Browse > Article
http://dx.doi.org/10.4134/BKMS.2013.50.6.1827

QUALITATIVE ANALYSIS OF A DIFFUSIVE FOOD WEB CONSISTING OF A PREY AND TWO PREDATORS  

Shi, Hong-Bo (School of Mathematical Science Huaiyin Normal University)
Publication Information
Bulletin of the Korean Mathematical Society / v.50, no.6, 2013 , pp. 1827-1840 More about this Journal
Abstract
This paper is concerned with the positive steady states of a diffusive Holling type II predator-prey system, in which two predators and one prey are involved. Under homogeneous Neumann boundary conditions, the local and global asymptotic stability of the spatially homogeneous positive steady state are discussed. Moreover, the large diffusion of predator is considered by proving the nonexistence of non-constant positive steady states, which gives some descriptions of the effect of diffusion on the pattern formation.
Keywords
predator-prey system; positive steady state; large diffusion; Holling II type functional response; local/global asymptotic stability;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation, In Partial Differential Equations and Related Topics, (Edited by J. A. Goldstein), Lecture Notes in Mathematics, Vol. 446, pp. 5-49, Springer, Berlin, 1975.   DOI
2 A. D. Bazykin, Nonlinear Dynamics of Interacting Populations, World Scientific, Singapore, 1998.
3 J. R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency, J. Animal Ecol. 44 (1975), no. 1, 331-340.   DOI   ScienceOn
4 R. S. Cantrell and G. C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, John Wiley & Sons, Chichester, UK, 2003.
5 D. L. DeAngelis, R. A. Goldstein, and R. V. O'Neill, A model for trophic interaction, Ecology 56 (1975), no. 4, 881-892.   DOI   ScienceOn
6 O. Diekmann, Thresholds and travelling waves for the geographical spread of infection, J. Math. Biol. 6 (1978), no. 2, 109-130.   DOI   ScienceOn
7 Y. Du and Y. Lou, Some uniqueness and exact multiplicity results for a predator-prey model, Trans. Amer. Math. Soc. 349 (1997), no. 6, 2443-2475.   DOI   ScienceOn
8 Y. Du and Y. Lou, Qualitative behavior of positive solutions of a predator-prey model: effects of saturation, Proc. Roy. Soc. Edinb. 131A (2001), no. 2, 321-349.
9 Y. Du and J. Shi, Some recent results on diffusive predator-prey models in spatially heterogeneous envirment, In Nonlinear dynamics and evolution equations (Ed. by H. Brunner, X. Zhao and X. Zou), 95-135, Fields Inst. Commun. 48, AMS, Providence, RI, 2006.
10 Y. H. Fan and W. T. Li, Global asymptotic stability of a ratio-dependent predator-prey system with diffusion, J. Comput. Appl. Math. 188 (2006), no. 2, 205-227.   DOI   ScienceOn
11 D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 2001.
12 D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math-ematics, Vol. 840, Springer-Verlag, Berlin, New York, 1981.
13 M. A. Hixon and G. P. Jones, Competition, predation, and density-dependent mortality in demersal marine fishes, Ecology 86 (2005), no. 11, 2847-2859.   DOI   ScienceOn
14 C. S. Holling, The functional response of predator to prey density and its role in mimicry and population regulation, Mem. Entomol. Soc. Can. 97 (1965), no. S45, 5-60.   DOI
15 W. Ko and I. Ahn, Analysis of ratio-dependent food chain model, J. Math. Anal. Appl. 335 (2007), no. 1, 498-523.   DOI   ScienceOn
16 W. Ko and K. Ryu, Qualitative analysis of a predator-prey model with Holling type II functional response incorporating a prey refuge, J. Differential Equations 231 (2006), no. 2, 534-550.   DOI   ScienceOn
17 W. Ko and K. Ryu, A qualitative study on general Gause-type predator-prey models with constant diffusion rates, J. Math. Anal. Appl. 344 (2008), no. 1, 217-230.   DOI   ScienceOn
18 W. Ko and K. Ryu, A qualitative study on general Gause-type predator-prey models with non-monotonic functional response, Nonlinear Anal. Real World Appl. 10 (2009), no. 4, 2558-2573.   DOI   ScienceOn
19 L. Li, Coexistence theorems of steady states for predator-prey interacting systems, Trans. Amer. Math. Soc. 305 (1988), no. 1, 143-166.   DOI   ScienceOn
20 Z. Lin and M. Pederson, Stability in a diffusive food-chain model with Michaelis-Menten functional response, Nonlinear Anal. 57 (2004), no. 3, 421-433.   DOI   ScienceOn
21 L. Lin, W. M. Ni, and I. Takagi, Large amplitude stationary solutions to a chemotaxis systems, J. Differential Equations 72 (1988), no. 1, 1-27.   DOI
22 A. J. Lotka, Elements of Physical Biology, Williams and Wilkins Company, Baltimore, 1925.
23 Y. Lou and W. M. Ni, Diffusion, self-diffusion and cross-diffusion, J. Differential Equations 131 (1996), no. 1, 79-131.   DOI   ScienceOn
24 P. Y. H. Pang and M. Wang, Qualitative analysis of a ratio-dependent predator-prey system with diffusion, Proc. Roy. Soc. Edinburgh Sect. A 133 (2003), no. 4, 919-942.   DOI   ScienceOn
25 P. Y. H. Pang and M. Wang, Strategy and stationary pattern in a three-species predator-prey, J. Differential Equations 200 (2004), no. 2, 245-273.   DOI   ScienceOn
26 P. Y. H. Pang and M. Wang, Non-constant positive steady states of a predator-prey system with non-monotonic functional response and diffusion, Proc. London Math. Soc. 88 (2004), no. 1, 135-157.   DOI
27 P. Y. H. Pang and W. Zhou, Positive stationary solutions for a diffusive variable-territory prey-predator model, J. Math. Anal. Appl. 379 (2011), no. 1, 290-304.   DOI   ScienceOn
28 R. Peng, J. Shi, and M. Wang, Stationary pattern of a ratio-dependent food chain model with diffusion, SIAM J. Appl. Math. 67 (2007), no. 5, 1479-1503.   DOI   ScienceOn
29 S. Ruan, A. A. P. Ricciardi, and D. L. DeAngelis, Coexistence in competition models with density-dependent mortality, C. R. Biologies 330 (2007), no. 12, 845-854.   DOI   ScienceOn
30 A. M. Turing, The chemical basis of morphogenesis, Phil. Trans. R. Soc. London Ser. B237 (1952), no. 641, 37-72.
31 V. Volterra, Fluctuations in the abundance of a species considered mathematically, Nature 118 (1926), no. 2972, 558-560.   DOI
32 M. Wang, Stationary patterns for a prey-predator model with prey-dependent and ratio-dependent functional response and diffusion, Phys. D 196 (2004), no. 1-2, 172-192.   DOI   ScienceOn
33 M. Wang and P. Y. H. Pang, Global asymptotic stability of positive steady states of a diffusive ratio-dependent prey-predator model, Appl. Math. Lett. 21 (2008), no. 11, 1215-1220.   DOI   ScienceOn