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A STUDY OF TWO SPECIES MODEL WITH HOLLING TYPE

RESPONSE FUNCTION USING TRIANGULAR FUZZY

NUMBERS

P. VINOTHINI, K. KAVITHA∗

Abstract. In this paper, we developed three theoretical models based on
prey and predator that exhibit holling-type response functions. In both a

fuzzy and a crisp environment, we have provided a mathematical formula-

tion for the prey predator concept. We used the signed distance method to
defuzzify the triangular fuzzy numbers using the alpha-cut function. We

can identify equilibrium points for all three theoretical models using the

defuzzification technique. Utilizing a variational matrix, stability is also
performed with the two species model through three theoretical models.

Results are presented, followed by discussion. MATLAB software is used

to provide numerical simulations.
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1. Introduction

Alfred J. Lotka introduced a type of predator-prey model in the domain of
autocatalytic chemical processes in 1910, that is later called the Lotka - Volterra
Predator - Prey model [1, 6, 7]. In 1926, Vito Volterra, a mathematician, and
physicist interested in mathematical biology published his results. The Rosen-
zweig–MacArthur model was eventually expanded to include density-dependent
prey development and functional responses, similar to those described by C. S.
Holling [16]. The Lotka–Volterra [9] and Rosenzweig–MacArthur models have
both been used to represent realistic predator-prey ecosystem dynamics. Holling
(1959) [13, 14, 15, 16] classified functional responses into three categories. Prey
density and the greatest number of prey killed have a linear relationship in Type
I, whereas Type II has a monotonic relationship between prey density and the
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fraction of prey devoured. Type III is characterized by a sigmoid relationship,
in which the proportion of prey consumed is positively density-dependent over
specific prey density regions.
Zadeh (1965) [21, 22, 25] was the first to use a fuzzy set to reflect imprecision or
vagueness in ordinary life. In this paper, we used a Holling-type response func-
tion to investigate a Prey Predator Model in a fuzzy environment. We made
the biological parameters fuzzy sense and expressed them using triangular fuzzy
numbers to make the model more interesting. We used the signed distance ap-
proach to construct the defuzzification procedure for the fuzzy prey-predator
model. Differential inclusion is a notion used by Hullermeier (1997). Using α
- cut at the beginning value and the solution, the given differential equation is
transformed into a differential inclusion, and the answer is identified as the α -
cut of the fuzzy solution. Many studies have been conducted on this subject, but
we continued the work with some additional inputs and concepts that improve
the model’s acceptability and reliability. Finally, we have deduced the model’s
dynamical behavior in a fuzzy sense.

2. Preliminaries

Definition 2.1. A fuzzy set Ã defined on X and expressed as a collection of

ordered pairs, Ã = {(x, µA(x)), x ∈ X}and if X is a universe of discourse and x is
a specific element of X, where µÃ(x) is a membership function is associated with

a fuzzy set Ãsuch that every element of the universe of discourse X is mapped to
the interval [0,1] by this function. The mapping is written as µÃ(x) : x → [0, 1].

Definition 2.2. A triangular membership function is specified by three param-
eters a1, a2, a3; a1, a2, a3 ∈ R;a1 < a2 < a3 ; with membership function µÃ(x)is
given by

µÃ(x) =



0 if x ≤ a1
x− a1
a2 − a1

if a1 ≤ x ≤ a2

a3 − x

a3 − a2
if a2 ≤ x ≤ a3

0 if x ≥ a3

Definition 2.3. Operation on fuzzy numbers
(i) Addition:

[Ã1 + B̃1](α) = [A1L(α) +B1L(α), A1U (α) +B1U (α)]

(ii) Substraction: [Ã1 − B̃1](α) = [A1L(α)−B1R(α), A1R(α)−B1L(α)]
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(iii) Multiplication:

[Ã1.B̃1](α)

= [min{A1L(α)B1L(α), A1L(α)B1U (α), A1U (α)B1L(α), A1U (α)B1U (α)},
max{A1L(α)B1L(α), A1L(α)B1U (α), A1U (α)B1L(α), A1U (α)B1U (α)}]

Definition 2.4. For Ã ∈ Φ, defined the signed distance of Ã to 0̃ as,

d(Ã, 0̃) =

1∫
0

d0([AL(α), AU (α);α], 0̃)dα

d(Ã, 0̃) =
1

2

1∫
0

[AL(α) +AU (α)]dα

By solving we get, d(Ã, 0̃) = a+ 1
4 (∆2 −∆1)

Definition 2.5. Let µ ∈ F(X) and α ∈ [0,1] then the sets [µ]α={x ∈ X/µ(x) ≥ α},
[µ]α={x ∈ X/µ(x) > α} are called the α− cut and strict α− cut of µ.

3. Basic Expression of Prey − Predator Mathematical Model

Crisp Model – I:
Assume a Lotka–Volterra system with the Prey–Predator Model.
(i). The rate of prey growth is logistic in this model I.
(ii). The catch rate function pEx will be based on the premise of catch per unit.
(iii). Predation is related to the prey density.

dx

dt
= α

(
1− x

k

)
x− βxy − pEx

dy

dt
= −γy + δxy

Crisp Model – II:
Now we consider the prey-predator system below, which includes a catch rate
function and a Holling-II type response function

dx

dt
= α

(
1− x

k

)
x− βxy

a+ x
− pEx

dy

dt
= −γy +

δxy

a+ x



726 P. Vinothini and K. Kavitha

Crisp Model – III: Now we consider the prey-predator system below, which
includes a catch rate function and a Holling-III type response function.

dx

dt
= α

(
1− x

k

)
x− βx2y

a2 + x2
− pEx

dy

dt
= −γy +

δx2y

a2 + x2

4. Mathematical Formulation of Fuzzy Prey – Predator Model

By using the idea of a fuzzy set to extend the crisp model which includes bi-
ological parameters that are incorrect. All of the parameters are supposed to be
constant or time dependant in the crisp model, but in reality, they vary around
certain average values owing to the changing environment. As an outcome, the
parameters are not assumed to be constants. To deal with this kind of uncer-
tainty, a fuzzy model is needed [17, 18, 19, 24], in which biological parameters are
considered to be fuzzy numbers represented by Triangular Fuzzy Numbers [3].
The fuzzy parameters are defuzzified using the signed distance approach [10],
and the dynamical behavior of the Holling type response function is discussed in
a fuzzy manner. If the biological parameters are fuzzy, the crisp model becomes
a fuzzy prey-predator model, resulting in the fuzzy differential equations below:
Model - I

d̃x

dt
= α̃

(
1− x

k

)
x⊖ β̃xy ⊖ pEx (4.1)

d̃y

dt
= −γ̃y ⊕ δ̃xy (4.2)

Model - II

d̃x

dt
= α̃

(
1− x

k

)
x⊖ β̃xy

a+ x
⊖ pEx (4.3)

d̃y

dt
= −γ̃y ⊕ δ̃xy

a+ x
(4.4)

Model - III

d̃x

dt
= α̃

(
1− x

k

)
x⊖ β̃x2y

a2 + x2
⊖ pEx (4.5)

d̃y

dt
= −γ̃y ⊕ δ̃x2y

a2 + x2
(4.6)

where
x − show the total number of prey species
y − show the total number of predator species (biomass).
α̃ = (α−∆1, α, α+∆1), 0 < ∆1 < α denote the fuzzy inherent growth rate of
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prey species in absence of predator

β̃ = (β −∆2, β, β +∆2), 0 < ∆2 < β

The greatest values of the per capita decrease rate x owing to y are denoted.
γ̃ = (γ−∆3, γ, γ+∆3), 0 < ∆3 < γ indicate the fuzzy mortality rate of predator
species

δ̃ = (δ −∆4, δ, δ +∆4), 0 < ∆4 < δ indicate fuzzy conversion biomass rates

5. Defuzzification Process:

Applying defuzzification method for triangular fuzzy numbers using signed
distance method for an inherent growth rate of prey species, Ratio of prey mor-
tality per capita, the death rate of predator, and conversion biomass rate. Ap-

plying both the left and right sides of the α - cut [0,1] of d̃xi

dt in (4.1) to (4.6) we
get the idea of [(

dxi

dt

)
L

(α),

(
dxi

dt

)
R

(α)

]
, i=1,2 are as follows:

Model - I (
dx

dt

)
L

(α) = αL(α)x
(
1− x

k

)
− βR(α)xy − pEx(

dx

dt

)
R

(α) = αR(α)x
(
1− x

k

)
− βL(α)xy − pEx(

dy

dt

)
L

(α) = −γL(α)y + δR(α)xy(
dy

dt

)
R

(α) = −γR(α)y + δL(α)xy

Model - II(
dx

dt

)
L

(α) = αL(α)x
(
1− x

k

)
− βR(α)xy

a+ x
− pEx(

dx

dt

)
R

(α) = αR(α)x
(
1− x

k

)
− βL(α)xy

a+ x
− pEx(

dy

dt

)
L

(α) = −γL(α)y +
δR(α)xy

a+ x(
dy

dt

)
R

(α) = −γR(α)y +
δL(α)xy

a+ x
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Model - III(
dx

dt

)
L

(α) = αL(α)x
(
1− x

k

)
− βR(α)x

2y

a2 + x2
− pEx(

dx

dt

)
R

(α) = αR(α)x
(
1− x

k

)
− βL(α)x

2y

a2 + x2
− pEx(

dy

dt

)
L

(α) = −γL(α)y +
δR(α)x

2y

a2 + x2(
dy

dt

)
R

(α) = −γR(α)y +
δL(α)x

2y

a2 + x2

where

αL(α) = α − ∆1 + α∆1, αR(α) = α + ∆2 − α∆2, βL(α) = β − ∆3 + α∆3, βR(α) = β + ∆4 − α∆4,

γL(α) = γ − ∆5 + α∆5, γR(α) = γ + ∆6 − α∆6, δL(α) = δ − ∆7 + α∆7, δR(α) = δ + ∆8 − α∆8

For the fuzzy prey-predator model (4.1) to (4.6) signed distance method will

be used. Hence signed distance d̃x
dt to 0̃ represented as d

(
d̃x
dt , 0̃

)
are as follows:

Model - I

d

(
d̃x

dt
, 0̃

)
= d(α̃, 0̃)x

(
1− x

k

)
− d(β̃,0̃)xy − pEx (5.1)

d

(
d̃y

dt
, 0̃

)
= −d(γ̃,0̃)y + d(δ̃,0̃)xy (5.2)

Model - II

d

(
d̃x

dt
, 0̃

)
= d(α̃, 0̃)x

(
1− x

k

)
− d(β̃,0̃)xy

a+ x
− pEx (5.3)

d

(
d̃y

dt
, 0̃

)
= −d(γ̃,0̃)y +

d(δ̃,0̃)xy

a+ x
(5.4)

Model - III

d

(
d̃x

dt
, 0̃

)
= d(α̃, 0̃)x

(
1− x

k

)
− d(β̃,0̃)x2y

a2 + x2
− pEx (5.5)

d

(
d̃y

dt
, 0̃

)
= −d(γ̃,0̃)y +

d(δ̃,0̃)x2y

a2 + x2
(5.6)

By using signed distance, we have

d
(

d̃x
dt , 0̃

)
= 1

2

1∫
0

[(
dx
dt

)
L
(α) +

(
dx
dt

)
R
(α)
]
dα = dx

dt

The above system (5.1) to (5.6) reduces to
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Model - I

dx

dt
= B1x

(
1− x

k

)
−B2xy − pEx (5.7)

dy

dt
= −B3y +B4xy (5.8)

Model - II

dx

dt
= B1x

(
1− x

k

)
− B2xy

a+ x
− pEx (5.9)

dy

dt
= −B3y +

B4xy

a+ x
(5.10)

Model - III

dx

dt
= B1x

(
1− x

k

)
− B2x

2y

a2 + x2
− pEx (5.11)

dy

dt
= −B3y +

B4x
2y

a2 + x2
(5.12)

6. Equilibrium Points

Model - I: We have the following equations to calculate the equilibrium
points of the fuzzy system equations (5.7) and (5.8):

B1x
(
1− x

k

)
−B2xy − pEx = 0

−B3y +B4xy = 0

Solving the above two equations we get the equilibrium points such as (0,0),(
k
(
1− pE

B1

)
, 0
)
, (x∗, y∗) where x∗ = B3

B4
and y∗ = 1

B2

(
B1

(
1− x∗

k

)
− pE

)
Model - II:To identify the equilibrium points of the fuzzy system equations

(5.9) and (5.10), we have

B1x
(
1− x

k

)
− B2xy

a+ x
− pEx = 0

−B3y +
B4xy

a+ x
= 0

Solving the above two equations we get the equilibrium points such as (0,0),(
k
(
1− pE

B1

)
, 0
)
and (x∗, y∗)

where x∗ = B3a
B4−B3

and y∗ = 1
B2

(a+ x∗)
(
B1

(
1− x∗

k

)
− pE

)
Model - III:We have the following equations to calculate the Equilibrium

points of the fuzzy system equations (5.11) and (5.12):

B1x
(
1− x

k

)
− B2x

2y

a2 + x2
− pEx = 0

−B3y +
B4x

2y

a2 + x2
= 0
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Solving the above two equations we get the equilibrium points such as (0,0),(
k
(
1− pE

B1

)
, 0
)

and (x∗, y∗) where x∗ =
(

B3a
2

B4−B3

) 1
2

and y∗ = 1
B2x∗ (a

2 +

x∗2)
(
B1

(
1− x∗

k

)
− pE

)
6.1. Variational matrix for Model – I:.

v(x, y) =

(
∂f1
∂x

∂f1
∂y

∂g1
∂x

∂g1
∂y

)
where

f1(x, y) = B1x
(
1− x

k

)
−B2xy − pEx

g1(x, y) = −B3y +B4xy

v(x, y) =

[
B1

(
1− 2x

k

)
−B2y − pE −B2x

B4y −B3 +B4x

]
(I)

At (0,0) in I

v(0, 0) =

[
B1 − pE 0

0 −B3

]
The characteristic equation of the above matrix is given as follows:∣∣∣∣B1 − pE − λ 0

0 −B3 − λ

∣∣∣∣ = 0

λ = B1 − pE > 0; λ = −B3 < 0
The equilibrium point is a saddle since the eigenvalues are different with opposite
signs so the system is unstable.

At
(
k
(
1− pE

B1

)
, 0
)
in I

v

(
k

(
1− pE

B1

)
, 0

)
=

B1

(
1−

2
(
k
(
1− pE

B1

))
k

)
− pE −B2k

(
1− pE

B1

)
0 −B3 +B4k

(
1− pE

B1

)


The characteristic equation of the above matrix is given by:∣∣∣∣∣∣B1

(
1− 2

(
1− pE

B1

))
− pE − λ −B2k

(
1− pE

B1

)
0 −B3 +B4k

(
1− pE

B1

)
− λ

∣∣∣∣∣∣ = 0

f(λ) = λ2B1 − λ(B1B4 −B1B3 −B4kpE − pEB1 −B2
1)

+ (B2
1B3 −B2

1B4 +B1B4kpE + pE(B3B1 −B4B1 +B4kpE)) = 0

By using Descartes’s rule there are two changes of a sign so we have two
negative roots. Hence, we say the system is said to be a stable node.
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At (x∗, y∗) in I

where x∗ = B3

B4
, y∗ = 1

B2

(
B1

(
1− x∗

k

)
− pE

)
v(x∗, y∗) =

[
B1

(
1− 2x∗

k

)
−B2y

∗ − pE −B2x
∗

B4y
∗ −B3 +B4x

∗

]
The characteristic equation of the above matrix is given by:∣∣∣∣∣B1

(
1− 2x∗

k

)
−B2y

∗ − pE − λ −B2x
∗

B4y
∗ −λ

∣∣∣∣∣ = 0

f(λ) = λ2 − λ

(
B1

(
1− 2x∗

k

)
−B2y

∗ − pE

)
+B2x

∗(B4y
∗) = 0

By using Descartes’s rule there are two changes of a sign so we have two negative
roots. Hence, we say the system is said to be a stable node.

6.2. Variational matrix for Model – II:.

f1(x, y) = B1x
(
1− x

k

)
− B2xy

a+ x
− pEx

g1(x, y) = −B3y +
B4xy

a+ x

v(x, y) =

(
∂f1
∂x

∂f1
∂y

∂g1
∂x

∂g1
∂y

)

v(x, y) =

[
B1

(
1− 2x

k

)
− B2ya

(a+x)2
− pE −B2x

a+x
B4ya
(a+x)2

−B3 +
B4x
a+x

]
(II)

At (0,0) in II

v(0, 0) =

[
B1 − pE 0

0 −B3

]
The characteristic equation of the above matrix is given as follows:∣∣∣∣B1 − pE − λ 0

0 −B3 − λ

∣∣∣∣ = 0

λ = B1 − pE > 0; λ = −B3 < 0
The equilibrium point is a saddle since the eigenvalues are different with opposite
signs so the system is unstable.

At
(
k
(
1− pE

B1

)
, 0
)
in II

v

(
k

(
1− pE

B1

)
, 0

)
=

B1

(
1−

2
(
k
(
1− pE

B1

))
k

)
− pE −

B2k
(
1− pE

B1

)
a+k

(
1− pE

B1

)
0 −B3 +

B4k
(
1− pE

B1

)
a+k

(
1− pE

B1

)
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The characteristic equation of the above matrix is given by:∣∣∣∣∣∣∣
B1

(
1− 2

(
1− pE

B1

))
− pE − λ −B2k

(
1− pE

B1

)
0 −B3 +

B4k
(
1− pE

B1

)
a+k

(
1− pE

B1

) − λ

∣∣∣∣∣∣∣ = 0

f(−λ)

= λ2 − λ

B1 + pE −
B4k

(
1− pE

B1

)
a+ k

(
1− pE

B1

) +B3

+
B4k

(
1− pE

B1

)
a+ k

(
1− pE

B1

) −B1 − pE −B3

= 0

Here we have 2 changes of sign. By using Descarte’s rule we say that there are

2 negative roots when B4k
a+k

(
1− pE

B1

)
> B1 + pE +B3 . Then equilibrium point

is said to be node since the roots are different or complex with a negative real

part. Hence we say the system is asymptotically stable when B4k
a+k

(
1− pE

B1

)
>

B1 + pE +B3

At (x∗, y∗) in II

where x∗ = B3a
B4−B3

, y∗ = 1
B2

(a+ x∗)
[
B1

(
1− x∗

k − pE
)]

v(x∗, y∗) =

B1

(
1− 2x∗

k

)
− B2y

∗a
(a+x∗)2

− pE −B2x
∗

a+x∗

B4y
∗a

(a+x∗)2
−B3 +

B4x
∗

a+x∗


The characteristic equation of the above matrix is given by:∣∣∣∣∣∣B1

(
1− 2x∗

k

)
− B2y

∗a
(a+x∗)2

− pE − λ −B2B3

B4

B4y
∗a

(a+x∗)2
B3(−B4+B3+B4a)

aB4
− λ

∣∣∣∣∣∣ = 0

f(λ) = λ
2 − λ

{
B1

(
1 −

2x∗

k

)
−

B2y
∗a

(a + x∗)2
− pE +

B3(−B4 + B3 + B4a)

aB4

}

+

(
B1

(
1 −

2x∗

k

)
−

B2y
∗a

(a + x∗)2
− pE

)(
B3(−B4 + B3 + B4a)

aB4

− λ

)
+

(
B2B3

B4

)(
B4y

∗a

(a + x∗)2

)
= 0

By using Descartes’s rule there are two changes of a sign so we have two negative
roots. Hence, we say the system is a stable node.

6.3. Variational matrix for Model – III:.

f(x, y) = B1x
(
1− x

k

)
− B2x

2y

a2 + x2
− pEx

g(x, y) = −B3y +
B4x

2y

a2 + x2

v(x, y) =

(
∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

)
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v(x, y) =

[
B1

(
1− 2x

k

)
− 2B2a

2xy
(a2+x2)2

− pE −B2x
2

a2+x2

2a2B4xy
(a2+x2)2

−B3 +
B4x

2

a2+x2

]
(III)

At (0,0) in III

v(0, 0) =

[
B1 − pE 0

0 −B3

]
The characteristic equation of the above matrix is given by:∣∣∣∣B1 − pE − λ 0

0 −B3 − λ

∣∣∣∣ = 0

λ = B1 − pE ,

λ = −(pE −B1) < 0 , λ = −B3 < 0

The equilibrium point is a node since the roots are real distinct and negative.

At (x∗, 0) in III where x∗ = k
(
1− pE

B1

)
v(x∗, 0) =

B1

(
1− 2x∗

k

)
− pE −B2x

∗2

a2+x∗2

0 −B3 +
B4x

∗2

a2+x∗2


The characteristic equation of the above matrix is given by:∣∣∣∣∣∣B1

(
1− 2x∗

k

)
− pE − λ −B2x

∗2

a2+x∗2

0 −B3 +
B4x

∗2

a2+x∗2 − λ

∣∣∣∣∣∣ = 0

f(λ) = λ2 + λ

(
B3 + pE − B1

(
1 − 2x∗

k

)
− B4x∗2

a2+x∗2

)
+ B1

(
1 − 2x∗

k
− pE

)(
B4x∗2

a2+x∗2
− B3

)
= 0

Now, f(−λ) = λ2−λ

(
B3 + pE − B1

(
1 − 2x∗

k

)
− B4x∗2

a2+x∗2

)
+B1

(
1 − 2x∗

k
− pE

)(
B4x∗2

a2+x∗2
− B3

)
=

0

There are two changes of sign. So, by Descarte’s rule, we conclude that the
equilibrium point is a node since the roots are real distinct with a negative real
part. Hence the system is asymptotically stable if

B3 + pE > B1

(
1− 2x∗

k

)
+

B4x
∗2

a2 + x∗2

At (x∗, y∗) in III where x∗ =
(

B3a
2

B4−B3

) 1
2
, y∗ = 1

B2x∗

(
a2 + x∗2

) [
B1

(
1− x∗

k

)
− PE

]

v(x∗, y∗) =

B1

(
1− 2x∗

k

)
− 2B2a

2x∗y∗

(a2+x∗2 )
2 − pE −B2x

∗2

a2+x∗2

2a2B4x
∗y∗

(a2+x∗2 )
2 −B3 +

B4x
∗2

a2+x∗2
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The characteristic equation of the above matrix is given by:

f(λ) = λ
2 − λ


(
B1

(
1 −

2x∗

k

)
−

2B2a
2x∗y∗

(a2 + x∗2 )
− pE

)
+

−B3 +
B4x

∗2

a2 + x∗2


+

(
B1

(
1 −

2x∗

k

)
−

2B2a
2x∗y∗

(a2 + x∗2 )
− pE

)−B3 +
B4x

∗2

a2 + x∗2

 +

 B2x
∗2

a2 + x∗2

( 2a2B4x
∗y∗

(a2 + x∗2 )
2

)

By using Descarte’s rule, we have two negative roots since there are 2 changes
of sign. Hence we say the system is a stable node.

7. Results and Discussion:

In this article, we investigate a two species prey-predator model based on
fuzzy parameters. To overcome these two species model we use fuzzy concept
(alpha - cut) which makes easier to analyze a dynamical behavior. The majority
of researchers built their models on the assumption that the parameters in their
models are well-known, however, the situation in real life is different. The prey-
predator model is presented uniquely in this study, with biological parameters
that are inherently inaccurate. Triangular Fuzzy Numbers have been used to
represent the imprecise parameters. The signed distance approach method was
used to defuzzify the fuzzy parameters by using alpha cut definition,and then
the behaviors of the dynamical model in the fuzzy nature were noticed. We
now present a prey-predator behavior model in both crisp and fuzzy forms, as
follows:
Model - I:For parameters: p = 1.5; E = 0.05; alpha = 0.5; k = 120; gamma
= 0.1; beta = 0.005; delta = 0.005; The behaviors of the two species are shown
in Figures (1a) and (1b) in both a crisp and a fuzzy environment, and they
asymptotically converge to the equilibrium state value. Fig (1c) and Fig (1d)
show a phase plane of the system shows that it is stable in both environments
with the same initial condition.
Model - II:For parameters: a = 0.5; p = 1.5; E = 0.05; alpha = 0.5; k =
120; gamma = 0.1; beta = 0.005; delta = 0.005; A two species population
asymptotically converges to the equilibrium state value, as shown in Figures
(2a) and (2b). A phase picture of the system is shown in Figures (2c) and (2d),
demonstrating that (x∗, y∗) is locally asymptotically stable in both fuzzy and
crisp nature.
Model - III:For Parameters:a = 0.5; p = 0.5; E = 0.8; alpha = 0.5; k = 120;
gamma = 0.1; beta = 0.005; delta = 0.005; Figures (3a) and (3b) indicate both
prey and predator species vary a little at first, but as time goes on, all of the
species spirals towards their particular steady-state levels of species are distinct
in two distinct environments. Figures (3c) and (3d) depict a phase portrait of
prey-predator biomass in two environments with identical initial conditions.
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Comparison Result:

(a) Fig:1a (b) Fig:1b

(a) Fig:1c (b) Fig:1d
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(a) Fig:2a (b) Fig:2b

(a) Fig:2c (b) Fig:2d

(a) Fig:3a (b) Fig:3b
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(a) Fig:3c (b) Fig:3d

8. Conclusion

In this article, three mathematical Prey Predator population models are ex-
plored and analyzed. We explore the logistic equation of prey growth in these
models. We examine Holling I type predator response function in model 1 and
holling II type predator response function in model 2 and holling III type preda-
tor response function in model 3. The existence of equilibrium points is obtained
based on three fuzzy models. The stability of equilibrium points is addressed us-
ing a variational matrix, and the criteria of asymptotical stability of equilibrium
points are also derived. Numerical simulation is done by using MATLAB soft-
ware. In both fuzzy and crisp nature, by using set of parameters value the figure
depicts the dynamical behavior of a prey-predator model and a phase portrait
of a system.
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