• Title/Summary/Keyword: Predator

Search Result 314, Processing Time 0.022 seconds

STATIONARY PATTERNS FOR A PREDATOR-PREY MODEL WITH HOLLING TYPE III RESPONSE FUNCTION AND CROSS-DIFFUSION

  • Liu, Jia;Lin, Zhigui
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.2
    • /
    • pp.251-261
    • /
    • 2010
  • This paper deals with a predator-prey model with Holling type III response function and cross-diffusion subject to the homogeneous Neumann boundary condition. We first give a priori estimates (positive upper and lower bounds) of positive steady states. Then the non-existence and existence results of non-constant positive steady states are given as the cross-diffusion coefficient is varied, which means that stationary patterns arise from cross-diffusion.

QUALITATIVE ANALYSIS OF A DIFFUSIVE FOOD WEB CONSISTING OF A PREY AND TWO PREDATORS

  • Shi, Hong-Bo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.6
    • /
    • pp.1827-1840
    • /
    • 2013
  • This paper is concerned with the positive steady states of a diffusive Holling type II predator-prey system, in which two predators and one prey are involved. Under homogeneous Neumann boundary conditions, the local and global asymptotic stability of the spatially homogeneous positive steady state are discussed. Moreover, the large diffusion of predator is considered by proving the nonexistence of non-constant positive steady states, which gives some descriptions of the effect of diffusion on the pattern formation.

NONSELECTIVE HARVESTING OF A PEY-PREDATOR COMMUNITY WITH

  • Ghosh, Dipanwita;Sarkar, A.K.
    • Journal of applied mathematics & informatics
    • /
    • v.6 no.3
    • /
    • pp.823-834
    • /
    • 1999
  • The present paper deals with the problem of nonselective harvesting in a partly infecte prey and predator system in which both the suseptible prey and the predator follow the law of logistic growth and some preys avoid predation by hiding. The dynamical behaviour of the system has been studied in both the local and global sense. The optimal policy of exploitation has been derived by using Pontraygin's maximal principle. Numerical analysis and computer simulation of the results have been performed to inverstigate the global properties of the system.

PREDATOR-PREY IN PATCHY SPACE WITH DIFFUSION

  • Alb, Shaban
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.15 no.2
    • /
    • pp.137-142
    • /
    • 2011
  • In this paper we formulate a predator-prey system in two patches in which the per capita migration rate of each species is influenced only by its own density, i.e. there is no response to the density of the other one. Numerical studies show that at a critical value of the bifurcation parameter the system undergoes a Turing bifurcation, i. e. the stable constant steady state loses its stability and spatially non-constant stationary solutions, a pattern emerge.

EXISTENCE OF GLOBAL SOLUTIONS FOR A PREY-PREDATOR MODEL WITH NON-MONOTONIC FUNCTIONAL RESPONSE AND CROSS-DIFFUSION

  • Xu, Shenghu
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.1_2
    • /
    • pp.75-85
    • /
    • 2011
  • In this paper, using the energy estimates and the bootstrap arguments, the global existence of classical solutions for a prey-predator model with non-monotonic functional response and cross-diffusion where the prey and predator both have linear density restriction is proved when the space dimension n < 10.

PERIODIC SOLUTIONS OF A DISCRETE-TIME NONAUTONOMOUS PREDATOR-PREY SYSTEM WITH THE BEDDINGTON-DEANGELIS FUNCTIONAL RESPONSE

  • Dai, Binxiang;Zou, Jiezhong
    • Journal of applied mathematics & informatics
    • /
    • v.24 no.1_2
    • /
    • pp.127-139
    • /
    • 2007
  • In this paper, we investigate a discrete-time non-autonomous predator-prey system with the Beddington-DeAngelis functional response. By using the coincidence degree and the related continuation theorem as well as some priori estimates, easily verifiable sufficient criteria are established for the existence of positive periodic solutions.

PATTERN FORMATION FOR A RATIO-DEPENDENT PREDATOR-PREY MODEL WITH CROSS DIFFUSION

  • Sambath, M.;Balachandran, K.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.16 no.4
    • /
    • pp.249-256
    • /
    • 2012
  • In this work, we analyze the spatial patterns of a predator-prey system with cross diffusion. First we get the critical lines of Hopf and Turing bifurcations in a spatial domain by using mathematical theory. More specifically, the exact Turing region is given in a two parameter space. Our results reveal that cross diffusion can induce stationary patterns which may be useful in understanding the dynamics of the real ecosystems better.

On the Dynamical Behavior of a Two-Prey One-Predator System with Two-Type Functional Responses

  • Baek, Hunki
    • Kyungpook Mathematical Journal
    • /
    • v.53 no.4
    • /
    • pp.647-660
    • /
    • 2013
  • In the paper, a two-prey one-predator system with defensive ability and Holling type-II functional responses is investigated. First, the stability of equilibrium points of the system is discussed and then conditions for the persistence of the system are established according to the existence of limit cycles. Numerical examples are illustrated to attest to our mathematical results. Finally, via bifurcation diagrams, various dynamic behaviors including chaotic phenomena are demonstrated.

CONVERGENCE PROPERTIES OF PREDATOR-PREY SYSTEMS WITH FUNCTIONAL RESPONSE

  • Shim, Seong-A
    • Honam Mathematical Journal
    • /
    • v.30 no.3
    • /
    • pp.411-423
    • /
    • 2008
  • In the field of population dynamics and chemical reaction the possibility or the existence of spatially and temporally nonhomogeneous solutions is a very important problem. For last 50 years or so there have been many results on the pattern formation of chemical reaction systems studying reaction systems with or without diffusions to explain instabilities and nonhomogeneous states arising in biological situations. In this paper we study time-dependent properties of a predator-prey system with functional response and give sufficient conditions that guarantee the existence of stable limit cycles.

Dynamical Behaviors of a Discrete Predator-Prey System with Beddington-DeAngelis Functional Response

  • Choi, Yoon-Ho;Baek, Hunki
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.1
    • /
    • pp.47-55
    • /
    • 2016
  • In this paper, we consider a discrete predator-prey system obtained from a continuous Beddington-DeAngelis type predator-prey system by using the method in [9]. In order to investigate dynamical behaviors of this discrete system, we find out all equilibrium points of the system and study their stability by using eigenvalues of a Jacobian matrix for each equilibrium points. In addition, we illustrate some numerical examples in order to substantiate theoretical results.