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LONG-TIME PROPERTIES OF PREY-PREDATOR
SYSTEM WITH CROSS-DIFFUSION

SEONG-A SHIM

ABSTRACT. Using calculus inequalities and embedding theorems
in R', we establish W3 -estimates for the solutions of prey-predator
population model with cross-diffusion and self-diffusion terms. Two
cases are considered ; (i) d1 = da, @12 = @21 = 0, and (ii) 0 < @91 <
8ai1, 0 < a12 < 8az. It is proved that solutions are bounded uni-
formly pointwise, and that the uniform bounds remain independent
of the growth of the diffusion coefficient in the system. Also, con-
vergence results are obtained when ¢ — oo via suitable Liapunov
functionals.

1. Introduction

In recent years Cross-Diffusion systems have been drawing great deal
of attention in the field of strongly coupled parabolic and elliptic equa-
tions. There are many established results on the Lotka-Volterra compe-
tition model with cross-diffusion in the literatures as [5], [6], [8], [11]-[13],
[17]-[19], [21]-[25]. For the cross-diffusion systems with prey-predator
type reaction functions, there are a few results mainly on the steady-
state problems with the elliptic systems, see [1], [9], [10], [15], [20].

In this paper we are interested in the time-dependent properties of the
following Cross-Diffusion system with prey-predator type of reactions :
(1.1)

up = Al(dy + aniu+ apv)u] + u(er — hu— cv)  in Q x (0, 00),

V= A[(dz + ag1u + 04221))1)] + U(az + bou — C2'U) in  x (0, OO),

%:%:0 on 98 x (0, 00),
U(l’,O) = uO(x) > 0, ’U(l‘,O) = 1}0(.’1)) >0 in Q7
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where @ C R™ is a bounded smooth domain. The coefficients a;;’s are
nonnegative constants for 4, j = 1,2. And d;, b;, ¢; (i = 1,2), and a; are
positive constants. Only a2 may be nonpositive. Throughout this paper
we assume that the initial functions wy(x), vo(z) are not identically zero.

In system (1.1) v and v are nonnegative functions which represent
the population densities of the prey and predator species, respectively,
which are interacting and migrating in the same habitat (2. By using the
strong maximum principle and the Hopf boundary lemma for parabolic
equations, it is shown that u(z,t) > 0 and v(¢,z) > 0 in [0,1] x (0, c0).
The coefficients d; and ds are the diffusion rates of the two species,
respectively. The positive constant a; means that the prey is assumed to
be sharing limited resource so that its population can increase a bit in the
absence of predator. If ag > 0 the predator is assumed to have another
source of food supply than the prey, sufficient to increase the predator
population somewhat in the absence of prey. If ag < 0 the predator
population will be decreasing in the absence of prey. The coefficients by
and ¢ account for the competitions within the prey species and predator
species, respectively. c¢; represents the death rate of the prey due to the
encounter with predator. And, bs is the growth rate of the predator due
to their prey consumption. The positive cross-diffusion rates a2 and o
mean that the prey tends to avoid higher density of the predator species
and vice versa by diffusing away. The tendency to move in the direction
of lower density of own species is represented by the self-diffusion rates
o1 and ag for the prey and predator, respectively. For details in the
biological background, we refer the reader to the monograph of Okubo
and Levin [16].

The local existence of solutions to (1.1) was established by Amann [2],
[3], [4] which deal with more general form of equations :

ug = A[(dy + ar1u + agv)u] + u f(z,u,v) in Q x (0, 00),
vy = Al(d2 + a21u + av)v] +vg(z,u,v) in Q x (0,00),
%:%:0 on 99 x (0, 00),
u(x,O) = UO(:L‘) >0, 'U(.’L',O) = UO("E) >0 in ﬁ?

(1.2)

where f and g are functions in C*°(Q x R% R). According to his re-
sults the system (1.2) has a unique nonnegative solution u(-,t), v(-, ) in
C([0,T), Wy (Q2))NC=((0,T), C*()), where T € (0, 00] is the maximal
existence time for the solution u, v. The following result is also due to
Amann [3].
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THEOREM 1. Let ug and vo be in Wy (). The system (1.2) pos-
sesses a unique nonnegative maximal smooth solution u(z,t),v(z,t) €
C([0,T), WHQ)) NnC=(Q x (0,T)) for 0 < t < T, where p >n and 0 <

T < oco. If the solution satisfies the estimates sup [u(-,t)llwy @) < oo,
0<t<T
sup HU(‘,t)”W;(Q) < 00, thenT = +o0. If, in addition, ug and vg are in
0<t<T
W;?(Q) then U(III, t)7 ’U(.’L‘, t) € C([O? OO), W;?(Q))? and 0<S}1<poo“u(a t) ”Wg(ﬂ)

< oo, sup (-, t)llwz@) < oo.
0<t<o0

The system (1.2) is a special case of the concrete example (7), (8)
in Introduction of [3], and the results stated in Theorem 1 is from the
Theorem in Introduction of [3]. The results in Theorem 1 mean that
once we establish the uniform Wg—bound, (with p > n), independent
of the maximal existence time T for the solutions, the global existence
of the solutions will follow. And also the uniform L.,-bound of the
solutions will be obtained from the Sobolev embedding theorems.

In this paper we consider the following two cases for the system (1.1)
in the spatial domain Q = [0,1] C R! :

Case(A) dy =dy and o1 = axp =0,
Case(B) 0 < ao1 <8ajx and 0 < g2 < 8ags.
The system (1.1) is rewritten in each case as follows :
ur = (du + a1auv) gy +ula; — byu — c1v)  in [0,1] x (0, 00),
(A) vy = (dv + a21uv)zy +v{ag + bou — cov).  in [0,1] x (0, 00),

ug(z,t) = vy(z,t) =0 at z = 0,1,
u(z,0) = up(z) >0, v(z,0)=wve(z)>0 in[0,1],

ug = (diu + apu?+ 0qauv)gp +uag — biu — cyv)  in [0,1] x (0, c0),
vy = (dov + ag1uv+ av?)zp +v(as + bou — cv)  in [0, 1] x (0, c0),

uz(z,t) = vg(z,t) = atx=0,1,

(B) 0 0,1
u(xz,0) = up{z) > 0, v(z,0) =vp(x) >0 in [0,1],

where «yj, d, d;, a1, b;, ¢; are all positive constants for ¢,7 = 1,2,

and as is a real constant. Throughout this paper we assume that the
initial functions ug(z), vo(x) are not identically zero and contained in
the function space W ([0, 1]).

We first prove the uniform boundedness of the global solutions of the
systems (A) and (B) in Case(A) and Case(B), respectively, by applying
the calculus inequalities of Gagliardo-Nirenberg type. The main frame of
derivation of estimates will follow the papers [22] and [23] of the author
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which deal with cross-diffusion systems with competition type reactions
(f = a1 — iu — c1v, g = az — bou — cov) in Case(A) and Case(B),
respectively. Due to the difference in the reaction functions we have to
take some condition on the coefficient b2, the growth rate of the predator
due to their prey consumption. In order to obtain L,-estimates for the
solutions we need to assume that by is not too large compared to by, c1,
¢y so that

0 < by <c1+2min{by,ca}.

In each step of estimates of the solution we look for the contribution of
the diffusion coeflicients d, di, d2 and conclude that the uniform bound
of the solution is independent of d, d1, dy if d, dy,d2 > 1. Using this result
we obtain convergence results on the solution for large d, d;, da. There
we also have to adopt different forms of Liapunov functionals from the
ones used in [22] and [23], because of the differences in the asymptotic
behaviors of the solutions.
Here we state the main theorems of this paper.

THEOREM 2. Assume that 0 < by < ¢1 + 2min{b,cp} for the sys-
tem (A). Suppose that the initial functions ug, vo are in W2([0,1]), and
let (u(z,t),v(x,t)) be the maximal solution obtained as in Theorem 1.
Then there exist positive constants ty, M' = M'(d, a12, @21, ai, bi, ¢i, i =
1,2), and M = M(d, on2, @21, a4, b, ¢;,1 = 1,2) such that

ma'X{Hu(':t)Hl,Q’ llv('7t)||1,2 1t e (t0>T)} < M’,
max{u(z,t), v(z,t): (z,t) € [0,1] x (t0,T)} < M,

and T = +o0. In the case d > 1, the constant M is independent of
d > 1, that is, M = M (a2, a21,a;, b, ¢i,1 = 1,2).

THEOREM 3. Assume that 0 < by < ¢1 + 2min{b;, ¢y} for the sys-
tem (B) in Case(B). For the maximal solution (u(z,t),v(z,t)) obtained
as in Theorem 1 there exist positive constants to, M' = M'(d;, o, as, bi,
¢,t,j =1,2), and M = M(d;, o, 04, b;, ¢5,%,§ = 1,2) such that

max{||u(-, ¢)ll1,2, lv(-, )12 : ¢ € (to, T)} < M,
max{u(z,t), v(z,t): (z,t) € [0,1] x (t0,T)} < M,

and T = +o00. In the case that d1,dy > 1, and d < g—f < d, whered, d are
positive constants, the constants M', M are independent of dy,d3 > 1,
that is, M’ and M are depending only on d, d, asj, a;, b;, ¢, 4,5 = 1,2.

Before we state the convergence results for the cross-diffusion prey-
predator systems, let us briefly mention the asymptotic behavior of the



Long-time properties of prey-predator system with cross-diffusion 297

solution (u(t),v(t)) of the kinetic system of prey-predator type in the
following :
ur = ula; — byu — cyv) for t € (0, 00),
(k) v = v(ag + bau — cav) for t € (0, 00),
’LL(O) =up > 0, ’U(O) =wvy 20,
The asymptotic behaviors of the solutions of system (k) are classified
into the three cases when :

i) — ‘;1133 <@ oa (i) & <2, (i) 2 < —%3—;.
v v

v ap ay az
—aiby b1 aiby b By
biez bicg
a2 4
c2
i) —abe @ a {j) @ o 22 i) %2 « b2
(1) blcz < c2 c1 (11) c1 < c2 (lll) c2 < blcz

FiGURE 1. The unique nonnegative stable steady-state
of the kinetic system (k) in each case of (i), (ii), and (iii)

In each case above the kinetic system (k) has a unique nonnegative stable
steady-state as illustrated in Figure 1. The positive steady-state (@, )
in the case (i) in Figure 1 is given by

= a7\ — (G1Cz—azc1 a2bita1bs
(u U) - (b162+bzc1 7 biea+bacy )

In case (i) for system (A) we obtain the following convergence results
saying that under some condition a cross-diffusion prey-predator system
has the same asymptotic property as its kinetic system :

THEOREM 4. Suppose that b—gz < ‘Z;’ < CJ, and 0 < by <
¢1 + 2min{by,co} for the system (A). Let ug, vo be in W2([0,1]). If
d > 1 satisfies that

(13) (b2a12u —+ C1a21'l) )M < 4b2C1'LL 'Ud
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where M is the positive constant in Theorem 2 (independent of d > 1),
then the solution (u(z,t),v(x,t)) converges to (u,v) uniformly in [0,1]
ast — oo, and (u,v) is globally asymptotically stable.

Similar convergence result is proved for system (B) in case (i). And also
in cases (ii) and (iii) we obtain convergence results for each system (A)
and (B).

This paper consists of seven sections : Section 1. Introduction. In
Section 2, 3, and 4 the convergence results in cases (i),(ii), and (iii) are
proved, respectively, by using the uniform boundedness results in Theo-
rems 2 and 3 for systems (A) and (B). Section 5. Calculus inequalities.
Section 6 and 7. Uniform boundedness results (Theorems 2 and 3) for
systems (A) and (B), respectively.

2. Convergence in Case (i)

In this section, we prove the convergence result in Theorem 4 for
system (A) in case (i). And also the convergence result for system (B)
in case (i) will be stated in Theorem 5 and proved.

PROOF OF Theorem 4. In this proof we consider the case (i) when
—‘;11—222 < ‘cﬂ? < %i‘- Using the functional H(u, v) defined below we observe
the convergence of global solutions of the cross-diffusion prey-predator

system (A) :
(2.1)  H(u,v) :fol {ba(u—T—7ulog¥)+ci(v~v—7vlogl)} dz,

where (u,v) = (P22, ‘;ig;i‘ggi’f) is the positive stable steady-state of
the kinetic system (k) in the case (i) as shown in Figure 1. H(u,v) is
always nonnegative and is zero only if u = % and v = . In order to
prove the convergence of the solution first we observe the time derivative
of H(u(t),v(t)) for the system (A) :

(2.2)

(u(t)w t))

fol{bg (1= Bug +1(1 — 2)vg} da
0 {b2(1 — 2)(du + a10uv)gz +c1(1 — —)(dv + ao1uv) gy } dx
—+—f01{b2 u—u)f +c1(v—7)g} dx
— b2u(d+alz’l})u + (b2a12u + claglv)ux,ux
+9—12(d + agu)v?} d
- fo {b1ba(u — w)? + c1co(v — ¥)?} d,
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where we denoted f =a1 —bu—civ and g = az+bou—cev and used
the fact that
ba(u =) f +ci(v—"7)g
= bo(u—u)(a1 — biu — c1v) + c1(v — ©)(az + bau — cov)
= —bo(u—u)(bi(u — @)+ c1(v — 7))
+c1(v —0)(ba(u — @) — c2(v — D))
= ——blbz(u — E)2 — clcz(v — 5)2.
Now we remind the uniform boundedness result for the solution of the
system (A) in the case d > 1 as in Theorem 2 that there exist positive
constants tg and M = M (a2, a1, a;, bi, ¢, = 1,2) such that

(2.3)  0<u(z,t), viz,t) <M  for every (z,t) € [0,1] X (to, 00).

From the proof of Theorem 2 we can choose the constant M depending
on the initial functions wug, vy so that the inequalities in (2.3) hold for
all t > 0. Using (2.3) and condition (1.3) in the hypothesis of the

present theorem (Theorem 4) for every constant v such that 0 < v <
4bac1uvd? — (balul+clad v2) M2
AM2(bou(d+a12 M)+e10(d+az1 M))

we have the following inequality :

bocv12t  cragU
+

YugUg

b
2u(d+a12v)u + (7

C]_’U
g

(2.4) d+ anu)v? > y{ul +v2},

since
(1’20‘12u + 21—Oﬁw)2 4{%@(d + a19v) —YHE 4% (d + agu) — v}
< 2a12u + 010421“ 4b2¢éﬂ2m2
+47{ b (4 + a12M) + cl” Ur(d+ ag1 M)}
e [(b2a12u + 2o )M2 4byc1uvd?
+4yM2{bou(d + a12M) + c19(d + a1 M)}]
< 0.

From (2.2) and (2.4) we have for ¢t > 0

1
d_H_(%tZﬁ@S_»y/o {ul +v2} dz

<

1
~ / {b1b2(u — ﬂ)2 + crea(v — 5)2} dr <0.

We notice that %(tt)—’—“@—) =0 only if u(z,t) =¥ and v(z,t) =
Thus it is shown that H(u(t),v(t)) 0 as t — oo. And we ob-
tain the Ly convergences, |u(t) —@ls — 0, |[v(t) — Tl — 0 ast — oo
by using the uniform boundedness of (u(x,t),v(w,t)) in [0,1]. From
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Theorem 1 with the assumption that ug, vg € W([0, 1]), we have that

sup |ugz(t)|e < 0o, and sup |vze(t)|2 < 0o. Applying the calculus in-
0<t<co 0<t<
equality (5.6) in Section 5 to the functions u(z,t) —u and v(z,t) — T, we

obtain the convergence (u(z,t),v(z,t)) — (7,v) as t — oo in W3 ([0,1]).
By using the Sobolev embedding theorem we show that (u(z,t),v(z,t))
converges to (%, 7) uniformly in [0,1] as ¢ — co. We also obtain that
(w,v) is locally asymptotically stable in C([0,1]) by using the fact that
H(u(t),v(t)) is decreasing for ¢ > 0. Thus we conclude that (u,7) is
globally asymptotically stable. O

THEOREM 5. For the system (B) in Case(B) suppose that —3'2 C2 <
a2 < —i‘, and 0 <by<ecp+ 2m1n{b1,cQ} Let ug, vy be in WQ([O 1])
If di,ds > 1 satisfy that

(2.5) (b202,T% + a2, T2)M? < 4byciTTdrd,

where M is the positive constant in Theorem 3, then the solution (u(z,t),
v(z,t)) converges to (T,v) uniformly in [0,1] as t — oo, and (@,7) is
globally asymptotically stable.

ProoOF. By using the functional H(u,v) as in (2.1) in the proof of
Theorem 4 we observe the convergence of global solutions of the cross-
diffusion prey-predator system (B). We first estimate the time derivative
of H(u(t),v(t)) for the solution of the system (B).

dH (u(t),v(?))
dt

= fo {b2(1 — Byuy + c1(1 — -)vt} dx
= Jo{b2(1 — H)(dru+ orru® + 12u0)az
+61(1 - —)(dg’U + o uv + apv?) g} dx
+ fol{bz(u -0 f +ci(v—71)g} dzx

O_{bzu (d1 + 201U + algv)u + (M + Clazw)um'v
-|-—12—(d2 + a1t + 2a22v)v2} dx
- fo {b1b2(u — )2 + crco(v — 7)?} d,
where we denoted f = a; —bju—cyv and g = az + bou— cov and used
the fact that bo(u — @) f + c1(v —D)g = —b1ba(u — )2 — cre2(v — 0)? as
shown in the proof of Theorem 4.

Now we remind the uniform boundedness result for the solution of the
system (B) in the case di,d2 > 1, and d < < d as in Theorem 3 that

there exist positive constants tg and M = M (d, d, @5, G4, b5, ¢,1 = 1,2)
such that

(2.7) 0 <u(zt), v(z,t) <M  for every (z,t) € [0,1] x (t9, 00).

(2.6)
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Using (2.7) and condition (2.5) in the hypothesis of the present theorem
(Theorem 5) for every constant vy such that

4b201u Udldz - (b2a12u + Cla2 )M2
4M?2[boTi(dy + (2011 + a12) M) + c10(d2 + (@21 + 2a92) M)

we have the following inequality :

0<y<

928 () 4 20011 + aav)ul

(2.8) +(b—2m + S8BT )ugv, + LF (dy + aziu + 20990)07
> y{ul + vz},
since
(bgalgﬂ + c1a216 {bzﬂ(dl + 2011“ + a12v) _ ,.Y}

X{Clv(dz + a21u + 2&221)) ’y}

< b2 a12u U-Lse L & a21112 _ 4bociuTdide
- u“v
+47{ (dy + (20411 + a12)M) + 972 (da + (a1 + 2022) M)}
< [(b2a12u + ctad,7%) M? — 4byc1Tvd1dy
+4"}/M {bQU(dl + (2017 + alz)M) + c19(d2 + (o1 + 2a22)M)}]
< 0.

From (2.6) and (2.8) we have
dH (u(t),v(t))
dt

— f{ud + 02} dz — [y {biba(u — T)? + crca(v — 0)?} dz < 0.

Now, by using the same arguments as the proof of Theorem 4 we show
that (u(z,t),v(z,t)) converges to (7, v) uniformly in [0, 1] as t — co. We
also obtain that (%, ) is locally asymptotically stable in C([0,1]) from
the fact that H(u(t),v(t)) is decreasing for ¢ > 0. Thus we conclude
that (@, v) is globally asymptotically stable. a

3. Convergence in Case (ii)

In case (ii) the convergence results for system (A) and (B) are stated
and proved in Theorems 6 and 7, respectively.

THEOREM 6. Suppose that —L <2, 0<by <er+2min{by, co},
and 0 < by < 4(ag—*%2) for the system (A). Let ug, vo be in WZ([0, 1]).
If d > 1 satisfies that

(3.1) b3cka2,M* + a22a2, (1 + M)? < dazbocicod?,
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where M is the positive constant in Theorem 2 (independent of d > 1),
a2

then the solution (u(z,t),v(x,t)) converges to (0, %2) uniformly in [0, 1]
ast — oo, and (0, ‘cz—j) is globally asymptotically stable.

PRrROOF. Using the functional E¥(u,v) defined below we observe the
convergence of global solutions of the cross-diffusion prey-predator sys-
tem (A) in case (ii) :

(3.2)

E¥(u,v) = fol {b2 (u—log(l+u))+a (v — o~ e log az/Cz)} dz.

_a2

E"(u,v) is always nonnegative and is zero only if u =0 and v = 22. In
order to prove the convergence of the solution first we observe the time
derivative of EV(u(t),v(t)) for the system (A) :

(3.3)
dE® (u(t) v(t))
dt

= fol{b2 (T ue +e(l - az/cz) ¢} do
= fu {bQ(l 2)(du + 0nuv)ss + 11— 82/ (dy 4 apuv)yy} do

+ fO {ba( 1+u)f +c1(v— 2)g} dz
=~ i ouooad + (B35t + 22,
(L) (1+u) 2
+cla2 (d+a21u) .7:} dx

02’0

+f0 1+u{b2u2f +ca(1+uw)(v-— %)g} dz,

where f=a1 —biu—civ and ¢ = as + bsu — cov.
First we estimate the terms of the integral in the last line of (3.3) :

bou”f +er(1+u)(v = 2)g
= byu*(ar —bru —cv) +er(l+u)(v - 2 )(az + bau — c2v)
= b2u2(a1—b1u—c1(v_ ‘01_2)_%1)

+c1(1+ u)(v — 2)(byu — ca(v — 2))
= bzu ( ay — 2 — blu) — bzclu (’U _ azgl)

+baciu(l + U)(’U — —Z) - 0102(1 +u)(v — a;)Z

[

= bou?(ag — % — byu) + bacru(v — 2) —ciea(l+u)(v - —5)2,

and, regarding the form in the last line above as a quadratic function of
(v — &), we observe its determinant :

(b2c1u)2 + 4bgercou?(1 + u)(az — 922 — bru)
baciu? {baci + 4ca2 (1 + u)(ayg — gz_cl —biu)}
bzclu {bgcl + 462((11 a_z;_:;)}

0, and the equality holds only when u = 0,

INIA
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since bacy < 4(azc; — aicp) from the condition 0 < by < 4(ap — %2) in
the hypothesis of the present theorem. Thus we obtain that

(3.4) bguzf +a(d+u)(v-— —2)9
< 0, and the equality holds only if (u,v) = (0, 22).

L

Now we estimate the terms with spatial derivatives in (3.3). For the
solution of the system (A) we take the uniform bound M satisfying (2.3)
in the proof of Theorem 4. From the condition (3.1) in the hypothesis of

the present theorem (Theorem 6) for every constant v such that 0 < v <
4a2b2c102d2—i%c%g%zM4—a§cfa§1(1+M)2
4(bocI M2 (d+oc12 M)+aseiea(1+M)2(d4+a M))

we have the following inequality :

(3.5) (1+u) 2 (d + CM12’U)U + (’(’f—j"jf)—‘; + ﬂ%;%_)uxvm + ¢ cz'uz a9z (d + azlu)v
> y{ug +i},
since

(gt + 2em)’
—4{ 25Ad+amv%—7}{2?(d+amU) 7}

biad,u? ﬁ&ﬂa dagbocyd?
(1+u)? + c2v? ca(14u)?v?

+4"}/ {m(d -+ a12'U) + cla2 (d + Ozzlu)}

2(1+1u)2v2 = (011323)%2 + 01‘120‘21(1 + u)? — dagbycicod?
+4’Y{b2czv (d + a12v) + azerca(1 + w)?(d + anu)}]
W[b2a%2M4 + c2a3od (1 + M)? — dagbycicod?
+47{bacBM*(d + c12 M) + agcrea(1 + M)?(d + a1 M)}
< 0.

AN

IN

<

From (3.4) and (3.5) we have for ¢ > 0 that ﬁ’i%)_ﬂ@l < 0 and
gEv—("g(?i(—tD = 0 only if u(z,t) =0 and v(z,t) = %

Thus it is shown that EY(u(t),v(t)) \, 0 as t — co. And we obtain
the Lo convergences, |u(t)lz — 0, |[v(t) — ]2 — 0 as t — oo by using
the uniform boundedness of (u(z,t),v(x,t)) in [0,1]. From Theorem 1,

Sup |ugz(t)|2 < oo, and Sup |vzz(t)|2 < co. Applying the calculus in-
0<t<oo
equality (5.6) in Section 5 to the functions u(z,t) and v(z,t) — 2, we

c2!?
obtain the convergence (u(z, t), v(z,t)) — (0, %2) ast — oo in W20, 1)).
By using the Sobolev embedding theorem we show that (u(z,t),v(z,t))

converges to (0, Z—;) uniformly in [0,1] as ¢ — co. We also obtain that

(0, %22) is locally asymptotically stable in C([0, 1]) by using the fact that
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E®(u(t),v(t)) is decreasing for ¢ > 0. Thus we conclude that (0, 2) is
globally asymptotically stable. O

a2

THEOREM 7. For the system (B) in Case(B) suppose that ¢ < 2,
0 < b < c1 +2min{by,c2}, and 0 < by < 4(az — %) Let ug, vg be
in W22([O, 1]). If d1,dy > 1 satisfy that

(3.6) b3cad, M4 4+ a22a2, (1 + M)? < daghacycadids,

where M is the positive constant in Theorem 3, then the solution (u(z,t),
v(z,t)) converges to (0, 22) uniformly in [0,1] ast — oo, and (0, 22) is globally
asymptotically stable.

PRrROOF. Using the functional E¥(u,v) defined as in (3.2) in the proof
of Theorem 6 we observe the convergence of global solutions of the cross-
diffusion prey-predator system (B). We first estimate the time derivative
of E¥(u(t),v(t)) for the solution of the system (B).

dE"” (u(t),v(1))
d

7
Jo (b2 ue + ea(1 — 2L2)y} do
f;{@(ﬁ)(dlu + aju? + Q12U )ag
+c1(1 - 2/ﬂ)(dw + a2 uv + @oov?) e} dx
(3.7) + fo {ba(F5)S + ea(v — 2)g} da
= — fol{m—b_i?(dl + 2a11u + 06121})21,926
+(b2a12u 4 Q0202 )umvw

(1+u)? cv

+ L3 (d2 + anu + 2009002} dz

+ fo ma{beuw®f + el +u) (o — 2)g} da,

where f=a1—-bju—cv and ¢ = az + bou — cov.
We have the same estimates for the terms of the integral in the last
line of (3.7) as shown in the proof of Theorem 4 :

(3.8) bou? f + c1(1 + u)(v — 2)g
< 0, and the equality holds only if (u,v) = (0, 22).

Vep
Now we estimate the terms with spatial derivatives in (3.7). For the
solution of the system (B) we take the uniform bound M satisfying (2.7)
in the proof of Theorem 5. From the condition (3.6) in the hypothesis

of the present theorem (Theorem 7) for every constant v such that 0 <
< dasbacicadido—b3ciad, MA—aZc?a2, (1+ M)*?
2 4(bzcE M2 (d1+(2a11 +on2) M) +azerca (1+ M) (d2+ (a1 +2022) M)

we have the
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following inequality :
(3.9)
ﬁ—)-;(dl + 207110 + algv)ug
+(E’%"f~’;")—g + A% yv, + 2% (d2 + anru + 200090 )v2

> y{ul + 02},

since
2
(I()liitz)% + 61232 ) -4 {'(T_%T)Z(dl + 2a11u + Oélz'u) — fy}

X 222 (dz + oz1u + 2000) —

2o u? | c2aa? daoboctd?
Truy T cgv221 - C2((11+25)1§v§
+4~ {(Tj??)(dl + 2a11u + a12v) + %g%(dz + a1u + 2(1221))}
b2c2a 22
W[% + cri)aga%l(l + u)2 - 4a2b26162d1d2
+4y{bacdv?(d1 + 2011u + 012v)
+azcica(l + u)?(dz + aru + 2a29v)}]
W[bgcga%QM‘l + adctad, (1 + M)? — dagbacicadrds
+4’y{bzc%M2(d1 + (20611 + alz)M)
tageica(1 + M)%(da + (21 + 2a02) M) }]
< 0.

IA

IN

IA

From (3.8) and (3.9) we have for ¢ > 0 that @1{%?_,1;@ < 0 and
d—Elu[(iM = 0 only if u(z,t) = 0 and v(z,t) = £.

By using the same arguments as the proof of Theorem 6 we show that
(u(z,t),v(z,t)) converges to (0, %2) uniformly in [0,1] as t — co. We
also obtain that (0, 22) is locally asymptotically stable in C([0,1]) from
the fact that Ev(u(t),v(t)) is decreasing for ¢ > 0. Thus we conclude
that (0, ‘Z—;) is globally asymptotically stable. O

4. Convergence in Case (iii)

In case (iii) the convergence results for system (A) and (B) are stated
and proved in Theorems 8 and 9, respectively.

THEOREM 8. Suppose for the system (A) that %5 < —%1%2, 0 <
by < ¢+ 2min{bl,c2}, and 0< ¢ < —4:((—1%’;!)L + a1). Let ug, vp be in

W2([0,1]). If d > 1 satisfies that
(4.1) a2b?a2,(1 + M)? + bic2ak M* < darbibacid?,
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where M is the positive constant in Theorem 2 (independent of d > 1),
then the solution (u(z,t),v(z,1)) converges to (§*,0) uniformly in [0, 1]
as t — oo, and (3, 0) is globally asymptotically stable.

Proor. Using the functional E%(u,v) defined below we observe the
convergence of global solutions of the cross-diffusion prey-predator sys-
tem (A) in case (ii) :

(4. 2)

fo {b2 (U -5 —glog ri/tbl) +c1 (v —log(1 -I—v))} dx.

E”(u, v) is always nonnegative and is zero only if u = b—L and v =0. In
order to prove the convergence of the solution first we observe the time
derivative of E*(u(t),v(t)) for the system (A) :

dE (u(t),v(t))

dt
o {b2(1 = By 4 1 (12 )0} da
Jo {b2(1 = 2L ) (du + a13u0)az
+61($)(dv + azluv)m} dx
+ fy {belu = 8)f + e1(27)9} da
= fO 2‘1132 d+ Oz12’l)) 2
+(glzf% + %)uzvm + mj(d + agru)v?} dz
+ fo o lb2(u — )1+ v)f + crv’g)} dz,
where f=a1 —bu—civ and g = az + bsu — cov.
First we estimate the terms of the integral in the last line of (4.3) :
bo(u — )1 +v)f + c1v’g
ba(u — 2-)(1 +v)(a; — byu — c1v) + c1v?(az + bou — cov)
bo(u — —)(1 +v)(=bi(u — ) — c1v)
+c1v (ag + bo(u — —1) — Ccou + ’“fz)
= —b1b2(1+v)(u— H) bgcl(u— —)(l-l-'l))
+bac1v?(u — —) + c1v¥(ag — cov + 41—)
= ~—b1b2(1 + 'u)(u - EL) - bzcl(u - %—})v + clvz(az -+ % - sz),

(4.3)

and, regarding the form in the last line above as a quadratic function of
(u — #), we observe its determinant :

(bac1v)? + db1bac1v?(1 + v)(ag + alb? — cov)
bacrv?{bacy + 4b1(1 + v)(az + —1—2 — cov)}
bacrv?{bac + 4b1 (a2 + 422)}

0, and the equahty holds only when u = 0,

IAIA
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since boc; < —4(agb; + a1b2) from the condition 0 < ¢; < —4(%’l +ai)
in the hypothesis of the present theorem. Also notice that as < 0 from

the condition (iii) £ < —$2 Cz Thus we obtain that

(4.4) ba(u — —)(1+v)f—|—clv g
< 0, and the equality holds only if (u,v) = (3,0).

Now we estimate the terms with spatial derivatives in (4.3). For the
solution of the system (A) we take the uniform bound M satisfying (2.3)
in the proof of Theorem 4. From the condition (4.1) in the hypothesis of

the present theorem (Theorem 8) for every constant -y such that 0 < vy <

4a1b1b2c1d2~alb§a%2(1+M)2—b2c1a21M
4(a1b1bo(L+M)2(d+ana M) +b2ci M2 (daoy +M))
(4.5)

we have the following inequality :

018 (4 + agpv)ud + (BR22 + BOULYugv, + o (d + anu)o?
> y{ug +vz},
since
2
(a 21312 + (ci—?—v)g> —4 gle%(dﬂL alZ'U) - '7}

X iﬁv(d+ a1u) —

2p3 2 2.2 .2
afbyaf, oY 4a1bybod?

< b3u? + (1+v)%  bruz(1+v)
+4ry { a1by (d + OZlZ'U) + ‘(—_I_‘W(d + aglu)}
b g ufy
S b§1u2(1 [afbiad, (1 4+ v)? + —%—ﬁ- — da bibycid?

14v)?
—{—4’y{a1b162(1 + v) (d+ 012’0) + blclu (d + agiu)}]
S m[a%b?aﬁ(l + M) b Cl()é21M — 4(12b20102d2
+4’Y{a1b1b2(1 + M)2(d + a1oM) + B2ci M?(d + a1 M)}]

< 0.

From (4.4) and (4.5) we have for t > 0 that ﬂ(y%@)) < 0 and
M = 0 only if u(z,t) = ¢ and v(z,t) = 0.

Thus it is shown that E*(u(t ) ( )) \\ 0 as t — co. And we obtain
the Ly convergences, |u(t) — §*[2 — 0, |v(t)0|]2 — 0 as t — oo by using
the uniform boundedness of (u(z,t),v(x,t)) in [0,1]. From Theorem 1,

sup |ugs(t)]2 < 00, and sup |vzz(t)]2 < oo. Applying the calculus in-
0<t<co 0<t<
equality (5.6) in Section 5 to the functions u(z,t) — ¢+ and v(z,t), w
obtain the convergence (u(z, t),v(z,t)) — (3+,0) ast — coin wi(o, 1])
By using the Sobolev embedding theorem we show that (u(x,t),v(z,t))
converges to (‘;—;, 0) uniformly in [0,1] as t — co. We also obtain that
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(%,0) is locally asymptotically stable in C([0,1]) by using the fact that
E™(u(t),v(t)) is decreasing for ¢ > 0. Thus we conclude that (§,0) is
globally asymptotically stable. 0

THEOREM 9. For the system (B) in Case(B) suppose that & <
—ab g < by < ¢ +2min{by,cp}, and 0 < ¢ < —4(“%;’1 + ay). Let

bica

ug, vo be in W2([0,1]) . If di,ds > 1 satisfy that

(4.6) a?b2a2,(1 4+ M)? + bicad M* < daybibacidyds,

where M is the positive constant in Theorem 3, then the solution (u(x,t),
v(z,t)) converges to (g,0) uniformly in [0,1] as t — oo, and (%11—,0) is
globally asymptotically stable.

ProoF. Using the functional E¥(u,v) defined as in (4.2) in the proof
of Theorem 8 we observe the convergence of global solutions of the cross-
diffusion prey-predator system (B). We first estimate the time derivative
of E*(u(t),v(t)) for the solution of the system (B).

(4.7)
4B (u(t)v(1))

dt
fol{b2 - “1/ Lyu, + c1(1+v)vt} dz
fo {bo(1 — 2 arfty UL (dyu + a11u? + Q12u0) e
+cl(1+v)(d2v + ag1uv + Otzz’u )zx} dx

+ fo {oo(u— B)f + c1({5)g) da
= - fO {b1u2 (di + 2aq1u + Ot12’U) 2
(b2 | A48 oz + iz (d2 + azu + 2090v)v2} dx

blu

+f0 1+v{b2(“ - _)(1 +v)f + c1v?g} dz,

where f=a1 —bju—civ and g = as + bou — cov.
We have the same estimates for the terms of the integral in the last
line of (4.7) as shown in the proof of Theorem 8 :

(4.8) bo(u —g)(1 +v)f + vy
< 0, and the equality holds only if (u,v) = ($&,0).

Now we estimate the terms with spatial derivatives in (4.7). For the
solution of the system (B) we take the uniform bound M satisfying (2.7)
in the proof of Theorem 5. From the condition (4.6) in the hypothesis

of the present theorem (Theorem 9) for every constant v such that 0 <
4a1b1b261d1d2—a2b% 32(1+M)2 bQC% iM‘l

T < b AT )2 1 Goni +oaa) M) 152 M2 (ds + (a1 T 2aan) i)y Ve have the
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following inequality :

%l%(dl + 2aq1u + algv)uﬁ

1U

(4.9) +(ﬂgf—3‘u + %j‘—_%})%)uzvz + (Hﬁ—lv);(@ + ag1u + 2a00v)v2

> y{ul + i},

since
2
(0= + 35)
—4 {%%(dl + 20110 + 0q2v) — 'y} {—g(l_f_ﬁ)) (d2 + az21u + 2a22v) — fy}
aiblel, | Bafiv? 4 bibad1d;
1b12u2 + 1+v)T l?llu (1+1v)
+4'y {%(dl + 211U + alzv) + u%mg(dz + ag1u + 2a22v)}
b2c202 . u202
m[a%b%a%z(l + ’1))2 + %:}L;L# — 4a1b1bac1drds
+47{a1b1b2(1 + ’U)z(dl + 2a1u + 0112’1))
+b%01u2 (dz + ao1u + 20[22’[))}]
W[a%b?a%(l + M)? + b2c2a2, M* — dagbycicadids
+47{a161b2(1 + M)2(d1 + (20(11 + a12)M)
—I—b%cle(dz + (0521 + 2a22)M)}]
< 0.

IN

IA

IA

From (4.8) and (4.9) we have for t > 0 that w < 0 and

éﬂ("dw = 0 only if u(z,?) = § and v(z,t) = 0.

By using the same arguments as the proof of Theorem 8 we show that
(u(z,t),v(z,t)) converges to (¢,0) uniformly in [0,1] as t — co. We
also obtain that (31,0) is locally asymptotically stable in C([0, 1]) from
the fact that E"(u(t),v(t)) is decreasing for ¢ > 0. Thus we conclude

that (#,0) is globally asymptotically stable. O

5. Calculus inequalities

THEOREM 10. Let {2 € R™ be a bounded domain with 0Q2 in C™.
For every function w in W™"(Q), 1 < ¢,r < oo, the derivative D’u,
0 < j < m, satisfies the inequality

(5.1) |D7ul, < C(ID™ulfluly™® + July),

n
provided one of the following three conditions :

i) r<gq

where % = %-l—a (% -~ m—) +(1 —a)%, for all a in the interval ;% <a<1,
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(ii) 0 < gm]q) <1, or
(iii) ==L mr q =1 and m — T is not a nonnegative integer.

(The positive constant C depends only onn, m, j, q, 7, a. )

PROOF. We refer the reader to A. Friedman [7] or L. Nirenberg [14]
for the proof of this well-known calculus inequality. 1

COROLLARY 11. There exist positive constants C, C and C such
that for every function u in W3 ([0, 1])

1 2

(5.2) jula < C(fuel§ fulf + luly),
~ 2 3

(5. July < Cfual§[ul} + fuly),
~ 4 5

(5.4 uls < C(fua§ [ul] + fuly).

PROOF. m =1, r = 2, ¢ = 1 satisfy the condition (ii) in Theorem 10.
a

COROLLARY 12. For every function u in W2([0,1])

3 2
(5.5) |uzlz < Clluels |ulp + [ul).
PROOF. m = 2,7 = 2, ¢ = 1 satisfy the condition (ii) in Theorem 10.
O

LEMMA 13. For every function u in W2([0, 1]) with uz(0) = uz(1) =0

101
(5.6) |ug |2 < |uwx‘22 |u|22

LEMMA 14. If a function f is in the space W3 ([0, 1]) then there exists
a constant C > 0 such that

(5.7) [f?loo S C((L+ DI+ el £213),
for every 0 < e < 1.

PROOF. Suppose first f € C![0,1]. By Lemma 5.2 of [7] there ex-
ists a function F' in C}(R!) such that F = f in the interval [0, 1] and
”F”W](Rl) < C|fllj2, 3 =0,1. For the function F' we have the inequal-
ities
< fR1|(F2)z| dr = 2fR1|FFx| dx
< Jp(€ B + 2F?) dx
= Pl @) + el Pl

|F?| L (my)
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Thus now for f we have
(5.8) lf2l < |F2iL (R1) < €lFy 'Lg ]Rl)+ lFl 2(RY) < EC“le 2+C|f’2

for every € > 0.

Suppose now that f € W3([0,1]). There exists a sequence {f;} in
C*[0,1] such that || f; ~ fll12 — 0, [[fi = flloz = 0, |fi = floc — 0 as
i — 0o. Hence by passing limits in the inequality (5.8) for f; we obtain
the inequality (5.8) for f € W([0,1]) and thus the inequality (5.7) for
every 0 <e < 1. U

6. Uniform boundedness for the system (A)

ProoF oF Theorem 2.

Step 1. Taking integration of the first equation in the system (A) over
the domain [0, 1] we have

%folu’f dz fo alu—bw —cluv) dz
ar f, udw——blfo u? dz
alfouda: bl(fouda:

b (§ — foud:c fouda:

I IAIA

In the case that fol up dz < 3+ we have that fo u(z,t) dz < gt for all
t > 0. In the case that f(} ug dx > “—1 there exist positive constants )

and 7y such that f u(z,t) de < 6 + ¢ —l for all t € (19,00). Hence we
obtain the Li-bound of u for all time.

Now, taking integration of the second equation in the system (A) over
the domain [0, 1] we have

r fo t) de = fo (agv + bouv — cav?) dr,

where as can be any real number, positive, zero, and negative as well
in prey-predator type reactions. Here, let us observe the addition of the
equations of integrations of u and v together as :

4 [y+v) dz = [§ {(aru + azv) + (b2 — e1)uv — (bru? + e30?)} da.

By using the condition 0 < b2 < ¢ +2min{by, c2}, given in the assump-
tion of the present theorem, we find a constant § = (b1, ba, c1, c2) such
that

biu? + cav? — (b2 — c1)uv > 6(u? + v?).



312 Seong-A Shim

Thus we have that

Edi fol(“ +v) dz fol(alu + agv) dx — & fol (u? + v?) dzx
max{ay,az} [) (u+ v) dz — 5f01(u +v)?

max{a1,a2} f; (u+v) dr — 6(fol(u +v) dz)?.

INIA A

This gives that fol(u + v) dz is bounded for all time.

Hence we conclude that there exist positive constants 79 and My =
My (ai, b;, ciyi = 1,2) such that

fol u(t) de < My, fol v(t) dz < My for all ¢ € (75, 00).

Now, for Step 2 and 3 we reduce the system (A) into the following
system by using the scaling u(z,3) = aizlﬂ(a:,f), vz, 7) = fgﬁ(w,f),
t = 7 and then use u, v and ¢ instead of 4, ¥ and 7, respectively :

up = (U + uv)zr +u(% — abj;u ~atv)  in[0,1] x (0,00),

(Ar) ve = (v 4+ u)ge + v(G + Cf—jlu - ac—fzv) in [0, 1] x (0, 00),
Uz (x,t) = vg(z,t) =0 at  =0,1,
u(z,0) = dp(x), wv(z,0) = To(x) in [0, 1].

Then the result in Step 1 is restated as follows :
There exist positive constants 79 and My = Mo{ai2, @21, @i, bi, ciyi =
1,2) such that

Jy dult) de < Mo, [} du(t) du < My for all t € (19, 00).

Step 2. We use ( = v — u as an auxiliary function to obtain necessary
estimates and then the system (Ar) is rewritten as

(6.1) ug = (4 +u? + uC)aw + uf,
(6.2) v = ('U + U2 - 'UC)wac +vg,

wherefz%l——bl—u—c—lv, g:%l-}-l’-z—u—%v,and G =vg—uf.



Multiplying (6.1), (6.2), (6.3) by u, v,

grating

1
2dt fO

2dt 0
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over [0, 1] we have

uldr = fol (UU + uQ)as dz + Jy u?f da
- fO Um Ug + 2UU:1; + 'Uzacc + uC-T d.’L‘ + fOl Z‘f dzx

313

—(zz, respectively and inte-

— [ (12 + 2uu2 + u2Q) dw_fo“u”ﬂczdx+f0 u!f do

folu + uu? +vu)dw+2f01 QCMd:c—i—fo ulf dz

S—lel—l-u 2dm+2f0 2Cmdm+f0 U2 dx

0 alzu v dz,

folvzdm = f (v+'u —v()mzdm+f0vgdw

fo vm v:,;+2vvx—vm(—vgc dm—}—fovgda:
—f v2 + 2002 — V() dzzr+f0 el dx

+f0vgda:

- Ol(v + vv2 + uv?) m—%fovaCm dz
+f0vgdx

< f011+v 2d:c— (M,d:v+f0 ——?‘Ude
+ Otleuvzdz

Cx dz = — f()l(g’mc)z dx — fol szG dx

from which it follows that

(6.4)

f u? + 0?2 +§x)dm

f11+u zdm—fo (14 v)v2 dz

f Cm2d:r+2focmu -2 - 2G) dz
C“fou +v?) dx — fouvdx
a21f0uv2da:

lwl

<

Oé12

where C 1 = max{aj,as}. Using Young’s inequality we notice that

where € =

(6.5)

L3
a21 fo w?dr < 2a21 fo u?v dx + 52— 26&21 Jo v° dx
. 2 b3 1 V3
oz Jo "2y dz + Toiag Jo ¥ dx,
%C;Of%. Hence we can reduce (6.4) to

thfo“ +v? +Cx)dm
< —foll—i-uu dm fo 1+Uv da:
C“fou +v)dx+ fl v3 dz,

401 a21
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Applying the inequality (5.4) to the functions v and using the uniform
boundedness of |v|; from Step 1 we have

s < C(|vw|2 ‘U|1 +vli) < Cid™s (‘”mb + d__)
and thus
1.2 2 5/2 ( 1.3 8/2

—Jyvide < 2477 - Cod®? ([3 0% da) ",
where Cl and Cy are positive constants dependmg only on ay9, ae, a;,
bi, ci, i = 1,2. We observe that the term with fo v3 dz in the last line
of (6.5) has strictly lower order than the term with fo v2 dx. Therefore
for the rest estimates in Step 2 we can follow that part in [22] to obtain
the Lo-bound of v and v for all time :

There exist positive constants 7, and My = My(d, ano, @91, a4, b, ¢, 1 =
1,2) such that

(6.6) [y (du(t)?dz <My, [l (dv(t)?de < My for all ¢ € (71,00).
For d > 1 we have
(6. 7)

2dt fO AP +v*+3)dz < O 12+011f0 d*(u? +v? + 2) dm

-C1,11 (fo d?(u? + v + ) da:) ,

where (1 19 is a positive constant depending only on a2, a21, ai, b;, ¢,
1 =1,2. Thus for d > 1 the positive constant M; in (6.6) is independent
of d > 1, that iS, M1 = Ml(alg, agl,ai,b,-, Ci,’i = 1, 2)

Step 3. Multiplying (6.1), (6.2) by —uzy, —vsz, respectively and inte-
grating over [0, 1] we obtain

;gt o uadz = —fo Uge (U + u2 + ul)ze d:c—fo Ugguf dz
= fo uzm (Uacaczu + 2uumm + Cuzm + 2usz + qum) dz
-4/ Lty da — Om fo wug, dr — fo UVUgy dT
= _ fol(um )2 dz — fo (u 4 v)(ugz)? da
~Js (ugm + QumCz)um dr — 2 fo U Uy dIL’

1
+2 2 dr + 2 [“ o2y, dx + °1 uvum dx,
0 a21 0 0

a12

: fol vidr = fo Vzz(v + v? — v()m dz — fo UpeVG dT

= —f sz)z dr — fO U+’U)('Uzac) dQI
+f0 v(m + 2vxCx)um dx — 2f0 V2, dx
+2 (12 de — —Lfo Uy dT + 3% fo V25 di.



Long-time properties of prey-predator system with cross-diffusion 315

Notice that u Ugy AT = 1v2vm dr = 0 by using the Neumann
y

boundary condltlons Thus we have

T fol Zdx < —fo Uge)? dx — fo qu +2usz)um dx

1
(6.8) a21 fo w2 | Uy | dz + 2 _- fo uvlg,| dx
+—1 fo u? dz,
and
%% f()l Ug d.TJ S - fo 'Uaim 2 d{L‘ + f[) (vam + vagx)vmm dx
(6.9) 5k Jy v lvasl do + G5 fy wolvss| do
+%2 fo 2 dx.

Using (6.8) and (6.9) we can follow [22] for the rest estimates in Step 3
to obtain the Ls-bound of u; and v, for all time :
There exist positive constants 7 and My = Ma(d, a12, @21, ai, bi, ¢iy i =
1,2) such that
(6.10)

J(dus(t)? de < Ma, [ (dvs(t))? dz < My for all ¢ € (72,00).

For d > 1 we have

2dt 0 dQ(u + g + (Cm) )dx
< 0211+C212f0 d?(u + 02 + (Coo)? )da:
- 02,13{f0 A (uk +v2 + (C2)?) d.r}z

where Cy 11, (3,12, C2,13 are positive constants depending only on ajs,
ao1, ag, bg, ¢;, 1 =1,2. Thus for d > 1 the positive constant M in (6.10)
is independent of d > 1, that is, My = Ms(a12, ao1, s, bi, ¢i,1 = 1,2).

From the results of Step 1, Step 2 and Step 3 we have positive con-
stants to and M = M(d, a12, a91, a4, b, €5, = 1,2) such that

(6.11) max{||du(-, )12, [dv(- 8)|h2 : t € (fo, T)} < M

for the maximal solution (u,v) of the system (Ar). By scaling back and
using the Sobolev embedding inequalities we obtain the desired estimate
for the system (A) as the following :

We have positive constants tg, M’ = M'(d, a12, @21, a4, b;, ciyi = 1,2),
and M = M(d, a12, 221, a4, bi, ¢i, 4 = 1,2) such that

(6.12) max{|[u(-, )12, [v( )ll12 : t € (20, T)} < M,
. max{u(z,t), v(z,t): (z,t) € [0,1] x (to,T)} < M

for the maximal solution (u,v) of the system (A). We also conclude that
T = +o0 from Theorem 1. For d > 1 the positive constants M’ and M in
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(6.12) are independent of d > 1, that is, M’ = M'(a12, @21, a4, b;, ¢iy i =
1,2), M= M(a12,a21,ai,b¢,ci,z' = 1,2). O

7. Uniform boundedness for the system (B)

ProOF OF Theorem 3.

Step 1. By using the condition 0 < by < ¢; + 2min{b1, c2}, given in
the assumption of the present theorem, we obtain the same Li-bounds
for v and v as in Step 1 of the proof of Theorem 2 for the system (A) in
Section 6. Thus we have that :

There exist positive constants 79 and My = My(a;,b;, ¢, = 1,2) such
that

fo u(t) dz < My, fo t)de < My for all t € (19,00).

Step 2. In this step we use the scaling u(z,t) = au(z,t), 9(z,t) =
ay2v(z,t), and then use u, v instead of 4, ¥, respectively to reduce the
system (B) to
r up = (dyu + U2y UV) g + u(ar — ﬂu - il—v)
Q21 021 12
in [0, 1] x (0, 00},

b2 Co )

(Brl) ¢ vy = (dov + uv + —= 222 vz + v(ag + —u — —=v
12 az 02

in {0, 1] x (0, c0),
up(z,t) = vp(z,t) =0 at x=0,1,
L u(z,0) = 4o(z), v(z,0)=7p(z) in [0,1].

In this step we will observe the solution of (Brl) to prove the uniform
L5[0,1]-boundedness of its solution. Multiplying the first equation in
(Brl) by u and integrating it over the domain [0, 1], we have
(7.1)
1d () de < —di f) u da — fol((Qg—%u +v)u + uuyv,) do
+ay f01 u? dz — ECILQ Jo u?v dx.
From the second equation in (Brl) we obtain similar inequalities for v :
(7. 2)
34 fo (t)2de < —dzfl 2d:c—f0 ((u 4 222v)07 + vugv,) da
+as fo 2dr+ 22 ! qu d:r

a21
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Adding up the inequalities (7.1) and (7.2) we have

14 o(u(t) +U(t))
< ——dlf u2dm—d2f0v dm-l—alfou dx

(7.3) +ay [y v? dr — fo (252 u +v) u? + (u+ v)ugvy
+(u + ZJ—v) 2) dx — ;112 01 w*v dz
+2 fo uv? dz.

Using Young’s inequality we notice that

by eby ol 1 3
21 fO 'U/U dw S 2a21 0 u v d.'L' + 260{21 fO d.'L'
1 1
— & 3
= 2/ wv dz + 461&21 Jo v° da,

where € = %}‘“ﬂ Thus we can reduce (7.3) to
20012

34 Jo (v u(t)? +v(t)?) da
74 < —d; fo u2 dx — do fol v2 dz + a1 fol u? dz + ay fol v2 dx
(7.4) - fo (2% u + v)u + (u+ V)ugvy + (u + 2220v)v2) do

a2{
3
+ i 401 21 f 0 dz.

We observe that the term with fol v® dz in the last line of (7.4) has

strictly lower order than the term with fol v2 dx by the same derivation
in Step 2 of the proof of Theorem 2 for the system (A) in Section 6.
Hence for the rest estimates in Step 2 we can follow that part in [23] to
obtain the La-bound of © and v for all time :

There exist positive constants 71 and My = Mi(d;, oy, a4, b3, 65,8, 5 =
1,2) such that

(7.5) fol(u(t))2 dx < My, fol(v(t))2 dr < My for all t € (13, 00)

for the solution (u(t),v(t)) of the system (B). Especially for di,ds > 1
the positive constant M; in (7.5) is independent of di,ds > 1, that is,
Ml = Ml(aij’ ag, b’i) Ci, Za] = ]-a 2)

Step 3. We use in this section another way of scaling that a(z,7) =

Lu(z,t), U(z,7) = %2v(z,t), T = dit, and then use u, v, ¢ instead of

4, U, T, respectively to reduce the system (B) to
= (u+ ";lqu + UV g +u(—1 iy - 2-v) in [0,1] x (0, c0),

0t21 12
Br2){ ¥ = Ev+uwv+ a—ffg—v Yoz + U(f + E;% — %) in [0,1] x (0, 00),

ug(z,t) = ve(z,t) =0 atz=0,1,
u(z,0) = 4o(x), v(z,0) = To(z) in [0, 1],
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where § = %. We will observe the solution of the system (Br2) to obtain
a uniform bounded of |u|2 and |vz|2. We denote that
_ o, 2 | .. o
P=u+ alzllu +uv Q-ftH—u‘U—l—Jf5

d1 a1 Otl2 021 a12
In order to estimate [ u, dz and f Vg dx we start with multiplying the
first equation in the system (Br2) by P; and the second equation by Q.

fo Pu? + Pyugwy) dx = f Pth dx + f Puf dz
= 2dt 0P2dx+f0Put+Pvt)ufda:,

fol(Quutvt + QVU?) dx = fO Qthx dx + fO Qv dzx
= _%di fo Q7 dz + fo (Quut + Quui)ug dx.

Hence
(7. 6)
2d1 dt 0 P2 de = ‘—fo {1+ Mu—i—v)ut +uutvt} dz
+ar fo (1+ 22;1 u+v)ufus do + - fo u? fu; dz,
(7. 7)
50; d P Qide = —3 fol{vutvt +( + u+ i—o‘é’zv)vt} dz

+d fo v2guy dx + = fo 1+u+ 2—"‘231))vgut dx.

We note from Theorem 1 that P,Q € C([0,T), W4 ([0, 1])) N C>([0, 1] x
(0, 7)) for 0 <t < T. Adding up the equations (7.6) and (7.7)

id— {0 P2 + Q2) dz

= L fo L [y + [y (Zeut u+v)ut dz
(7.8) -—fo utvt da: % fo u+ 20‘22 v)v? dx

+ fo (1+—a—”—§u+v)ufut dr + fo 2fvt dx
+d fo v2gus dz + 4 fo (1+u+ 2‘—"—sz)vg'ut dx.

In Step 3 of proof of Theorem 1.2 in [23] for competition type reactions,
all the terms in the reaction functions f and ¢ are estimated in absolute
values. Hence, once we obtained the inequalities in (7.8), the rest of
estimates in Step 2 can follow that part of [23] to obtain the Ly-bound
of u, and v, for all time :

There exist positive constants 7 and My = Ma(d;, o5, a4, b4, ¢4,8,7 =
1,2) such that

Sulde < My, [yuldz <Mz forallte (r,o0)
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for the solution (u(t),v(t)) of the system (B). And for di,dy > 1, d <
¢ < d, the positive constant M3 is independent of di,dy > 1, that is,
My = M>(d, d, o5, a;, bs, ¢35 = 1, 2).

From the results of Step 1, Step 2 and Step 3 and the Sobolev embed-
ding inequality we have positive constants tg, M’ = M'(d;, o, as, b;, ¢;, 1 =
]., 2), and M = M(di,aij; a;, bi,ci,i = 1, 2) such that

max{|lu(-,t)[l1,2, [v( )12 : t € (o, T)} < M,
max{u(z,t), v(z,t): (z,t) € [0,1] X (0, T)} <M

for the maximal solution (u, v) of the system (B). We also conclude that
T = 400 from Theorem 1.

For d1,d2 > 1, d < ¢ < d, the positive constants M’ and M in (7.9)
are independent of di,dy > 1, that is, M’ = M'(d,d, aij,a;, b, ¢i,0 =
1,2), M = M(d,d, cj, ai, bi, ciyi = 1,2). O

(7.9)

References

[1] E. Ahmed, A. S. Hegazi and A. S. Elgazzar, On persistence and stability of some
biological systems with cross-diffusion, Advances in Complex Systems 7 (2004),
no. 1, 65-76.

[2] H. Amann, Dynamic theory of quasilinear parabolic equations, III. Global Exis-
tence, Math Z. 202 (1989), 219-250.

[3] , Dynamic theory of quasilinear parabolic equations, II. Reaction-diffusion
systems, Differential and Integral Equations 3 (1990), No. 1, 13-75.
[4] , Non-homogeneous linear and quasilinear elliptic and parabolic boundary

value problems, Function spaces, differential operators and nonlinear analysis
(Friedrichroda, 1992), 9-126, Teubner-Texte Math., 133, Teubner, Stuttgart,
1993.
[5] N. Boudiba and M. Pierre, Global exzistence for coupled reaction-diffusion sys-
tems, J. Math. Anal. Appl. 250 (2000), 1-12.
[6] P. Deuring, An initial-boundary value problem for a certain density-dependent
diffusion system, Math. Z. 194 (1987), 375-396.
[7] A. Friedman, Partial differential equations, Holt, Rinehart and Winston, New
York, 1969.
[8] J. U. Kim, Smooth solutions to a quasi-linear system of diffusion equations for a
certain population model, Nonlinear Analysis, Theory, Methods & Applications
8 (1984}, No. 10, 1121-1144.
9] K. Kuto, Stability of steady-state solutions to a prey-predator system with cross-
diffusion, J. Differential Equations, 197 (2004), 293-314.
[10] K. Kuto and Y. Yamada, Multiple coezistence states for a prey-predator system
with cross-diffusion, J. Differential Equations, in press.
[11] Y. Li and C. Zhao, Global ezistence of solutions to a cross-diffusion system in
higher dimensional domains, Discrete Contin. Dynam. Systems 12 (2005}, no. 2,
185-192.



320 Seong-A Shim

[12] Y. Lou and W. -M. Ni, Diffusion, Self-Diffusion and Cross-Diffusion, Journal of

[13]
(14]
(15]

[16]

[17)

18]

[19]

Differential Equations 131 (1996), 79-131.

Y. Lou, W.-M. Niand Y. Wu, On the global existence of a cross-diffusion system,
Discrete Contin. Dynam. Systems 4 (1998), no. 2, 193-203.

L. Nirenberg, On elliptic partial differential equations, Ann. Scuo. Norm. Sup.
Pisa 13(3) (1959), 115-162.

K. Nakashima and Y. Yamada, Positive steady states for prey-predator models
with cross-diffusion, Adv. Differential Equations 6 (1996), 1099-1122.

A. Okubo and L. A. Levin, Diffusion and Ecological Problems : modern per-
spective, Interdisciplinary Applied Mathematics, 2nd ed., Vol. 14, Springer, New
York, 2001.

W. H. Ruan, Positive steady-state solutions of a competing reaction-diffusion
system with large cross-diffusion coefficients, J. Math. Anal. Appl. 197 (1996),
558-578.

, A competing reaction-diffusion system with small cross-diffusion coeffi-
cients, Can. Appl. Math. Quart. 7 (1999), 69-91.

K. Ryu and I. Ahn, Coexistence theorem of steady states for nonlinear self-cross
diffusion system with competitive dynamics, J. Math. Anal. Appl. 283 (2003),
46-65.

, Positive steady-states for two interacting species models with linear self-
cross diffusions, Discrete Contin. Dynam. Systems 9 (2003), 1049-1061.

N. Shigesada, K. Kawasaki and E. Teramoto, Spatial segregation of interacting
spectes, J. Theo. Biology 79 (1979), 83-99.

S. -A. Shim, Uniform Boundedness and Convergence of Solutions to Cross-
Diffusion Systems, J. Differential Equations 185 (2002), 281-305.

, Uniform Boundedness and Convergence of Solutions to the Systems with
Cross-Diffusions Dominated by Self-Diffusions, Nonlinear Analysis, Real World
Applications 4 (2003), 65-86.

, Uniform Boundedness and Convergence of Solutions to the Systems with
a Single Non-zero Cross-Diffusion, J. Math. Anal. Appl. 279 (2003), No. 1, 1-21.
A. Yagi, Global solution to some quasilinear parabolic system in population dy-
namics, Nonlinear Analysis, Theory, Methods & Applications 21 (1993), No. 8,
603-630.

Department of Mathematics
Sungshin Women’s University
Seoul 136-742, Korea

E-mail: shims@sungshin.ac.kr



