Browse > Article
http://dx.doi.org/10.5666/KMJ.2016.56.1.47

Dynamical Behaviors of a Discrete Predator-Prey System with Beddington-DeAngelis Functional Response  

Choi, Yoon-Ho (School of Electrical and Computer Engineering, Pusan National University)
Baek, Hunki (Department of Mathematics Education, Catholic University of Daegu)
Publication Information
Kyungpook Mathematical Journal / v.56, no.1, 2016 , pp. 47-55 More about this Journal
Abstract
In this paper, we consider a discrete predator-prey system obtained from a continuous Beddington-DeAngelis type predator-prey system by using the method in [9]. In order to investigate dynamical behaviors of this discrete system, we find out all equilibrium points of the system and study their stability by using eigenvalues of a Jacobian matrix for each equilibrium points. In addition, we illustrate some numerical examples in order to substantiate theoretical results.
Keywords
a discrete system; Beddington-DeAngelis functional response; sink; source;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. N. Agiza, E. M. Elabbasy, H. EL-Metwally and A. A. Elsadany, Chaotic dynamics of a discrete prey-predator model with Holling type II, Nonlinear Analysis:RWA, 10(2009), 116-129.   DOI
2 R. Arditi and L. R. Ginzburg, Coupling in predator-prey dynamics:ratio-dependence, J. Theor. Biol., 139(1989), 311-326.   DOI
3 J. R. Beddington, Mutual interference between parasites or predator and its effect on searching effciency, J. Animal Ecol., 44(1975), 331-340.   DOI
4 J. Chen and S. Yu, Permance for a discrete ratio-dependent predator-prey system with Holling type III functional response and feedback controls, Discrete Dynamics in Nature and Society, Volume 2013, Article ID 326848, 6pages.
5 G. Chen, Z. Teng and Z. Hu, Analysis of stability for a discrete ratio-dependent predator-prey system, Indian J. Pure Appl. Math., 42(1)(2011), 1-26.   DOI
6 C. Cosner, D. L. Deangelis, J. S. Ault, and D. B. Olson, Effects of spatial grouing on the functional response of predators, Theoretical Population Biology, 56(1)(1999), 65-75.   DOI
7 M. Danca, S. Codreanu and B. Bako, Detailed analysis of a nonlinear prey-predator model, J. Biol. Phys., 23(1997), 11-20.   DOI
8 D. L. DeAngelis, R. A. Goldstein, R. V. O'Neill, A model for trophic interaction, Ecology, 56(1975), 881-892.   DOI
9 M. Fan and Y. Kuang, Dynamics of a nonautonomous predator-preysy stem with the Beddington-DeAngelis functional response, J. of Math. Anal. and Appl., 295(2004), 15-39.   DOI
10 T.-W. Hwang, Global analysis of the predator-prey system with Beddington-DeAngelis functional response, J. of Math. Anal. and Appl., 281(2003), 395-401.   DOI
11 B. Liu, Y. Zhang and L. Chen, Dynamic complexities in a Lotka-Volterra predator-prey model concerning impulsive control strategy, Int. J. of Bifur. and Chaos, 15(2)(2005), 517-531.   DOI
12 X. Liu and D. Xiao, Complex dynamic behaviors of a discrete-time predator-prey system, Chaos, Solitons and Fractals, 32(2007), 80-94.   DOI
13 X. Liu and Y. Xing, Bifurcation of a ratio-dependent Holling-Tanner system with refuge and constant havesting, Abstract and Applied Analysis, 2013(2013), Article ID 478315, 1-10.
14 S. Ruan and D. Xiao, Golbal analysis in a predator-prey sytem with non-monotonic functional response, SIAM J. Appl. Math., 61(4)(2001), 1445-1472.   DOI
15 T. Wu, Dynamic Behaviors of a discrete two species predator-prey system incorpora-tiong harvesting, Discrete Dynamics in Nature and Society, Volume 2012, Article ID 429076, 12pages.
16 E. Saez and E. Gonzalez-Olivares, Dynamics of a predator-prey model, SIAM J. Appl. Math., 59(5)(1999), 1867-1878.   DOI
17 G. T. Skalsk and J. F. Gilliam, Functional responses with predator interference: Viable alternatives to the Holling type II mode, Ecology, 82(2001), 3083-3092.   DOI
18 W. Wang, Q.-X. Liu and Z. Jin, Spatiotemporal complexity of a ratio-dependent predator-prey system, Physical Review E, 75(2007), 051913(9).   DOI
19 S. Zhang and L. Chen, A study of predator-prey models with the Beddington-DeAngelis functional response and impulsive effect, Chaos, Solitons and Fractals, 27(2006), 237-248.   DOI