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Abstract. The paper presents a critical analysis of selected topics related

to the modeling of interacting species in which prey has nonlinear repro-
duction, which is in competition with predator. The mathematical model’s

stochastic stability is investigated. The method of designing appropriate
Lyapunov functions is used to identify permanence conditions among the

parameters of the model and conditions for the structure to no longer be

extinct. The system’s two-dimensional diffusive stability is regarded and
studied. The system experiences the process of saddle-node bifurcation

by varying the death rate of predator parameter. Further effects of pa-

rameters that undergo inherent oscillations are numerically investigated,
revealing that as the intensity of predation parameter b is increased, the

device encounters non-periodic and damped oscillations.
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1. Introduction

The most fundamental challenge of interacting population evolution is deter-
mining the conditions for long-term species coexistence. The predator–prey re-
lationship is a well-known basic organized phenomenon in population dynamics,
and numerous predator–prey models have been researched for their importance
in the theory and applications of dynamical structures in population biology and
ecology. Furthermore, the predator–prey paradigm is a crucial component of the
reaction–diffusion mechanism. Turing (1952) was one of the first scientists to
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recognize the significance of biomorphogenesis trends in non-equilibrium diffu-
sion reactions [1, 2]. In this regard, since the beginning of ecological studies for
ecosystem balance, stability and volatility of predator-prey models with different
growth rates or different functional responses [3] have been the focus of atten-
tion. On a mathematical level, the complex interaction between predators and
their prey is one of the most prominent topics in mathematical ecology. Investi-
gations into predator–prey models have been established during the last thirty
years,and more practical models have been derived to explain chaotic coexistence
and bifurcation study of predator–prey environments. In prey-predator simula-
tions, turbulent oscillations behind diffusive fronts were also examined [4, 5, 6].
For prey-predator models with intra-specific rivalry, a requirement for perma-
nent coexistence was created. For more information on some latest research on
complex predator–prey models and their interacting activities in environments,
we refer to readers ([7, 8, 9, 10, 11, 12]). The key goal of this paper is to look
at the issue of coexistence between two interacting organisms dispersed through
spatially heterogeneous regions to see how spatial dispersal and environmental
heterogeneity influence coexistence.

1.1. Fundamentals. Predation is an omnipresent population phenomenon
that has arisen in the metazoan several times. The process of plundering will in-
fluence the ecosystem’s distribution, prosperity and dynamics. In recent decadas
a considerable number of researchers have been working to understand the emer-
gence of spatiotemporal patterns and their potential mechanisms for developing
a pattern or structure due to the unstable homogeneous equilibrium caused by
the random disturbances caused by Turin’s seminal work.

The distribution of the west tussock, believed to be infected by a parasite wip-
ing, is a clear illustration of predation [13]. The relationships between predators
have an integrated propensity to change and to show oscillating behaviour. If
the number of predators is initially small or very small it would certainly raise
the size of the prey community in the actual environment. With the population
growth of prey, the food supplies are abundant for predators as the popula-
tions of predators also start growing, which in turn has an adverse impact on
the population of prey which leads to a reduction of the population of prey.
With the population of prey being scarce, the population of predator’s decreases
and then the cycle begins to repeat. One of the simplest mathematical mod-
els that Lokta-Volterra has proposed [14] will clarify the intuitive dynamics of
prey-predator interactions. In the area of mathematical ecology, this classic
two-style predator-prone model proposed by Volterra and Lotka is a landmark.
With its variations, the underlying model captured and analysed the non-linear
relationships of predatory and proxy species and their densities. An interaction
between a predator (N2) and its prey (N1) is a continuous time model which
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can be represented in the following as

dN1

dt
= rN1 − α1N1N2

dN2

dt
= α1α2N1N2 − dN2

(1)

where r is the natural growth rate of prey in the absence of predators, α1 is
the predator attack rate to get the prey, α2 is the impact of prey on predators
and d is the death rate of predators in the absence of prey resource. Bailey
and Nicholson’s basic mathematical model in 1935[15] is a groundwork in which
predator interactions can be analyzed [16]. These interactions are now formu-
lated to investigate insect parasitoid and its hosts’ dynamics as given by

dN1

dt
= α1N1f(N1, N2)

dN2

dt
= α2N1(1− f(N1, N2))

(2)

where α1 is the per capita rate for increase of hosts in the absence of para-
sitoids, α2 is the conversion efficiency of hosts for new parasitoids and f(N1, N2)
is the functional response acceptable and true in the literature of mathematical
ecology.

If the nullclines of the prey and predator are linear, the relations between the
prey and predator are very susceptible to the inclines of the respective balance
lines. But the assumption that certain paths are still constant is unreasonable.
Some predators are very effective in searching for and capturing their bearings
but are prevented by their density when their species compete with each other’s
hunting activities. The balance of such predators may initially be very steep, but
their slope may eventually decline as they are directly related to their density.
While these predators are highly effective, their contact with the prey can be very
stable if their density of saturation does not exceed the extinction point of the
prey. In actual fact, we see a significant significance in the biologic regulation of
the pests as the effective predators with self-inhibiting interactions may manage
their prey at very low densities.

Any predators have extremely powerful search mechanisms [17, 18, 19, 20, 21].
This applies especially to pathogenic microorganisms which enter their hosts
through passive atmospheric transmission or direct contact between infected
and uninfected persons. While these depredators can live at low densities by
entering a sleeping state, i.e. their bodily processes are natural and have been
interrupted or slowed down for a certain time. Their population won’t grow until
their density is very large on a given host. If they achieve this crucial mass, they
will replicate large amounts of descendants very rapidly, such that the pitch of
their balance is very steep.

1.2. Mathematical Background. The environmental parameters are well
established positive constants for population models in deterministic modelling
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settings. Both species organisms have time-independent values in the group
balance, i.e. all the net rate of development is negative. Such a balance may be
stable if ecosystems are disturbed and those affected populations are returned
in due course to their equilibrium. Either by damp oscillation or monotonously,
the returning phase may be accomplished. Conversely, the device can be referred
to as chaotic if such disruption appears to intensify itself. Again this instability
could occur in disturbance as oscillating or as a monotonous rise.

Suppose the multispecies population dynamics are given by a set of m equa-
tions as

dNi(t)

dt
= Fi(N

∗
1 , N

∗
2 , N

∗
3 ...N

∗
m) (3)

The growth rate of the ith species at time t is given by some nonlinear function Fi

of interacting species. The equilibrium populations N∗
i follow from m algebraic

equations, obtained by making all the growth rates equal to zero such as

Fi(N
∗
1 , N

∗
2 , N

∗
3 ...N

∗
m) = 0

Expanding about this equilibrium for each species population we are substituting
Ni(t) = N∗

i + xi(t) , where xi(t) is small perturbation to the ith population.
Writing the Taylors series expansion to the respective equations around this
equilibrium and neglecting all terms which are of second or higher order in
the population perturbations xi(t), a linearized approximation is given by the
formula

dxi(t)

dt
=

m∑
j=1

aijxj(t) (4)

The set of m equations describes the population dynamics in the neighborhood

of equilibrium point. Expressing these m equations in matrix notation, dX(t)
dt =

AX(t) , where X(t) is the mX1 matrix of xi and A is the mXm, community
matrix [22]. The elements of community matrix aij explain the effect of species j,

upon species i near equilibrium, where aij = (
∂Fj

∂Nj
)∗ are the partial derivatives of

Fi keeping all populations exceptNj constant. These aij are to be evaluated with
all populations having their equilibrium values. For the set of linear equations
in (4), the solutions are given by

xi(t) =

m∑
j=1

cije
λj(t) (5)

where Cij are constants which depends on initial values of perturbations and
time dependence is completely contained in the m exponentials (λj) factors
(λ1, λ2, λ3...λm) , these factors characterize the temporal behavior of the sys-
tem. λ1, λ2, λ3...λm which are the so called eigen values of the matrix A. Then
they are found by (A − λI)X(t) = 0 . This set of equations has a nontrivial
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solution if and only if ∣∣A− λI
∣∣ = 0 (6)

The equation given in (6) is an mth order polynomial equation in λ and it
determines the eigen values λ. The general form of λ is in the form of complex
numbers, so the real part h produces exponent growth or decay and the imag-
inary part k produces sinusoidal oscillation. It is clear that the perturbations
to the equilibrium populations will die away in time if and only if all eigen val-
ues λ have negative real parts. If anyone eigen value has positive real part the
exponential factor will grow ever larger as time goes on and consequently the
equilibrium is unstable. The special case of neutral stability is attained if one or
more eigen values are purely imaginary, numbers and the rest have negative real
parts. We observe that an equilibrium configuration in the multispecies system
will have neighborhood stability if and only if all eigen values of the community
matrix lie in the left hand half of the plane of complex numbers. It is convenient
to define Λ as minus the largest real part of all the eigen values of the com-
munity matrix −Λ = [real(λ)]max, when the stability criterion then becomes
Λ > 0. If one or more eigen values have positive real parts (Λ < 0), all we can
say with certainty is that there is not a stable equilibrium point. Perturbations
will initially grow, but the neighborhood analysis leaves their ultimate chance
uncertain. Terms of order x2 and higher become important and nonlinearities
decide whether the perturbations will grow until extinctions are produced, or
otherwise the system may settle into some limit cycle [23].

1.3. Effect of Diffusion. The basic objective of ecology is to consider the
interaction between human species and the climate. Empirical evidence indicates
that the spatial seal and environmental structure will affect population and
community relations [24, 25]. In the past few decades, considerable attention
has been paid to the importance of spatial effects in preserving biodiversity
[26, 27]. The models of Reaction Diffusion[28, 29, 30, 31, 32, 33] provide an
approach for the conversion into global conclusions of organisms, survival or
disappearance and coexistences in the climate, local assumptions concerning the
migration, death and reproduction of individuals.

1.4. Diffusion Process. The specifics of the dispersal process remain ignored
by most population models. One basic approximation leading to curious findings
is that people spread from a source group. This may explain the growth of
invading animals into appropriate habitats or the migration of people through an
uncolonizable habitat amongst the local community. Diffusion is a spontaneous
and ongoing phenomenon in an atmosphere that takes each particle or person
from its source location on a random footing. Diffusion models are dynamic since
all spontaneous gestures need a mechanism to synchronise each time. In 1995
Morris et al [34] dissertation on the dispersal of pollens and the movement of
insects and marine ecologists, often researching algae transport in water bodies,
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involved applications of spatial diffusion ecology models. In 1973, Segel and
Jackson [35] introduced bacterial action diffusion models. Partial differential
equations may also explain diffusion. These are necessary since the distribution
or excess of people depends on two factors in space location and time. These
are often necessary. Smith identified the spread of an ingredient down a tube in
1968 [36]. The change in concentration with a time t is related to the change in
concentration with distance S following the partial differential equation

∂x

∂t
= µ

∂2x

∂s2

where is a constant. This is well known in the mathematical literature as the one
dimensional heat equation. An ecological use of this equation is the dispersal
of individuals along a linear route such as plants dispersing along a road side.
The general mathematical system which describes the interaction between two
interacting species is given by

dy

dt
= P (x)−Q(x, y)

dN2

dt
= −S(y) +D(x, y)

In which the functions of the associated population densities are substituted
by both names. We may make several changes to the general setup by means of
this overall design of the mathematical model for the dynamics of two competing
populations. Changes are possible for the community of prey, prey mortality,
predator saturation, predator rivalry for prey, etc. The purpose of this current
topic is to include nonlinear prey reproduction and prey mortality and the use of
a negative exponential is commonly allowed to predator rivalry. Second degree
term into the equation for the rate of change density of predator, where the

functions S(y) takes the form as −cy− ey2 and P (x) takes the form as ax2

α+x and
with this modifications the above model can take the following form as given by

dx

dt
=

ax2

α+ x
− bxy − hx

dy

dt
= dxy − cy − ey2

(7)

It is worth mentioning that all the parameters in this model (7) are positive
constants. Moreover, the model (7) is also subject to the initial non-negative
conditions and under the above consideration; the model (7) has the following
domain as

D = [(x, y)ϵR2
+ : x ≥ 0, y ≥ 0] (8)

Now the solution of the system (7) can be proved to be uniformly bounded
in vein of the following theorem.
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2. Boundedness of the Solution

It is important to ensure that the model (7) is biologically well behaved and
well posed one, so we need to demonstrate the positivity and boundedness of
solutions for the model (7). In this regard, we need to prove the following
theorem:

Theorem 2.1 ((Bendixson’s - Dulac’s negative criterion)). Let,H(x, y) be a
smooth function on D ⊂ R2. If ∇.(Hf1, Hf2) is of one sign in D, then no
closed orbit is contained within D under the condition e > min{1, hα

xy }

Proof. Let us consider the smooth function,

H(x, y) =
α+ x

x2y
(9)

From the system (7), we have,

f1(x, y) =
ax2

α+ x
− bxy − hx

f2(x, y) = dxy − cy − ey2

∂Hf1
∂x

=
α

x2
+

hα

x2y
and

∂Hf2
∂x

=
−eα

x2
+

−e

x

∂Hf1
∂x

+
∂Hf2
∂x

=
α

x2
(1− e) +

1

x2y
(hα− exy) < 0

The last expression is strictly negative if e > min{1, hα
xy } in the interior of

the first quadrant. So there cannot be a closed orbit which satisfies (7) and it
entirely lies within the interior of the first quadrant.

□

3. Equilibrium Point and its Stability Analysis

The positive equilibrium point of (7) is given by dx
dt = dy

dt = 0 and it is denoted

by E∗(x∗, y∗) where x∗ = c+ey∗

d and y∗ is the positive root of the quadratic

equation A1y
2 +A2y +A3 = 0 i.e, y∗ =

−A2+
√

−A2
2−4A1A3

2A1
.

3.1. Stability at Positive Equilibrium point E∗. The Jacobian matrix of
the system (7) is given by

J =

[
ax∗

α+x∗ − ax∗2

(α+x∗)2 −bx∗

dy∗ −ey∗

]
Also

tr(J) = ax∗

α+x∗ − ax∗2

(α+x∗)2 − ey∗ = ax∗

α+x∗ − (α+x∗)[(a−ey∗)x∗−eαy∗]
(α+x∗)2 , tr(J) < 0

if, y∗ > a
e
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det(J) = −eax∗y∗

α+x∗ + eay∗x∗2

(α+x∗)2 + bdx∗y∗ = x∗y∗

α+x∗ [bdα+ bc+ bey∗− ea] + eay∗x∗2

(α+x∗)2 and

det(J) > 0if(α+ x∗)(bdα+ bc+ bey∗ − ea) + eax∗ > 0

Hence the system (7) is asymptotically stable
if y∗ > a

e and (α+ x∗)(bdα+ bc+ bey∗ − ea) + eax∗ > 0

4. Diffusion Instability of the System

In the study of ecology, diffusion means the movement of species in any direc-
tion. Here, we go with the assumption that if the movement of species is only in
the vertical direction, then the population density variables are x = x(s, t) and
y = y(s, t), where s is the space variable and t is the time variable. To analyze
the role of diffusion, consider the following diffusive model,

∂x

∂t
=

ax2

α+ x
− bxy − hx+D1

∂2x

∂s2

∂x

∂t
= dxy − cy − ey2 +D2

∂2y

∂s2

(10)

The non-zero initial conditions are given by

x(s, 0) > 0, and, y(s, 0) > 0fors ∈ [0, R] (11)

The zero-flux boundary conditions are given by

[(x)s]s=0,R = [(y)s]s=0,R = 0 (12)

To linearize the model (10) with the following substitutions and with respect
to the conditions (11) and (12), we obtain the following equations,

x(s, t) = x∗ + η1(s, t), y(s, t) = y∗ + η2(s, t)

∂η1
∂t

= b11η1 + b12η2 +D1
∂2η1
∂s2

(13)

∂η2
∂t

= b21η1 + b22η2 +D2
∂2η2
∂s2

(14)

where, b11 = ax∗

α+x∗ − ax∗2

(α+x∗)2 ; b12 = −bx∗; b21 = dy∗; b22 = −ey∗

Assume the solutions of the equations (13)-(14) are in the form of η1 =
aeλt cos ks, η2 = beλt cos ks where λ and k are frequency and wave numbers
respectively. In this case, the characteristic equation of the model (13)-(14) is
given by

µ2 + ρ1µ+ ρ2 = 0 (15)

where, ρ1 = (D1 + D2)k
2 − b11 − b22, ρ2 = −(b11D1 + b22D2)k

2 + b11b22 −
b12b21 +D1D2k

4 = F (k2)
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Here the idea is to get the condition of instability due to diffusion. If one of
the roots of the charac teristic equation (15) is positive, then the system will be
unstable. If both the roots of the quadratic equation (15) are negative, then the
system can be represented by the model

k2 >
b11 + b22
D1 +D2

(16)

The sufficient condition for a root of the quadratic equation (15) to be positive
is
F (k2) = −(b11D1 + b22D2)k

2 + b11b22 − b12b21 +D1D2k
4 < 0

Since F (k2) is a quadratic expression in k2 and k ≥ 0, the minimum value of
F (k2) can be obtained for the value of k2 given by

[k2]min = − (D2b11 +D1b22)
2

2D1D2

Hence the respective minimum value of F (k2) is given by

F (k2min) = −D2b11 +D1b22
4D1D2

+ b11b22 − b12b21

Thus the condition for the existence of a positive root of (7) F (k2min) < 0 i.e.,

4D1D2(b11b22 − b12b21)− (D2b11 +D1b22)
2 < 0 (17)

Biologically, this can be explained as follows: the species x is an activator
because it stimulates population expansion, whereas the species y is an inhibitor
because it reduces its own rate of growth.

5. Two Dimensional Stability

In two dimensional spaces the model system (15) reduces to

∂x

∂t
=

ax2

α+ x
− bxy − hx+∇2x

∂x

∂t
= dxy − cy − ey2 +D∇2y

(18)

Here, ∇2 = ∂2

∂u2 + ∂2

∂v2 represents the Laplacian operator.
We can investigate the above model with the following initial and boundary
conditions:

x(u, v, 0) > 0, y(u, v, 0) > 0, (x, y) ∈ Ψ

∂x

∂n
=

∂y

∂n
= 0, (x, y) ∈ ∂Ψ, t > 0

(19)

On these conditions, n is the outward normal to ∂Ψ. Next, we show that
in presence of diffusion the global stability behavior of the positive equilibrium.
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For this, we will consider

w1(t) =

∫∫
Ψ

w(x, y)dA (20)

where w = [x − x∗ − x∗ln( x
x∗ )] + [y − y∗ − y∗ln( y

y∗ )] Differentiating w1 with

respect to time t, we have

dw1

dt
=

∫∫
Ψ

dw

dt
dA+

∫∫
(
∂w

∂x
∇2x+D

∂w

∂y
∇2y)dA = P1 + P2

By using Green’s first identity in the plane we have,∫∫
Ψ

F∇2GdA =

∫
∂Ψ

F
∂G

∂n
ds−

∫∫
Ψ

F
∂G

∂n
ds−

∫∫
Ψ

(∇F.∇G)dA

And under the analysis similar to Dubey and Hussain [40], one can show that∫∫
Ψ

(
∂w

∂x
∇2x)dA = −

∫∫
Ψ

∂2w

∂x2
[(
∂x

∂u
)2 + (

∂x

∂v
)2]dA ≤ 0

∫∫
Ψ

D(
∂w

∂y
∇2y)dA = −

∫∫
Ψ

∂2w

∂y2
[(
∂y

∂u
)2 + (

∂y

∂v
)2]dA ≤ 0 (21)

This shows that P2 ≤ 0 and also we observe that P1 ≤ 0 , so then dw1

dt ≤ 0
This implies that if in the absence of diffusion E∗ globally asymptotically

stable, then in the presence of diffusion it will remain globally asymptotically
stable.

6. Stochastic Analysis

A significant aspect of an ecosystem is the environmental fluctuation. The
majority of natural processes are not purely deterministic laws; instead, certain
average meaning oscillates spontaneously, such that the deterministic equilib-
rium is not a fully stable condition [39, 42]. May [43] pointed out that the en-
vironmental changes have generated greater or lesser spontaneous fluctuations
in birth rates, carrying power, competitive coefficients and other parameters
involved in the model structure. As a result, the distribution of the balance
population spontaneously fluctuates over certain mean values. In deterministic
environments, we search for the community of constant equilibrium and then
examine their stability as a result of interaction dynamics within and within
organisms. For the structures motivated by environmental stochasticity, the
solution of the controlling stochastic differing equations cannot be found by a
time-independent equilibrium stage.

By allowing stochastic fluctuations to the variables and around their values
at the positive equilibrium E∗ , as an outcome the obligatory mutualism system
becomes a stochastic differential equation (SDE) as given by
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dx = (
ax2

a+ x
− bxy − hx)dt+ σ1 (x− x⋆) dξ1t

dy = (dxy − cy − ey2)dt+ σ2 (y − y⋆) dξ2t (22)

where σi, i = 1, 2 are real constants, ξit, i = 1, 2 are independent standard Wiener
processes. To analyze the stochastic stability of E∗, we consider the linear system
of (22) around E∗ as follows [41, 37, 38].
where

u(t) = (u1(t), u2(t))
T
andf (u(t)) = Ju(t)g(u)

σ1p1 0

0 σ2p2


dξ(t) = col (ξ1(t), ξ2(t))u1 = x− x∗;u2 = y − y∗ (23)

Let U =
(
t ≥ t0)×ℜ2

)
, t0 ∈ ℜ+ Hence V ∈ Co

2 (U) is a continuous function
with respect to t and a twice continuously differentiable function with respect
to u , so we have.

LV (t, u) =
∂V (t, u)

∂t
+ fT (u)

∂V (t, u)

∂u
+

1

2
Tr

[
gT (u)

∂2V (t, u)

∂u2
g(u)

]
(24)

∂V
∂u = col

(
∂V
∂u1

, ∂V
∂u2

,
)
and ∂2V (t,u)

∂u2 =
(

∂2V
∂uj ,∂ui

)
i, j = 1, 2, T denotes transpose.

Theorem 6.1. If there exists a function V (u, t) ∈ C0
2 (U) satisfying the following

inequalities as given by

K1|u|p ≤ V (t, u) ≤ K2|u|p;LV (t, u) ≤ −K3|u|p,Ki > 0, p > 0 (25)

Then the trivial solution of (23) is exponentially p-stable for . Note that, if in
(25), p = 2, then the trivial solution of (23) is also called asymptotically mean
square stable and it is globally asymptotically stable in probability.

Theorem 6.2. Suppose that
((

ax∗2

(a+x∗)2 − ax∗

a+x∗

)
− 1

2σ
2
1

)
> 0,

(
ey∗ − 1

2σ
2
2

)
> 0

then the zero solution of (23) are true when p = 2 is asymptotically mean square
stable.

Proof: Let us consider the Lyapunov function

V (u) =
1

2

[
v1u

2
1 + v2u

2
2

]
(26)

here v1, v2 are nonnegative constants are to be taken as in the given below.

LV (u) = v1

((
ax∗

a+ x∗ − ax∗2

(a+ x∗)2

)
− bx∗u2

)
u1

+v2 (dy
∗u1 − ey∗u2)u2 +

1

2
Tr

[
gT (u)

∂2V (t, u)

∂u2
g(u)

] (27)

we can easily observe that
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∂2V (t, u)

∂u2
=

w1 0

0 w2


and hence

gT (u)
∂2V (t, u)

∂u2
=

v1σ2
1u

2
1 0

0 v2σ
2
2u

2
2


with

1

2
Tr

[
gT (u)

∂2V (t, u)

∂u2
g(u)

]
=

1

2

[
v1σ

2
1u

2
1 + v2σ

2
2u

2
2

]
(28)

If in (5.5) we choose bx∗v1 = dy∗v2, then from (28), we have

LV (u) = −
((

ax∗2

(a+x∗)2 − ax∗

a+x∗

)
− 1

2σ
2
1

)
v1u

2
1 −

(
ey∗ − 1

2σ
2
2

)
v2u

2
2 < 0 So accord-

ing to Theorem(2), the proof is completed. Main results are here

7. Numerical and Computer Simulations

In this section we addressed the numerical results for the stochastic and dif-
fusion of the system (7), which are corresponding to the analytical results. Case
1: Taking the following parameter values as given by a = 0.941;α = 0.06; b =
0.09;h = 0.02; d = 0.309; c = 0.69; e = 0.015

Figure 1 is the trajectories and Figure 2 phase portrait of the system (7) for the
above parameter values, which gives the result that the system is asymptotically
stable at positive equilibrium point.

Figure 1. Illustrates the stable equilibrium points of the sys-
tem (7) for a = 0.941;α = 0.06; b = 0.09;h = 0.02; d =
0.309; c = 0.69; e = 0.015
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Figure 2. Phase portrait of the system (7), which represents
stable equilibrium point for a = 0.941;α = 0.06; b = 0.09;h =
0.02; d = 0.309; c = 0.69; e = 0.015

Case 2: For the above parameter values along with the D1 = 0.05, D2 =
0.03 and the following graphs are representing steadiness of prey and predator
populations with respect to the diffusion in the system

Figure 3 shows the steadiness of prey population and Figure 4 shows steadiness
of predator population against time and space

Figure 3. Simulated solution of the system which shows the
steadiness of prey population for a = 0.941;α = 0.06; b =
0.09;h = 0.02; d = 0.309; c = 0.69; e = 0.015
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Figure 4. Simulated solution of the system which shows the
steadiness of predator population for a = 0.941;α = 0.06; b =
0.09;h = 0.02; d = 0.309; c = 0.69; e = 0.015against time and
space

Figure 5. The figure represents the trajectories of the model
(22) for a = 0.941;α = 0.06; b = 0.09;h = 0.02; d = 0.309; c =
0.69; e = 0.015 and σ1 = 0.08;σ2 = 0.1
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Figure 6. The figure represents the trajectories of the model
(22) for a = 0.941;α = 0.06; b = 0.09;h = 0.02; d = 0.309; c =
0.69; e = 0.015 and σ1 = 0.08;σ2 = 0.1

7.1. Bifurcation Analysis. In a two dimensional system ẋ = f(x, y) and
ẏ = g(x, y) that dependents on a parameter λ, suppose that for some value
of λ = λ0 the nullclines intersects as shown in following figures. Each point
of intersection corresponds to a fixed point as λ = λ0 changes the equilibrium
points move apart or coincides with each other. At some point λ = λk the two
null clines becoming tangent to each other. Then the fixed points coincide with
each other when λ = λk after that the null clines pull apart. The equilibrium
points disappear. This situation in the dynamical systems observed as saddle
node bifurcation. In this present model the null clines of species given by ẋ = 0
which implies x = 0 and ax

a+x − by − h = 0.ẏ = 0, which implies y = 0 and
dx − c − ey = 0. The nullcline ax

a+x − by − h = 0 represents a hyperbola for

all positive values of a, α, b, h and the nullcline y = dx
e − c

e is straight line with

slope d
e and with negative y-intercept (−c

e ). The y-intercept −c
e becomes closer

to zero as e tends to infinity, but biologically which is absurd in reality. So
the parameter d chosen as a bifurcation parameter which influences the slope of
straight line.

We notice that each intersection corresponds to a fined point. The fixed points
move as d changes from 1.4 to 1.925. The null clines pull away from each other
as d varies, becoming tangent at d = dc and then the fixed points approach each
other and collide when d = dc and after that the null clines pull apart. The
saddle node bifurcation observed for this model at dc = 1.925.
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Table 1. Nature of bifurcation for different values of bifurca-
tion parameter d for fixing the values of a = 4.5, α = 2.1,
b = 0.3, h = 2, e = 2 and c = 1.3

Values of bifurca-
tion parameter (d)

Number of equi-
librium points-
location -nature

Nature of bifurca-
tion

d=1.4 Two(8.64,5.40)-
Nodal
Sink(2.08,081)-
Saddle (Figure 4)

d=1.6 Two(6.80,4.79)-
Nodal
Sink(2.32,1.21)-
Saddle (Figure 5)

d=1.8 Two(5.16,3.99)-
Nodal
Sink(2.72,1.80)-
Saddle (Figure 6)

Saddle Node bifur-
cation

d=1.92 Two(3.71,2.91)-
Nodal
Sink(3.55,2.75)-
Saddle (Figure 7)

d=1.925 Equilibrium
points are dis-
appeared(Figure 8)

Figure 7. The figure represents trajectories of system (7) for
a = 4.5, α = 2.1, b = 0.3, h = 2, e = 2, c = 1.3 and d = 1.4.
Two equilibrium points exists which are Nodal Sink (8.64, 5.40)
and Saddle (2.08,081).
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Figure 8. The figure represents trajectories of system (7) for
a = 4.5, α = 2.1, b = 0.3, h = 2, e = 2, c = 1.3 and d = 1.6.
Two equilibrium points exists which are Nodal Sink (6.80,4.79)
and Saddle (2.32,1.21).

Figure 9. The figure represents trajectories of system (7) for
a = 4.5, α = 2.1, b = 0.3, h = 2, e = 2, c = 1.3 and d = 1.8.
Two equilibrium points exists which are Nodal Sink (5.16,3.99)
and Saddle (2.72,1.80).

Figure 10. The figure represents trajectories of system (7) for
a = 4.5, α = 2.1, b = 0.3, h = 2, e = 2, c = 1.3 and d = 1.92.
Two equilibrium points exists which are Nodal Sink (3.71,2.91)
and Saddle (3.55,2.75).
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Figure 11. The figure represents trajectories of system (7) for
a = 4.5, α = 2.1, b = 0.3, h = 2, e = 2, c = 1.3 and d = 1.925.
Two equilibrium points are disappeared.

8. Conclusions and Ecological Implications

The above analysis leads to the following conclusions. The modification of
the Lokta-Voltera system in (1) with nonlinear reproduction of the prey popu-
lations leads to the system (7), where it denotes the prey density at which the
reproduction rate is half of its possible maximum value. The phase portrait
of the system (7). The asymptotic stability of coexisting state exists only if
y∗ > a

e and (a + x∗)(bdα + bc + bey∗ − ea) + eax∗. The movement of the prey
and predator can be modeled by the presence of spatial diffusion on the system
(7). Section 4 examines the system’s diffusion instability, which involves prey
and predator populations diffusing in a one-dimensional space, possibly with
differing diffusivities. The equilibrium point (x∗, y∗) of the system of ordinary
differential equations in space, which is the spatially uniform steady state of the
system (10). The equilibrium is asymptotically stable for the system of ordinary
differential equations (7), but unstable for the system with diffusion (10). Diffu-
sive instability’s conditions have been established in (17). Also we have shown
the stochastic system (22) is globally asymptotically stable when the intensity
of white noise is less than some threshold values stated in Theorem 3. From the
analytical and numerical results, it is conclude that the main factor that affects
the stability of the stochastic model is the intensity of white noise. Finally we
have shown the system has saddle node bifurcation with bifurcation parameter
d.
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