE AND STOCHASTIC ANALYSIS OF LOKTA-VOLTERRA MODEL WITH BIFURCATION

  • C.V. PAVAN KUMAR;G. RANJITH KUMAR;KALYAN DAS;K. SHIVA REDDY;MD. HAIDER ALI BISWAS
    • Journal of applied mathematics & informatics
    • /
    • 제41권1호
    • /
    • pp.11-31
    • /
    • 2023
  • The paper presents a critical analysis of selected topics related to the modeling of interacting species in which prey has nonlinear reproduction, which is in competition with predator. The mathematical model's stochastic stability is investigated. The method of designing appropriate Lyapunov functions is used to identify permanence conditions among the parameters of the model and conditions for the structure to no longer be extinct. The system's two-dimensional diffusive stability is regarded and studied. The system experiences the process of saddle-node bifurcation by varying the death rate of predator parameter. Further effects of parameters that undergo inherent oscillations are numerically investigated, revealing that as the intensity of predation parameter b is increased, the device encounters non-periodic and damped oscillations.

INSTABILITY IN A PREDATOR-PREY MODEL WITH DIFFUSION

  • Aly, Shaban
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제13권1호
    • /
    • pp.21-29
    • /
    • 2009
  • This paper treats the conditions for the existence and stability properties of stationary solutions of a predator-prey interaction with self and cross-diffusion. We show that at a certain critical value a diffusion driven instability occurs, i.e. the stationary solution stays stable with respect to the kinetic system (the system without diffusion) but becomes unstable with respect to the system with diffusion and that Turing instability takes place. We note that the cross-diffusion increase or decrease a Turing space (the space which the emergence of spatial patterns is holding) compared to the Turing space with self-diffusion, i.e. the cross-diffusion response is an important factor that should not be ignored when pattern emerges.

  • PDF

Global Periodic Solutions in a Delayed Predator-Prey System with Holling II Functional Response

  • Jiang, Zhichao;Wang, Hongtao;Wang, Hongmei
    • Kyungpook Mathematical Journal
    • /
    • 제50권2호
    • /
    • pp.255-266
    • /
    • 2010
  • We consider a delayed predator-prey system with Holling II functional response. Firstly, the paper considers the stability and local Hopf bifurcation for a delayed prey-predator model using the basic theorem on zeros of general transcendental function, which was established by Cook etc.. Secondly, special attention is paid to the global existence of periodic solutions bifurcating from Hopf bifurcations. By using a global Hopf bifurcation result due to Wu, we show that the local Hopf bifurcation implies the global Hopf bifurcation after the second critical value of delay. Finally, several numerical simulations supporting the theoretical analysis are given.

LONG-TIME PROPERTIES OF PREY-PREDATOR SYSTEM WITH CROSS-DIFFUSION

  • Shim Seong-A
    • 대한수학회논문집
    • /
    • 제21권2호
    • /
    • pp.293-320
    • /
    • 2006
  • Using calculus inequalities and embedding theorems in $R^1$, we establish $W^1_2$-estimates for the solutions of prey-predator population model with cross-diffusion and self-diffusion terms. Two cases are considered; (i) $d_1\;=\;d_2,\;{\alpha}_{12}\;=\;{\alpha}_{21}\;=\;0$, and (ii) $0\;<\;{\alpha}_{21}\;<\;8_{\alpha}_{11},\;0\;<\;{\alpha}_{12}\;<\;8_{\alpha}_{22}$. It is proved that solutions are bounded uniformly pointwise, and that the uniform bounds remain independent of the growth of the diffusion coefficient in the system. Also, convergence results are obtained when $t\;{\to}\;{\infty}$ via suitable Liapunov functionals.

ANALYSIS OF A DELAY PREY-PREDATOR MODEL WITH DISEASE IN THE PREY SPECIES ONLY

  • Zhou, Xueyong;Shi, Xiangyun;Song, Xinyu
    • 대한수학회지
    • /
    • 제46권4호
    • /
    • pp.713-731
    • /
    • 2009
  • In this paper, a three-dimensional eco-epidemiological model with delay is considered. The stability of the two equilibria, the existence of Hopf bifurcation and the permanence are investigated. It is found that Hopf bifurcation occurs when the delay ${\tau}$ passes though a sequence of critical values. The estimation of the length of delay to preserve stability has also been calculated. Numerical simulation with a hypothetical set of data has been done to support the analytical findings.

Delayed Dynamics of Prey-Predator System with Distinct Functional Responses

  • Madhusudanan, V.;Vijaya, S.
    • Kyungpook Mathematical Journal
    • /
    • 제57권2호
    • /
    • pp.265-285
    • /
    • 2017
  • In this article, a mathematical model is proposed and analyzed to study the delayed dynamics of a system having a predator and two preys with distinct growth rates and functional responses. The equilibrium points of proposed system are determined and the local stability at each of the possible equilibrium points is investigated by its corresponding characteristic equation. The boundedness of the system is established in the absence of delay and the condition for existence of persistence in the system is determined. The discrete type gestational delay of predator is also incorporated on the system. Further it is proved that the system undergoes Hopf bifurcation using delay as bifurcation parameter. This study refers that time delay may have an impact on the stability of the system. Finally Computer simulations illustrate the dynamics of the system.