
Bull. Korean Math. Soc. 47 (2010), No. 2, pp. 251–261
DOI 10.4134/BKMS.2010.47.2.251

STATIONARY PATTERNS FOR A PREDATOR-PREY MODEL
WITH HOLLING TYPE III RESPONSE FUNCTION AND

CROSS-DIFFUSION

Jia Liu and Zhigui Lin

Abstract. This paper deals with a predator-prey model with Holling
type III response function and cross-diffusion subject to the homoge-
neous Neumann boundary condition. We first give a priori estimates
(positive upper and lower bounds) of positive steady states. Then the
non-existence and existence results of non-constant positive steady states
are given as the cross-diffusion coefficient is varied, which means that
stationary patterns arise from cross-diffusion.

1. Introduction

From last century, many kinds of biological models have received extensive
concerns, and in particular, the predator-prey models have been of great inter-
est to both applied mathematicians and ecologists. Many excellent works have
been done for the Lotka-Volterra type predator-prey system. In [3], Holling
proposed that there exist three functional responses of the predator which usu-
ally called Holling type I, Holling type II and Holling type III. He proposed the
form

p(u) =
mu

a + u
as a Holling type II response function, it usually describes the uptake of sub-
strate by the microorganisms in microbial dynamics. If the predator is the
invertebrate, it is always the case. He also proposed the Holling type III re-
sponse function in the following form:

p(u) =
mu2

a + u2
.

This case suits the vertebral predator. Similar types of response functions can
be found in [2].
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Hsu developed a class of predator-prey system in which he incorporated
Holling’s rate [4], and in particular, the model with Holling type III is

{
du
dt = ru(1− u

k )− mu2v
(A+u)(B+u) ,

dv
dt = v[s(1− hv

u )],
(1.1)

where u(t), v(t) represent the densities of the prey and predator, the parameters
r, k,m, A, B, s, h are positive constants. For the detailed background on the
ODE system (1.1), we refer the readers to [4].

In [4], the linear stability of nonnegative constant solutions and the existence
of limits cycle solutions for the model (1.1) were studied. If the densities of
the prey and predator are spatially inhomogeneous, by taking into account the
effect of diffusion, instead of the ODE system (1.1), we consider the following
reaction-diffusion system:





∂u
∂t − d1∆u = ru(1− u

k )− mu2v
(A+u)(B+u) , x ∈ Ω, t > 0,

∂v
∂t − d2∆v = v[s(1− hv

u )], x ∈ Ω, t > 0,
∂u
∂η = ∂v

∂η = 0, x ∈ ∂Ω, t > 0,

(1.2)

where Ω is a bounded domain in RN (N ≥ 2) with smooth boundary ∂Ω, η
denotes the outward normal derivative on ∂Ω and ∂η = ∂

∂η . d1, d2 are the
diffusion coefficients corresponding to u, v, and all the parameters appearing in
model (1.2) are assumed to be positive constants. The homogeneous Neumann
boundary condition means that (1.2) is self-contained and no population can
flux across the boundary of Ω.

Using the non-dimensional variables, the problem of (1.2) satisfies




∂u
∂t − d1∆u = λu− αu2 − βu2v

(a+u)(b+u) , x ∈ Ω, t > 0,
∂v
∂t − d2∆v = µv(1− v

u ), x ∈ Ω, t > 0,
∂u
∂η = ∂v

∂η = 0, x ∈ ∂Ω, t > 0,

(1.3)

and the stead-state system of (1.3) satisfies




−d1∆u = λu− αu2 − βu2v
(a+u)(b+u) , x ∈ Ω,

−d2∆v = µv(1− v
u ), x ∈ Ω,

∂u
∂η = ∂v

∂η = 0, x ∈ ∂Ω,

(1.4)

where d1, d2, λ, α, β, a, b and µ are positive constants.
For a partial differential equation (PDE) model such as (1.2), an important

issue is to find the non-constant steady states, referred to as stationary patterns.
In the present paper, in order to obtain patterns, we will introduce the cross-
diffusion to (1.4) and consider the following elliptic equations:





−d1∆u = λu− αu2 − βu2v
(a+u)(b+u) , x ∈ Ω,

−d2∆[(1 + d3u)v] = µv(1− v
u ), x ∈ Ω,

∂u
∂η = ∂v

∂η = 0, x ∈ ∂Ω.

(1.5)
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Here, d3 is a non-negative constant. In this model, the predator v diffuses with
the flux

J = −∇(d2v + d2d3uv) = −d2d3v∇u− (d2 + d2d3u)∇v.

If d3 > 0, the term −d2d3v∇u of the flux is directed towards the decreasing
population density of u, which represents that the prey congregates and forms a
huge group to protect themselves from the attack of the predator. The constant
d3 is usually referred as cross-diffusion coefficient, which has been introduced
by many authors, see for example [1, 6, 12] and references therein.

The main aim of this paper is to study the effects of the cross-diffusion
pressures on the non-existence and existence of non-constant positive steady
states of (1.5). We will show that there is no pattern if d3 is small, while pattern
occurs when d3 is suitably chosen. The employed method is Leray-Schauder
degree theory, which has been used by many authors to create spatially non-
constant positive solutions and establish stationary patterns, the interested
readers can read [5, 10, 11, 13, 14] and references therein.

The organization of this paper is as follows: Section 2 deals with a priori
estimate of upper and lower bounds for positive solutions of (1.5). Section 3 is
devoted to the non-existence of positive non-constant solution of (1.5) by using
the energy method. The existence of positive non-constant solutions of (1.5) is
given in Section 4 by using Leray-Schauder degree theory. We end the paper
with concluding remarks.

2. A priori estimate

We first state two propositions.

Proposition 2.1 (Maximum Principle (Lou and Ni [8])). Suppose that g ∈
C(Ω̄×R1).

(i) Assume that ω ∈ C2(Ω) ∩ C1(Ω̄) and satisfies

∆ω(x) + g(x, ω(x)) ≥ 0, x ∈ Ω; ∂ηω ≤ 0, x ∈ ∂Ω.

If ω(x0) = maxΩ̄ ω, then g(x0, ω(x0)) ≥ 0.
(ii) Assume that ω ∈ C2(Ω) ∩ C1(Ω̄) and satisfies

∆ω(x) + g(x, ω(x)) ≤ 0, x ∈ Ω; ∂ηω ≥ 0, x ∈ ∂Ω.

If ω(x0) = minΩ̄ ω, then g(x0, ω(x0)) ≤ 0.

Proposition 2.2 (Harnack Inequality (Lin et al. [7])). Assume that c ∈ C(Ω̄)
and let ω ∈ C2(Ω) ∩ C1(Ω̄) be a positive solution to

∆ω(x) + c(x)ω(x) = 0, x ∈ Ω; ∂ηω = 0, x ∈ ∂Ω.

Then there exists a positive constant C∗ = C∗(‖ c ‖∝, Ω) such that

max
Ω̄

ω ≤ C∗min
Ω̄

ω.
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In the following, the generic constants C̄, C,C1 will depend on the domain
Ω. However, as Ω is fixed, we will not mention this dependence explicitly. We
denote the constants (λ, α, β, a, b, µ) by Λ.

Theorem 2.1. Let D1, D be arbitrary fixed positive numbers. Then there exist
positive constants C(Λ, D1, D) and C(Λ, D1, D) such that when d1, d2 ≥ D1

and d3 ≤ D, every positive solution (u, v) of (1.5) in [C2(Ω)∩C1(Ω)]2 satisfies

C(Λ, D1, D) < u(x), v(x) < C(Λ, D1, D), ∀x ∈ Ω.

Proof. Assume that (u, v) be a positive solution of (1.5), a direct application
of (i) of Proposition 2.1 to the first equation of (1.5) yields

max
Ω̄

u ≤ λ/α
∆= C̄1.

Define ϕ(x) = d2v(1 + d3u), set ϕ(x0) = maxΩ̄ ϕ(x). Then, by (i) of Propo-
sition 2.1 to the second equation of (1.5), we have that v(x0) ≤ u(x0) ≤ λ/α.
Thus

max
Ω̄

v ≤ ϕ(x0)/d2 ≤ (1 + d3u(x0))v(x0) ≤ (1 + Dλ/α)λ/α
∆= C̄2,

and applying Proposition 2.2 to the first equation of (1.5) shows that there
exists C1 such that

max
Ω̄

u ≤ C1 min
Ω̄

u.

Set u(x1) = minΩ̄ u, by (ii) of Proposition 2.1 to the first equation of (1.5), we
then have

λ ≤ αu(x1) + βu(x1)v(x1)/ab ≤ (α + βC̄2/ab)u(x1),

so

u(x1) = min
Ω̄

u ≥ λ(α + βC̄2/ab)−1 ∆= C1 > 0.

Set ϕ(x2) = minΩ̄ ϕ(x), applying (ii) of Proposition 2.1 to the second equation
of (1.5) gives

v(x2) ≥ u(x2),

since

v(x)
v(x2)

=
ϕ(x)d2(1 + d3u(x2))
ϕ(x2)d2(1 + d3u(x))

≥ min{1,
u(x2)
u(x)

} ≥ min{1, 1/C1},

so

min
Ω̄

v ≥ min
Ω̄

umin{1, 1/C1}. ¤
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3. Non-existence of non-constant positive solution

We use the energy method to obtain the results of non-existence of non-
constant positive solution of (1.5). Let 0 = µ0 < µ1 < µ2 < · · · be the
eigenvalues of the operator −∆ with the homogeneous Neumann condition.

Theorem 3.1. Let ε be an arbitrary positive constant. There exists C =
C(ε, Λ, D) such that (1.5) has no non-constant positive solution when d1 >
C(1 + d2

2d
2
3)/µ1, d2 > µ/µ1 + ε and d3 ≤ D.

Proof. Let (u, v) be a positive solution of (1.5) and (ū, v̄) be the average of
(u, v) over Ω. Multiplying the equations of (1.5) by (u− ū), (v− v̄) respectively,
and integrating over Ω, we have that

∫

Ω

{d1 | 5u |2 +d2(1 + d3u) | 5v |2 +d2d3v5 u · 5v}dx

=
∫

Ω

(u− ū)2{λ− α(u + ū)− β[abv̄(u + ū) + (a + b)uūv̄]
(a + u)(b + u)(a + ū)(b + ū)

}dx

+
∫

Ω

(u− ū)(v − v̄){−β[abu2 + (a + b)u2ū + u2ū2]
(a + u)(b + u)(a + ū)(b + ū)

}dx

+
∫

Ω

{(v − v̄)2[µ− ū(v + v̄)
uū

] + (v − v̄)(u− ū)
v̄2

uū
}dx.

Then using Theorem 2.1 and the ε-Young Inequality yield
∫

Ω

{d1 | 5u |2 +d2(1 + d3u) | 5v |2}dx

≤
∫

Ω

{(λ + C(ε))(u− ū)2 + (µ + ε)(v − v̄)2 + ε | 5v |2 +
d2
2d

2
3v

2

4ε
| 5u |2}dx.

Here, C(ε) depends only on Λ, Ω, D, and ε. Hence, combing Theorem 2.1 and
the Poincaré Inequality

µ1

∫

Ω

(ϕ− ϕ̄)2dx ≤
∫

Ω

| 5(ϕ− ϕ̄) |2

give that
∫

Ω

{d1 | 5u |2 +d2(1 + d3u) | 5v |2}dx

≤
∫

Ω

{C(1 + d2
2d

2
3)/µ1 | 5u |2 +(µ/µ1 + ε) | 5v |2}dx.

Letting ε be small enough such that d2 >µ/µ1+ε, since d1>C(1+d2
2d

2
3)/µ1, we

have that (u, v) ≡ (ū, v̄), which asserts our result. ¤

Similarly we can derive a priori estimate for positive solutions of (1.4) and
use the energy method to obtain the following results:
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Remark 3.1. If d3 = 0,
(i) there exists D̄2(Λ, d1) such that (1.4) has no positive non-constant solu-

tion when d1 > λ/µ1, d2 > D̄2.
(ii) there exists D̄1(Λ, d2) such that (1.4) has no positive non-constant solu-

tion when d1 > D̄1, d2 > µ/µ1.

4. Existence of positive non-constant solutions

In the following, we denote u = (u, v)T and ũ is the unique positive constant
solution, and define

X = {u ∈ [C1(Ω̄)]2 | ∂ηu = 0, x ∈ ∂Ω},
X+ = {u ∈ X | u, v > 0, x ∈ Ω̄},

B(C) = {u ∈ X | C−1 < u, v < C, x ∈ Ω̄}, C > 0,

Φ(u) = (d1u, d2(1 + d3u)v)T ,

g(u) = λ− αu, p(u) =
βu2

(a + u)(b + u)
, h(u) =

ug(u)
p(u)

,

G(u) =
(

G1(u)
G2(u)

)
=

(
λu− αu2 − βu2v

(a+u)(b+u)

µv(1− v
u )

)
.

Then (1.5) can be written as
{ −∆Φ(u) = G(u), x ∈ Ω,

∂ηu = 0, x ∈ ∂Ω.
(4.1)

Applying the fixed point index method, we see that finding positive solutions
of (4.1) is equivalent to finding positive solutions of the equation

F (u) ∆= u− (I −∆)−1{Φ−1
u (u)[G(u) +5uΦuu(u)5 u] + u} = 0,u ∈ X+,

where (I −∆)−1 is the inverse of I −∆ in X with the homogeneous Neumann
boundary condition. As F (·) is a compact perturbation of the identity operator
for any B = B(C), the Leray-Schauder degree deg(F (·), 0, B) is well-defined
if F (ũ) 6= 0 on ∂B. Now we will compute the index of F (u) at ũ. A direct
computation shows that

DuF (ũ) = I − (I −∆)−1{Φ−1
u (ũ)Gu(ũ) + I}.

If DuF (ũ) is invertible, then

index(F (·), ũ) = (−1)γ ,

where γ is the number of negative eigenvalues of DuF (ũ), see [9] in details.
Then we will consider the eigenvalues of DuF (ũ). Denote E(µi) be the eigen-
space corresponding to µi in C1(Ω̄), {φij : j = 1, . . . , dim E(µi)} be an or-
thonormal basis of E(µi) and Xij = {cφij | c ∈ R2}. Then, X =

⊕∞
i=0 Xi

and Xi =
⊕dim E(µi)

j=1 Xij . For each integer i > 0 and each integer 1 6 j 6



STATIONARY PATTERNS FOR A PREDATOR-PREY MODEL 257

dim E(µi), Xij is invariant under DuF (ũ), and λ is an eigenvalue of DuF (ũ)
on Xij if and only if it is an eigenvalue of the matrix

I − Φ−1
u (ũ)Gu(ũ) + I

1 + µi
=

1
1 + µi

[µiI − Φ−1
u (ũ)Gu(ũ)].

Thus DuF (ũ) is invertible if and only if the matrix I − Φ−1
u (ũ)Gu(ũ)+I

1+µi
is non-

singular for all i ≥ 0. Writing

H(µ′) = H(ũ; µ′) ∆= det{µ′I − Φ−1
u (ũ)Gu(ũ)}.

We note that if H(µi) 6= 0, then for each 1 6 j 6 dim E(µi), the number of
negative eigenvalues of DuF (ũ) on Xij is odd if and only if H(µi) < 0. In
conclusion, we have the following:

index(F (·), ũ) = (−1)γ , where γ =
∑

i≥0,H(µi)<0

dim E(µi).

Therefore, to compute index(F (·), ũ), we only consider the sign of H(µi). We
note that

H(µ′) = det{Φ−1
u (ũ)}det{µ′Φu(ũ)−Gu(ũ)}.(4.2)

Since det{Φ−1
u (ũ)} is positive, we will only need to consider det{µ′Φu(ũ) −

Gu(ũ)}.
Direct calculations show that

Φu(ũ) =
(

d1 0
d2d3ṽ d2(1 + d3ũ)

)
,

Gu(ũ) =
(

p(ũ)h′(ũ) −p(ũ)
µ −µ

)
,

then we have

det{µ′Φu(ũ)−Gu(ũ)}
= A2(d1, d2, d3)(µ′)2 + A1(d1, d2, d3)µ′ + det{Gu(ũ)}
∆= Ψ(d1, d2, d3; µ′),

(4.3)

where
A2(d1, d2, d3) = d1d2(1 + d3ũ),

A1(d1, d2, d3) = d1µ− d2(1 + d3ũ)p(ũ)h′(ũ)− d2d3p(ũ)ṽ,

det{Gu(ũ)} = µp(ũ)(1− h′(ũ)).

We consider the dependence of Ψ on d2.
Set µ̃1(d2), µ̃2(d2) be two roots of Ψ(d1, d2, d3; µ′) = 0, which satisfy

Re{µ̃1(d2) } ≤ Re{µ̃2(d2)}. Then we can obtain µ̃1µ̃2 = det{Gu(ũ)}
A2(d1,d2,d3)

. Let
h′(ũ) ≤ 1, we note that det{Gu(ũ)} > 0 and A2(d1, d2, d3) > 0. Thus, the
product of two roots is positive.
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Next consider the following limits:

limd2→∝
A2(d1,d2,d3)

d2
= d1(1 + d3ũ) ∆= a2(d1, d3),

limd2→∝
A1(d1,d2,d3)

d2
= −(1 + d3ũ)p(ũ)h′(ũ)− d3ṽp(ũ) ∆= a1(d1, d3),

limd2→∝
Ψ(d1,d2,d3;µ

′)
d2

= µ′(a2(d1, d3)µ′ + a1(d1, d3)).

Let −1 < h′(ũ) ≤ 0 and fix d3 > h′(ũ)
−ũ(h′(ũ)+1) . Then a1 < 0. So we have that

Proposition 4.1. Let −1 < h′(ũ) ≤ 0 and fix d3 > h′(ũ)
−ũ(h′(ũ)+1) . Then there

exists a positive constant D2 such that when d2 ≥ D2, µ̃1(d2) and µ̃2(d2) satisfy

limd2→∝ µ̃1(d2) = 0,

limd2→∝ µ̃2(d2) = −a1
a2

∆= µ∗ > 0.
(4.4)

Moreover, for all d2 ≥ D2, we have that



0 < µ̃1(d2) < µ̃2(d2),
Ψ(d1, d2, d3; µ′) < 0, µ′ ∈ (µ̃1(d2), µ̃2(d2)),
Ψ(d1, d2, d3; µ′) > 0, µ′ ∈ (−∞, µ̃1(d2)) ∪ (µ̃2(d2), +∞).

(4.5)

From above arguments, we can obtain the results of the existence of positive
non-constant solutions of (1.5) as follows:

Theorem 4.1. Fix d1 > λ/µ1, d3 > h′(ũ)
−ũ(h′(ũ)+1) , let µ∗ be given by the limit

(4.4), we have that if −1 < h′(ũ) ≤ 0, σn =
∑n

i=1 dim E(µi)(n ≥ 1) is odd.
Then there exists a positive constant D1

2 such that (1.5) admits at least one
non-constant positive solution provided that d2 ≥ D1

2.

Proof. By Proposition 4.1, there exists a positive constant D2 such that if
d2 ≥ D2,

(4.6) µ∗ ∈ (µn, µn+1).

It follows from simple computations that
{

A2(d1, d2, 0) = d1d2 > 0,
A1(d1, d2, 0) = d1µ− d2p(ũ)h′(ũ),(4.7)

since −1 < h′(ũ) ≤ 0, then there exist d̂1, d̂2 and d̂3 = 0 such that for any
i ≥ 0,

(4.8) Ψ(µi, d̂1, d̂2, 0) > 0.

Fix d̂1 > λ/µ1, it follows from Remark 3.1 that there exists D̄2 > 0 such that
(1.5) has no positive non-constant solution if d̂2 > D̄2.

Next we will verify that (1.5) has at least one non-constant positive solution
when d2 ≥ D1

2 = max{D̄2, D2} and d3 > h′(ũ)
−ũ(h′(ũ)+1) . The proof which is by

contradiction is based on the homotopy invariance of the topological degree.
Assume that the result is not true for some d2 ≥ D1

2, d3 > h′(ũ)
−ũ(h′(ũ)+1) .
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For t ∈ [0, 1], define

αi(t) = d̂i + t(di − d̂i), i = 1, 2, 3,
Φ(t;u) = (α1(t)u, α2(t)v + α3(t)uv)T ,

and consider the problem{ −∆Φ(t;u) = G(u), x ∈ Ω, 0 ≤ t ≤ 1,
∂ηu = 0, x ∈ ∂Ω.

(4.9)

Then u is a positive non-constant solution of (1.5) if and only if it is such a
solution of (4.9) for t = 1. Clearly ũ is the unique constant positive solution of
(4.9) for any 0 ≤ t ≤ 1. Moreover u is a positive solution of (4.9) if and only if
it is such a solution of the following operator equation

F (t;u) ∆= u−(I−∆)−1{Φ−1
u (t;u)[G(u)+5uΦuu(t;u)5u]+u} = 0, u ∈ Z+.

It is obvious that F (1;u) = F (u). By a direct computation,

DuF (t; ũ) = I − (I −∆)−1{Φ−1
u (t; ũ)Gu(ũ) + I}.

In particular,

DuF (0; ũ) = I − (I −∆)−1{D−1Gu(ũ) + I},
DuF (1; ũ) = I − (I −∆)−1{Φ−1

u (1; ũ)Gu(ũ) + I} = DuF (ũ),

where D = diag(d̂1, d̂2). From (4.2) and (4.3), we have that

(4.10) H(µ′) = det{Φ−1
u (ũ)}Ψ(d1, d2, d3; µ′).

In view of (4.4) and (4.5), it follows from (4.10) that



H(µ0) = H(0) > 0,
H(µi) < 0, 1 ≤ i ≤ n,
H(µi) > 0, i ≥ n + 1.

Thus, zero is not an eigenvalue of the matrix µiI −Φ−1
u G(ũ) for all i ≥ 0, and

∑

i≥0,H(µi)<0

dim E(µi) =
n∑

i=1

dim E(µi) = σn

which is odd. Therefore

(4.11) index(F (1; ·), ũ) = (−1)γ = (−1)σn = −1.

Similarly, using (4.8) yields that

(4.12) index(F (0; ·), ũ) = (−1)0 = 1.

It follows from Theorem 2.1 and the definitions of αi(t) that there exists a
positive constant C for all 0 ≤ t ≤ 1, such that the positive solutions of (4.9)
satisfy 1

C < u, v < C, where the positive C is independent of t. Therefore
F (t;u) 6= 0 on ∂B(C) for all 0 ≤ t ≤ 1. By the homotopy invariance of the
topological degree,

(4.13) deg(F (1; ·), 0, B(C)) = deg(F (0; ·), 0, B(C)).
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On the other hand, both equations F (1;u) = 0 and F (0;u) = 0 have only the
positive solution ũ in B(C). It follows from (4.11) and (4.12) that

deg(F (1; ·), 0, B(C)) = index(F (1; ·), ũ) = −1,
deg(F (0; ·), 0, B(C)) = index(F (0; ·), ũ) = 1.

This contradicts (4.13). The proof is completed. ¤

5. Concluding remarks

In this paper, we have considered a predator-prey model with Holling type
III response function and cross-diffusion. The biological implication of cross-
diffusion means that the prey species exercise as self-defense mechanism to
protect themselves from the attack of the predator. From Theorems 3.1, 4.1
and Remark 3.1, we see that only if fix d3 > h′(ũ)

−ũ(h′(ũ)+1) , the problem (1.5)
has at least one non-constant positive solution for large d2, otherwise if fix
0 ≤ d3 < h′(ũ)

−ũ(h′(ũ)+1) , the problem (1.5) has no non-constant positive solution
for large d1. Our results show that non-constant positive steady states can
exist due to the emergence of cross-diffusion and cross-diffusion can induce the
spatial pattern.

It is known that many chemical, physical or biological processes with space
dispersion can be described by the reaction-diffusion systems. The diffusion in
these systems usually represents the natural dispersive force of movement of an
individual, recently cross-diffusion has been introduced to describe the mutual
interferences between individuals and more work has been done to consider the
corresponding strongly coupled systems and study the effect of cross-diffusion.

One of the main problems for the strongly coupled systems is the existence of
non-constant positive solution for the strongly coupled systems. The fixed point
index method gives an effective technique, which has been used extensively in
literature. Compared to existing results such as the existence of non-constant
positive solution for the strongly coupled elliptic systems, to the best of our
knowledge, there have been very few results for the long time behaviors of
the corresponding strongly coupled parabolic systems, and therefore there still
remain many challenging tasks that deserve much more attention.
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