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EXISTENCE OF GLOBAL SOLUTIONS FOR A

PREY-PREDATOR MODEL WITH NON-MONOTONIC

FUNCTIONAL RESPONSE AND CROSS-DIFFUSION†
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Abstract. In this paper, using the energy estimates and the bootstrap
arguments, the global existence of classical solutions for a prey-predator
model with non-monotonic functional response and cross-diffusion where
the prey and predator both have linear density restriction is proved when
the space dimension n < 10.
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1. Introduction

In this paper, we are interested in the following the prey-predator model
with non-monotonic functional response and cross-diffusion where the prey and
predator both have linear density restriction

ut = ∆[(d1 + α11u+ α12v)u] + [a− ku− bv

1 +mu+ βu2
]u, in Ω× [0,∞),

vt = ∆[(d2 + α21u+ α22v)v] + [c− ev +
du

1 +mu+ βu2
]v, in Ω× [0,∞),

∂u

∂ν
=

∂v

∂ν
= 0, on ∂Ω× [0,∞),

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, in Ω,

(1.1)

where Ω ⊂ RN(N ≥ 1) is a bounded domain with smooth boundary ∂Ω, ν is
the outward unit normal vector of the boundary∂Ω. αij are given nonnegative
constants for i, j = 1, 2. And d1, d2, a,

1
k , b and d are positive constants which

stand for the random diffusion rates of the two species, prey intrinsic growth
rate, carrying capacity, capturing rate and conversion rate respectively. e is a
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nonnegative constant and c is a constant which may change sign with c < 0
if e = 0. The −ev2 represents the self-limitation for the predator. u0 and v0
are nonnegative functions. In system (1.1), u and v represent the population
densities of the prey and predator species, respectively, α11 and α22 are self-
diffusion rates, and α12 and α21 are cross-diffusion rates. The interaction term,

u
1+mu+βu2 is of the Holling type IV functional response, the constants β > 0

and m are assumed satisfy m > −2
√
β so that functional response u

1+mu+βu2

remains nonnegative for u(x, t) ≥ 0 in Ω, more explanations for the response
functions of this type can be found in [1]. When β,m = 0, the system (1.1)
reduces to the well-known Lotka-Volterra prey-predator SKT model which has
been investigated by [2]. Note that m = 0, u

1+mu+βu2 is reduced to the function

used in [3]. If e = m = 0, the corresponding ODE system (1.1) has been
discussed by many authors; see [3, 4, 5]and the references therein. In the case
of β = 0 and m > 0, the interaction term u

1+mu is known as Holling type II or
Michaelis-Menten functional response which was proposed by Michaelis-Menten
and Holling in studying enzymatic reactions and predator-prey models, for more
explanations for response functions of this type, refer to[6].

The corresponding weakly coupled reaction-diffusion system (1.1) has received
a lot of attention, see[7, 8], the biologically more interesting case e > 0 was stud-
ied in [8]. But up to now, the corresponding researches chiefly concentrate on
non-existence and the existence of the positive steady-state solution, Hopf bifur-
cation can occur, and existence of non-constant positive steady-state solutions
of the weakly-coupled reaction-diffusion system (1.1). To the best of our knowl-
edge, especially the case e > 0, when α12 > 0 or α21 > 0 is positive, (1.1) is
a strongly-coupled reaction-diffusion system which occurs frequently is biolog-
ical and it is very difficult to analyze, there are very few results for the (1.1),
there is only one work of Chen et. al.[5] available, in which she obtained a num-
ber of existence and non-existence results concerning non-constant steady states
(patterns) of (1.1) when e = m = 0.

Local existence (in time) of solutions to (1.1) was established by Amann
in a series of important papers [9, 10, 11]. Referring to the result stated in
Theorem 8 in [12]. However, very few results are know for global existence
of solutions to (1.1), in particular, the global existence of classical solutions
for (1.1) is open and interesting question to understand the problem in the
high-dimensional space. The main purpose of this paper is to understand the
global existence of classical solutions of (1.1) for higher n(n < 10). We remark
that while there have been many results on global solutions to Lotka-Volterra
competition systems with cross-diffusion, such as [13, 14, 15, 16], predator-prey
systems with cross-diffusion seem to be far less studied. Scaling the parameters
we may assume that e = k = 1. Thus we will concentrate on the system (namely,
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the system (1.1) for α12 = 0)

ut = ∆[(d1 + α11u)u] + [a− u− bv

1 +mu+ βu2
]u, in Ω× [0,∞),

vt = ∆[(d2 + α21u+ α22v)v] + [c− v +
du

1 +mu+ βu2
]v, in Ω× [0,∞),

∂u

∂ν
=

∂v

∂ν
= 0, on ∂Ω× [0,∞),

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, in Ω.

(1.2)

Theorem 1.1. Let α22 > 0 and assume that u0 ≥ 0, v0 ≥ 0 satisfy zero Neu-
mann boundary condition and belong to C2+λ(Ω) for some 0 < λ < 1. Then

(1.2)possesses a unique non-negative solution u, v ∈ C2+λ,1+λ
2 (Ω × [0,∞)) if

α11 > 0 and n < 10.

The paper is organized as follows. In section 2, we present some known results
which are useful in later section. In section 3, we establish Lr-estimates of the
solution v of (1.2) and we give a proof of Theorem 1.1.

2. Preliminaries

We list here some notation.

QT = Ω× [0, T ),

‖u‖Lp,q(QT ) =
(∫ T

0

(

∫

Ω

|u(x, t)|pdx) q
p dt

)1/q

, Lp(QT ) := Lp,p(QT ),

‖u‖W 2,1
p (QT ) := ‖u‖Lp(QT ) + ‖ut‖Lp(QT ) + ‖∇u‖Lp(QT ) + ‖∇2u‖Lp(QT ),

‖u‖V2(QT ) := sup
0≤t≤T

‖u(., t)‖L2(Ω) + ‖∇u(x, t)‖L2(QT ),

where T be the maximal existence time for the solution (u, v) of (1.2). In order to
establish Lr−estimates for solutions of (1.2), we need the following preliminary
results.

Lemma 2.1. Let u, v be a solution of (1.2) in [0, T ). Then 0 ≤ u ≤ m and
v ≥ 0 in QT , where m = max{a, ‖u0‖L∞(Ω)}.
Proof. The first equation in (1.2) is expressed as

ut = (d1 + 2α11u)4u+ 2α11∇u · ∇u+ u[a− u− bv

1 +mu+ βu2
], (2.1)

and the second equation is written as

vt = (d2 + α21u+ 2α22v)4v + 2(α21∇u+ α22∇v)∇v

+ v[c− v +
du

1 +mu+ βu2
].

(2.2)

Then application of the maximum principle for (2.1)and (2.2)yields the nonneg-
ative of u and v. Applying the maximum principle to (2.1)again one can also
show the boundedness of u. ¤
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Lemma 2.2. There exists a positive C1(T ) such that

sup
0≤t≤T

‖u(., t)‖L1(Ω) < C1(T ), sup
0≤t≤T

‖v(., t)‖L1(Ω) < C1(T ),

‖u‖L2(QT ) < C1(T ), ‖v‖L2(QT ) < C1(T ).

Proof. Integrating the first equation in (1.2) over the domain Ω, we have

d

dt

∫

Ω

udx =

∫

Ω

u[a− u− bv

1 +mu+ βu2
]dx

≤ a

∫

Ω

udx−
∫

Ω

u2dx

≤ a

∫

Ω

udx− 1

|Ω|
(∫

Ω

udx

)2

,

where we used Hölder’s inequality. Then we have ‖u(., t)‖L1(Ω) ≤ M ′
1, where

M ′
1 = max{‖u0‖L1(Ω), a|Ω|}. Furthermore,

sup
0≤t≤T

‖u(., t)‖L1(Ω) < C1(T ).

Since
d

dt

∫

Ω

u dx ≤ a

∫

Ω

u dx−
∫

Ω

u2dx. (2.3)

Integrating (2.3) from 0 to T , we have

‖u‖2L2(QT ) ≤ M ′
1|QT |+ ‖u0‖L1(Ω).

Therefore,
‖u‖L2(QT ) < C1(T ).

Now, integrating the first, second equation in the system (1.2) over the domain
Ω, and after a linear combination, we have

d

dt

∫

Ω

(du+ bv)dx = −
∫

Ω

(du2 + bv2)dx +

∫

Ω

(adu + bcv)dx

≤ −1

2
min{1

d
,
1

b
}
[∫

Ω

(du+ bv)dx

]2

+max{a, c}
∫

Ω

(du+ bv)dx.

Therefore, ‖v(., t)‖L1(Ω) ≤ M ′
2, where M ′

2 depending only on u0, v0 and the
coefficients of (1.2), then

sup
0≤t≤T

‖v(., t)‖L1(Ω) < C1(T ).

Since d
dt

∫
Ω
(du+ bv)dx =

∫
Ω
(adu− du2 − bv2 + bcv)dx, then integrating the

equation from 0 to T , we have

b

∫

QT

v2dxdt ≤ ad

∫ T

0

M ′
1dt+ bc

∫ T

0

M ′
2dt+ d‖u0‖L1(Ω) + b‖v0‖L1(Ω),

which implies
‖v‖L2(QT ) < C1(T ).
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¤
Lemma 2.3. Let w1 = (d1 + α11u)u, and u be a solution of the problem

ut = ∆[(d1 + α11u)u] + [a− u− bv

1 +mu+ βu2
]u, (x, t) ∈ Ω× (0, T ),

∂u

∂ν
= 0, x ∈ ∂Ω× (0, T ),

u(x, 0) = u0(x) ≥ 0, x ∈ Ω,

where d1, α11, a, b,m, β are positive constants, 0 ≤ v ∈ L2(QT ), u0 ∈ W 2
2 (Ω) ∩

L∞(Ω). Then there exists a constant C2(T ), depending on ‖u0‖W 1
2 (Ω) and

‖u0‖L∞(Ω) such that
‖w1‖W 2,1

2 (QT ) ≤ C2(T ).

Furthermore, ∇w1 ∈ V2(QT ).

Proof. The proof of Lemma 2.5 is similar to [15] Lemma 2.2, we omit it. ¤

Lemma 2.4. Let q > 1, q̃ = 2+ 4q
n(q+1) , β̃ in (0, 1) and let CT > 0 be any number

which may depend on T . Then there is a constant M1 depending on q, n,Ω, β̃

and CT such that for any g in C([0, T ),W 1
2 (Ω)) with (

∫
Ω
|g(., t)|β̃dx)

1

β̃ ≤ CT for
all t ∈ [0, T ], we have the following inequality

‖g‖
Lq̃(QT )

≤ M1



1 +

(
sup

0≤t≤T
‖g(., t)‖L2q/q+1(Ω)

)4q/n(q+1)q̃

‖∇g‖2/q̃L2(QT )



 .

Proof. The proof may be found in [15] Lemma 2.3 and Lemma 2.4. ¤
Lemma 2.5. There exists a constant C3(T ) such that

‖∇u‖L4(QT ) ≤ C3(T ).

Proof. The proof of Lemma 2.5 is similar to [2] Lemma 3.1, we omit it. ¤

3. Proof of the Theorem 1.1

In this section, we present a proof of our main result Theorem 1.1. It consists

of three steps that are devoted to obtain Lr(QT ), L
∞(QT ) and C2+λ,1+λ

2 (QT )-
estimates, respectively, for the solution (u(x, t), v(x, t)) to the system (1.2), and
in its conclusion these estimates are combined and applied to Theorem 8 in [12]
to derive the global existence.

step1. Lr-estimates

Lemma 3.1. Let r > 2 and pr = 2r
r−2 be two positive numbers. Assume that

α22 > 0 and assume also that there is a constant Mr,T > 0 depending only on
r, T,Ω and the coefficients of (1.2) such that ‖∇u‖Lr(QT ) ≤ Mr,T . Then there
exists positive constants C7(T ) and CT such that

‖v‖V2(QT ) ≤ C7(T ),
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and

‖v‖Lr(QT ) ≤ CT , if r <
4(n+ 1)

(n− 2)+
,

where a+ = max{a, 0}.
Proof. For any constant q > 1, multiplying the second equation of (1.2) by qvq−1

and using the integration by parts, we obtain

d

dt

∫

Ω

vqdx = q

∫

Ω

vq−1∇ · [(d2 + α21u+ 2α22v)∇v + α21v∇u]dx

+ q

∫

Ω

vq(c− v +
du

1 +mu+ βu2
)dx

= −q(q − 1)

∫

Ω

vq−2(d2 + α21u+ 2α22v)|∇v|2dx− α21(q − 1)

∫

Ω

∇(vq) · ∇udx

+ q

∫

Ω

vq(c− v +
du

1 +mu+ βu2
)dx

≤ −q(q − 1)d2

∫

Ω

vq−2|∇v|2dx− 2α22q(q − 1)

∫

Ω

vq−1|∇v|2dx

− α21(q − 1)

∫

Ω

∇(vq) · ∇udx+ q

∫

Ω

vq(c− v +
du

1 +mu+ βu2
)dx

= −4(q − 1)d2

q

∫

Ω

|∇(v
q
2 )|2dx− 8α22q(q − 1)

(q + 1)2

∫

Ω

|∇(v
q+1
2 )|2dx

− α21(q − 1)

∫

Ω

∇(vq) · ∇udx+ q

∫

Ω

vq(c− v +
du

1 +mu+ βu2
)dx.

Integrating (3.1) from 0 to t, we have∫

Ω

v
q
(x, t)dx +

4(q − 1)d2

q

∫

Qt

|∇(v
q
2 )|2dxdt + 8α22q(q − 1)

(q + 1)2

∫

Qt

|∇(v
q+1
2 )|2dxdt

≤
∫

Ω

v
q
(x, 0)dx − α21(q − 1)

∫

Qt

∇(v
q
) · ∇udxdt + q

∫

Qt

v
q
(c − v +

du

1 + mu + βu2
)dxdt.

(3.1)

By Hölder′s inequality, we have

q

∫

Qt

vq(c− v +
du

1 +mu+ βu2
)dxdt

≤ −q‖v‖q+1
Lq+1(Qt)

+ (
d

m
+ c)q‖v‖qLq(Qt)

≤ −q‖v‖q+1
Lq+1(Qt)

+
q(cm+ d)

m

[
|QT |

1
q− 1

q+1 ‖v‖Lq+1(Qt)

]q

= −q‖v‖q+1
Lq+1(Qt)

+
q(cm+ d)

m
|QT |

1
q+1 ‖v‖qLq+1(Qt)

≤ −q‖v‖q+1
Lq+1(Qt)

+
q(cm+ d)

m

[
|QT |

q
q+1

εq
+ ε‖v‖q+1

Lq+1(Qt)

]

≤ C4,
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where ε = m
cm+d , C4 = q(cm+d)q+1

mq+1 |QT |
q

q+1 .

On the other hand, since that 1
r +

1
2 +

1
pr

= 1 and ∇u is in Lr(QT ), using the

Hölder′s inequality, we have
∣∣∣∣−

∫

Qt

∇(vq) · ∇udxdt

∣∣∣∣ =
2q

q + 1

∣∣∣∣
∫

Qt

v
q−1
2 · ∇(v

(q+1)
2 ) · ∇udxdt

∣∣∣∣

≤ 2q

q + 1
‖v q−1

2 ‖Lpr (Qt) · ‖∇(v
q+1
2 )‖L2(Qt) · ‖∇u‖Lr(Qt)

≤ 2q

q + 1
‖v‖

q−1
2

L
pr(q−1)

2 (Qt)
· ‖∇(v

q+1
2 )‖L2(Qt) · ‖∇u‖Lr(Qt)

≤ 2q

q + 1
Mr,T ‖v‖

q−1
2

L
pr(q−1)

2 (Qt)
· ‖∇(v

q+1
2 )‖L2(Qt).

Therefore, (3.1) yields
∫

Ω

vq(x, t)dx+
4(q − 1)d2

q

∫

Qt

|∇(v
q
2 )|2dxdt+ 8α22q(q − 1)

(q + 1)2

∫

Qt

|∇(v
q+1
2 )|2dxdt

≤ C5 + C6‖v‖
q−1
2

L
pr(q−1)

2 (Qt)

· ‖∇(v
q+1
2 )‖L2(Qt)

≤ C5 +
C6

4ε
‖v‖q−1

L
pr(q−1)

2 (Qt)

+ C6ε‖∇(v
q+1
2 )‖2L2(Qt)

,

where C5 > 0 depending on q, T,Ω coefficients of (1.2) and initial datal v0. For
any ε > 0, from above expression and by choosing a sufficiently small ε, such

that C6ε <
8α22q(q−1)

(q+1)2 , we have

‖v(., t)‖qLq(Ω) + ‖∇(vq/2)‖2L2(Qt)
+ ‖∇(v(q+1)/2)‖2L2(Qt)

≤ C(r, q, T )

(
1 + ‖v‖q−1

L
pr(q−1)

2 (Qt)

)
.

(3.2)

Set ṽ = v
(q+1)

2 , and

E ≡ sup
0≤t≤T

∫

Ω

vq(x, t)dx+

∫

QT

|∇(v(q+1)/2)|2dxdt

= sup
0≤t≤T

∫

Ω

ṽ2q/q+1dx+

∫

QT

|∇ṽ|2dxdt.

Let r0 = 4, p0 = 2r0
r0−2 . By Lemma 2.5, we see that ∇u is in Lr0(QT ). So,

from(3.2), we have

E + ‖∇(v
q
2 )‖2L2(QT ) ≤ C(r0, q, T )

(
1 + ‖ṽ‖

2(q−1)
q+1

L
p0(q−1)

q+1 (QT )

)
. (3.3)

For any q > 1, if

(np0 − 2n− 4)q ≤ 2n+ np0, (3.4)
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then, p0(q−1)
q+1 ≤ q̃ = 2 + 4q

n(q+1) . By Hölder′s inequality

‖ṽ‖
L

p0(q−1)
q+1 (QT )

≤ C8(q, T )‖ṽ‖
Lq̃(QT )

, (3.5)

where C8(q, T ) = |QT |
q+1

p0(q−1)
− 1

q̃ . Setting β̃ = 2/(q + 1) ∈ (0, 1), by Lemma 2.2
we have

‖ṽ(., t)‖
Lβ̃(Ω)

= ‖v(., t)‖
1

β̃

L1(Ω) ≤ (C1(T ))
1

β̃ ,∀t ∈ [0, T ). (3.6)

Therefore, by (3.6), Lemma 2.4 and the definition of E, the expression (3.5)
yields

‖ṽ‖
L

p0(q−1)/q+1

(QT )

≤ C8(q, T )‖ṽ‖
Lq̃(QT )

≤ C8(q, T )M1

{
1 + E2/nq̃E

1

q̃

}
. (3.7)

Then, by(3.3) and (3.7), we have

E ≤ C9(q, T )(1 + EµEν) (3.8)

with

µ =
4(q − 1)

nq̃(q + 1)
, ν =

2(q − 1)

q̃(q + 1)
.

Since

µ+ ν =
2(q − 1)

q̃(q + 1)

[
2

n
+ 1

]
<

1

q̃

[
4q

n(q + 2)
+ 2

]
= 1,

it follows from (3.8) that there exists a positive constant C10 such that E ≤ C10.

By (3.17) and (3.8) we get ṽ ∈ Lq̃(QT ) which in turn implies that v ∈ Lr(QT )

with r = q̃(q+1)
2 for any q satisfying (3.4). Now, Looking at (3.4), if n ≤ 2, we

have

np0 − 2n− 4 = 2(n− 2) ≤ 0,

then (3.4) holds for all q. So for n ≤ 2, v ∈ Lr(QT ) for all r > 1. If n > 2, then
(3.4) is equivalent to

1 < q < q0
.
=

2n+ np0
(np0 − 2n− 4)

=
3n

n− 2
.

By

q̃(q + 1)

2
= q + 1 +

2q

n
≤ r1

.
= q0 + 1 +

2q0
n

=
4(n+ 1)

n− 2
.

We have that v is in Lr(QT ) for all 1 < r ≤ r1. Since (3.7) holds true for
q = 2. So E is bounded for q = 2. It follows from (3.3) and (3.7), we see that
‖v‖V2(QT ) is bounded for any n. Namely, there exist positive constants CT such

that ‖v‖Lr(QT ) ≤ CT for r < 4(n+1)
(n−2)+

, this completes the proof of Lemma 3.1. ¤
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step2. L∞(QT )-estimates

Lemma 3.2. Let α11 > 0 and suppose that there are r1 > max{n+2
2 , 3} and a

positive constant Cr1,T such that

‖v‖Lr1 (QT ) ≤ Cr1,T .

Then, there exists a positive M2 such that

‖v‖Lr(QT ) ≤ M2 for any r > 1.

Proof. First, the equation for u can be written in the divergence form as

ut = ∇ · [(d1 + 2α11u)∇u] + u[a− u− bv

1 +mu+ βu2
], (3.9)

where d1+2α11u is bounded in QT by Lemma 2.1 and u[a−u− bv
1+mu+βu2 ] is in

Lr1 with r1 > n+2
2 . Application of the Hölder continuity result see [17, Theorem

10.1, p.204 ]to (3.9) yields

u ∈ Cβ, β2 (QT ) with some β > 0. (3.10)

Moreover, we have

w1t = (d1 + 2α11u)4w1 + f1, (3.11)

where w1 = (d1 + α11u)u, f1 = (d1 + 2α11u)u[a − u − bv
1+mu+βu2 ]. Since u is

bounded and by the assumption of this Lemma, we see that f1 is in Lr1(QT ).
From (3.11), Lemma 2.1 and Lemma 3.1, applying Theorem 9.1 [17, p.341-342]
and its remark[17, p.351], we have

w1 ∈ W 2,1
r1 (QT )

this implies ∇u = 1
d1+2α11u

∇w1 in Lr1(QT ). Now, following the proof of Lemma

3.1 with r1 instead of r0 and p1 = 2r1
r1−2 instead of p0, we see that either v is in

Lr(QT ) for any r > 1 or else v is in Lr2(QT ) with

r2
.
=

(n+ 1)r1
n+ 2− r1

.

The later case happens if and only if

n+ 2− r1 > 0.

If v is in Lr2(QT ), we see that f1 is in Lr2(QT ). Therefore, applying Theorem
9.1 [17, p.341-342] and its remark [17, p.351] again, we have ∇u in Lr2(QT ).
Then we go back and do the same argument again. Keep doing likes this we will
get a sequence of numbers

rk+1
.
=

(n+ 1)rk
n+ 2− rk

. (3.12)

We stop and get the conclusion that v is in Lr(QT ) for any r > 1 when

n+ 2− rk ≤ 0. (3.13)
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Since r1 > 3, it is not hard to verify by inducting that rk > 3, k = 1, 2, · · · .
Then, we have

rk+1

rk
=

n+ 1

n+ 2− rk
≥ n+ 1

n− 1
> 1.

Therefore, (3.13) holds for some k. We stop at this k and conclude that

‖v‖Lr(QT ) ≤ M2 for any r > 1.

¤

step3. C2+λ,1+λ
2 (QT )-estimates

Similar to the proof of Theorem1.2 of [2], we can obtain C2+λ,1+λ
2 (QT )-

estimates of the solution of (1.2). So the proof of Theorem 1.1 is completed.
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