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Abstract. In this paper, we consider a discrete predator-prey system obtained from a

continuous Beddington-DeAngelis type predator-prey system by using the method in [9].

In order to investigate dynamical behaviors of this discrete system, we find out all equi-

librium points of the system and study their stability by using eigenvalues of a Jacobian

matrix for each equilibrium points. In addition, we illustrate some numerical examples in

order to substantiate theoretical results.

1. Introduction

Classical two-species continuous time systems such as a Lotka-Volteface system
have been used to investigate the interaction between ecological populations(see
[2, 6, 7, 9, 11, 14, 15, 17]). However, sometimes it is necessary to consider discrete-
time systems described by difference equations, discrete dynamical systems or iter-
ative maps([4, 5, 12, 18]). Such population systems can be written in terms of a
sequence {xn}, for example, the well-known logistic difference equation is modeled
as

(1.1) xn+1 = rxn(1− xn),

where xn denotes the population of a single species in the n-th generation and r is
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the intrinsic growth rate.
In order to describe the relationship between two species, the functional re-

sponses are important(cf, [6]). One of the well know functional responses with
predator interference is the Beddington DeAngelis functional response, which was
introduced by Beddington [3] and DeAngelis et al. [8]. In fact, there are sig-
nificant evidences to suggest that functional responses with predator interference
occur quite frequently in laboratory and natural systems [16]. Thus, based on the
above discussion, in the paper, we consider the following predator-prey system with
Beddington-DeAngelis functional response ([9, 10, 19]).

(1.2)





dx1

dt1
= rx1(1− x1

K
)− a1x1y1

b1y1 + x1 + c1
,

dy1

dt1
= −d1y1 +

ea1x1y1

b1y1 + x1 + c1
,

where x1(t), y1(t) represent the population density of the prey and the predator at
time t, respectively. Usually, K is called the carrying capacity of the prey. The
constant r is called the intrinsic growth rate of the prey. The constants e, a1 are
the conversion rate and d1 is the death rate of the predator, respectively. The term
b1y measures the mutual interference between predators. The parameter c1 means
the handling time of predator to catch prey.

To simplify system (1.2) with scaling parameters, let

(1.3) rt1 = t, x1 = Kx, y1 =
rK

a1
y,

d1

r
= D,

b1r

a1
= b,

c1

K
= c,

ea1

r
= a.

Then the following dimensionless system can be obtained

(1.4)





dx

dt
= x(1− x)− xy

by + x + c
,

dy

dt
= −Dy +

axy

by + x + c
.

From biological point of view, we must assume that

(1.5) x < 1.

Now, we will adopt the method used in [9] to obtain the following discrete time
analogue of system (1.4).

(1.6) T :





x(n + 1) = x(n) exp
{

1− x(n)− y(n)
by(n) + x(n) + c

}
,

y(n + 1) = y(n) exp
{
−D +

ax(n)
by(n) + x(n) + c

}
.



Dynamical Behaviors of a Discrete Predator-Prey System 49

With an initial condition (x0, y0), the iteration of system (1.6) uniquely determines
a trajectory of the states of population output in the following form

(1.7) (xn, yn) = Tn(x0, y0),

where n = 0, 1, 2, · · · .
The main purpose of this paper is to investigate dynamical properties of system

(1.6) by taking into account the stability of the equilibrium points of the system
and to substantiate theoretical results by displaying some numerical examples.

2. Stability of the Equilibrium Points of System (1.6)

We first discuss the existence of the equilibria of system (1.6). It is obvious
that there are at least two equilibrium points, E0(0, 0), E1(1, 0) of system (1.6). In
order to find out positive equilibrium points of system (1.6) we need to consider the
simultaneous equation satisfying

(2.1)





1− x− y

by + x + c
= 0,

−D +
ax

by + x + c
= 0.

From elementary calculation, we have two solutions with respect to x as follows;

(2.2) x =
ab− a + D ±

√
(ab− a + D)2 + 4abcD

2ab
.

Since ab−a+D−
√

(ab− a + D)2 + 4abcD < 0 we take into account the equilibrium
point E2(x∗, y∗) of system (1.6), where

(2.3) x∗ =
ab− a + D +

√
(ab− a + D)2 + 4abcD

2ab
, y∗ =

1
b
((

a

D
− 1)x∗ − c).

For the positiveness of the equilibrium point E2, the condition
(a−D)x∗ − cD

bD
> 0

must be satisfied. In addition, it follow from (1.5) that x∗ < 1, which gives the
condition a + cD > D. Thus from now on we will assume that the following
conditions hold;

(2.4) a > D and
cD

a−D
< x∗.

The Jacobian matrix of system (1.6) at a point (x, y) is
(2.5)

J(x, y) =




(
1− x +

xy

(by + x + c)2
)
e1(x, y)

−x(x + c)
(by + x + c)2

e1(x, y)

ay(by + c)
(by + x + c)2

e2(x, y)
(
1− abxy

(by + x + c)2
)
e2(x, y)


 ,
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where e1(x, y) = exp(1− x− y
by+x+c ) and e2(x, y) = exp(−D + ax

by+x+c ). The cor-
responding characteristic equation to the Jacobian matrix J(x, y) can be obtained
as

(2.6) λ2 − tr(J(x, y))λ + det(J(x, y)) = 0,

where tr(J(x, y)) is the trace and det(J(x, y)) is the determinant of the Jacobian
matrix J(x, y).

Let λ1 and λ2 be the two roots of equation (2.6), which are called eigenvalues
of the point (x, y). We have the following definitions.

(1) If |λ1| < 1 and |λ2| < 1, then (x, y) is called a sink and it is locally asymp-
totically stable;

(2) If |λ1| > 1 and |λ2| > 1, then (x, y) is called a source and it is locally
unstable;

(3) If |λ1| < 1 and |λ2| > 1 (or |λ1| > 1 and |λ2| < 1), then (x, y) is called a
saddle;

(4) If either |λ1| = 1 or |λ2| = 1, then (x, y) is called non-hyperbolic.
Now, we will investigate the stability of the equilibrium points of system (1.6).

Theorem 2.1. The equilibrium point E0 is a saddle.

Proof. It is easy to calculate the Jacobian matrix J(E0) at E0. In fact, the matrix
J(E0) is given by

(2.7) J(E0) =
(

exp(1) 0
0 exp(−D)

)
.

Then the eigenvalues of the matrix J(E0) are exp(1) and exp(−D). Thus we can
show that the equilibrium point E0 is a saddle. 2

Theorem 2.2. For the equilibrium point E1, we have the following topological
types:

(i) E1 is a sink if a < (1 + c)D;
(ii) E1 is non-hyperbolic if a = (1 + c)D;
(iii) E1 is a saddle if a > (1 + c)D.

Proof. Since the Jacobian matrix J(E1) at E1 is

(2.8) J(E1) =
(

0 − 1
c+1

0 exp( a
c+1 −D)

)
,

we can know that the eigenvalues of the matrix J(E1) are 0 and exp( a
c+1 − D).

Therefore we have the results (i), (ii) and (iii). 2

In order to investigate the stability of the positive equilibrium point E2(x∗, y∗)
of system (1.6), we give the following lemma, which can be easily proved by the
relations between roots and coefficients of the characteristic equation (2.6) (see
[1],[13]).
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Lemma 2.3.([1],[13]) Let B and C be the trace and the determinant of the Jacobian
matrix in (2.5), respectively and let F (λ) = λ2 − Bλ + C. Suppose that F (1) > 0,
λ1 and λ2 are the two roots of F (λ) = 0. Then

(i) |λ1| < 1 and |λ2| < 1 if and only if F (−1) > 0 and C < 1;
(ii) |λ1| < 1 and |λ2| > 1 (or |λ1| > 1 and |λ2| < 1) if and only if F (−1) < 0;
(iii) |λ1| > 1 and |λ2| > 1 if and only if F (−1) > 0 and C > 1;
(iv) λ1 = −1 and λ2 6= 1 if and only if F (−1) = 0 and B 6= 0, 2;
(v) λ1 and λ2 are complex and |λ1| = |λ2| = 1 if and only if B2 − 4C < 0 and

C = 1.

Theorem 2.4. Assume that the condition (2.4) is satisfied. Then there exists the
positive equilibrium E2. Moreover, we have the following topological types for the
point E2:

(i) E2 is a sink if αx∗ > γ and βx∗ < δ;
(ii) E2 is a source if αx∗ > γ and βx∗ > δ;
(iii) E2 is a saddle if αx∗ < γ;

(iv) E2 is non-hyperbolic if αx∗ = γ, x∗ 6= 2a + D − abD

a + D − abD
and x∗ 6=

D(1− ab)
a + D − abD

,

where α = −2a − 2D + aD + 3abD − D2, β = −a − D + aD + 2abD − D2,
γ = −4a− 2D − aD + 3abD + D2 + 2cD2 and δ = D(−1− a + 2ab + D + 2cD).

Proof. Using equation (2.1), the Jacobian matrix J(E2) at E2 can be obtained as
follows;

(2.9) J(E2) =
(

(D
a + 1)(1− x∗) D

a (b(1− x∗)− 1)
(a−D)(1− x∗) 1− bD(1− x∗)

)
,

In fact, the value B in Lemma 2.3, the trace of the matrix J(E2), can be obtained
by elementary calculation as

(2.10) B = (1 +
D

a
− bD)(1− x∗) + 1

and the value C in Lemma 2.3, the determinant of the matrix J(E2), can be also
obtained as

(2.11) C = −2bD(1− x∗)2 + (1 +
D

a
+

(a−D)D
a

)(1− x∗).

Now, consider the function F (λ) = λ2 − Bλ + C. From elementary calculations,
we can know that F (1) = 1 − B + C > 0 since

√
(ab− a + D)2 + 4abcD > 0.

Therefore, we can use Lemma 2.3 to prove the results. Now think about the value

F (−1) = −2bD(1 − x∗)2 +
(D(2−D) + a(2 + D − bD))(1− x∗)

a
+ 2. Since x∗

satisfies abx2
∗ − (ab− a + D)x∗ − cD = 0, F (−1) can be written as

(2.12)

F (−1) =
1
a
((−2a−2D+aD +3abD−D2)x∗+4a+2D+aD−3abD−D2−2cD2).
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By applying the above similar way to the value C, we can obtain

(2.13) C =
1
a
((−a−D + aD +2abD−D2)x∗+ a+D + aD− 2abD−D2− 2cD2).

Note that F (−1) = 0 and C = 1 hold if and only if αx∗ = γ and βx∗ = δ are
satisfied, respectively, where α = −2a−2D +aD +3abD−D2, β = −a−D +aD +
2abD−D2, γ = −4a−2D−aD+3abD+D2+2cD2 and δ = D(−1−a+2ab+D+2cD).
Therefore, it follows from Lemma 2.3 that the results of this theorem hold. 2
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Figure 1: Phase portraits of system (1.6) with a = 0.5, b = 1.5, c = 0.5 and
D = 0.4 when (x0, y0) = (0.85, 0.9) or (0.7, 0.85).

3. Numerical Simulations

In this section, we illustrate some phase portraits via numerical simulations in
order to substantiate our theoretical results.

First, let us take parameters in system (1.6) as follows;

(3.1) a = 0.5, b = 1.5, c = 0.5 and D = 0.4.

Then it follows from Theorem 2.2 that the equilibrium E1 is a sink since a < (1+c)D.
The Figure 1 is shown this phenomenon when we set two initial conditions as
(x0, y0) = (0.85, 0.9) and (0.7, 0.85).

Next, for the parameters a = 0.7, b = 0.3, c = 0.6, D = 0.2 we can know that
the equilibrium point E2 is a sink since the parameters satisfy the condition of (i)
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of Theorem 2.4. In this case, we can have the point E2(0.3333, 0.7778) and a phase
portrait of system (1.6) is displayed in Figure 2.
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Figure 2: (a) A phase portrait of system (1.6) with a = 0.7, b = 0.3, c =
0.6, D = 0.2 and E2(0.3333, 0.7778). (b) Time series of the prey. (c) Time
series of the predator.

For illustrating source phenomenon of the equilibrium E2, let the parameters
be as follows;

(3.2) a = 0.7, b = 0.3, c = 0.4 and D = 0.1.

It is easy to see from Theorem 2.4 that the point E2 = (0.0975, 0.6157) is a source.
In fact, if one takes initial conditions contained in a suitable neighborhood of the
point E2, the trajectories starting with this initial conditions are away from the
point E2 as shown in Figure 3. In addition, this figure demonstrates that system
(1.6) could have a limit cycle. However, it is not easy to show the existence of it
theoretically. Thus this problem is left for future work.
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Figure 3: (a) A phase portrait of system (1.6) with a = 0.7, b = 0.3, c =
0.4, D = 0.1 and E2(0.0975, 0.6157). (b) Time series of the prey. (c) Time
series of the predator.
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