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QUALITATIVE ANALYSIS OF A DIFFUSIVE FOOD WEB

CONSISTING OF A PREY AND TWO PREDATORS

Hong-Bo Shi

Abstract. This paper is concerned with the positive steady states of a
diffusive Holling type II predator-prey system, in which two predators
and one prey are involved. Under homogeneous Neumann boundary con-
ditions, the local and global asymptotic stability of the spatially homoge-
neous positive steady state are discussed. Moreover, the large diffusion of
predator is considered by proving the nonexistence of non-constant posi-
tive steady states, which gives some descriptions of the effect of diffusion
on the pattern formation.

1. Introduction

Due to the universal existence of energy transformation, predator-prey sys-
tem is very important in describing the population evolution, and it is one
of the dominant themes in both ecology and mathematical ecology. Because
of the differences in capturing food and consuming energy, a major trend in
theoretical work on predator-prey dynamics has been launched so as to derive
more realistic models and functional responses, for example, Lotka-Volterra
type [22, 31], Holling type [14], Beddington-DeAngelis type [3, 5] and so on.
These models often involve only one predator species and one prey species. In
reality, it is very common that one species is captured by several species in food
chains. In particular, Hixon and Jones [13] found that the density-dependent
mortality in demersal marine fishes is often caused by interaction of predation
and competition. In a very recent paper, to study how the nonlinear mortality
rate determines the dynamics of such competition models, Ruan et al. [29]
proposed the following two predators and one prey model with Holling II type
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functional response:

(1.1)















du
dt = ru

(

1− u
K

)

− auv
1+bu

− Auw
1+Bu

,
dv
dt = v

(

−d+ eu
1+bu

)

,

dw
dt = w

(

−D −Gw + Eu
1+Bu

)

,

where u represents the density of the prey, v, w reflect the densities of two
predators, respectively. In the third equation, Gw2 denotes the density depen-
dent mortality term for the second species and is also referred to as a ‘closure
term’, which describes either a self-limitation of w or the influence of predation.
In ecology, self-limitation can occur if another factor besides food can possibly
become limiting at high population densities. Predation on consumers can in-
crease as the w2 power if higher consumer densities attract greater attention
from predators or if consumers become more vulnerable at higher densities.
Obviously, all the constants, i.e., r, a, b, d, e, A, B, E, D, G, K, are positive
for their biological sense. Note that both v and w capture the food u, of which
the density is limit, v and w are essentially competitive each other. In such
a sense, (1.1) formulates the dynamics of two competitive predators and one
prey. In [29], the authors mainly investigated the stability of positive constant
equilibrium of (1.1) and gave some numerical simulations.

Applying the following scaling to system (1.1),

u

K
7→ u, v 7→ v, w 7→ w, rt 7→ t,

a

r
7→ a, bK 7→ b,

A

r
7→ A,BK 7→ B,

d

r
7→ d,

eK

d
7→ e,

D

r
7→ D,

G

D
7→ G,

EK

D
7→ E,

then it can be simplified as follows,

(1.2)















du
dt = u(1− u)− auv

1+bu
− Auw

1+Bu
,

dv
dt = dv

(

−1 + eu
1+bu

)

,

dw
dt = Dw

(

−1−Gw + Eu
1+Bu

)

.

For the sake of convenience, in the remainder of this paper, we also denote
u = (u, v, w)T and

G(u) =





G1(u)
G2(u)
G3(u)



 =











ug1(u) = u
(

1− u− av
1+bu

− Aw
1+Bu

)

vg2(u) = dv
(

−1 + eu
1+bu

)

wg3(u) = Dw
(

−1−Gw + Eu
1+Bu

)











.

It is evident that (1.2) has a positive equilibrium if
{

e > b, E −B > e− b,

Ge(e− b− 1)(B + e− b)2 −Ae(e − b)2[(E −B)− (e− b)] > 0.
(1.3)
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The positive equilibrium is uniquely given by

u∗ =
1

e− b
, v∗ =

Ge(e− b− 1)(B + e− b)2 −Ae(e− b)2[(E −B)− (e− b)]

Ga(e − b)2(B + e− b)2
,

w∗ =
(E −B)− (e − b)

G(B + e− b)
.

In what follows, we always denote the unique positive equilibrium by u∗ =
(u∗, v∗, w∗)T .

However, in some cases, the spatial distribution is very important in popu-
lation dynamics, such as the species invasion [1] and spreading of epidemic [6].
One typical and classical method is to describe the spatial migration of indi-
viduals by Laplace operator (see [4, 9]) and such an operator can give rise to
some important spatiotemporal pattern, for example Turing instability (or the
diffusion-driven instability, see [30]). Particularly, during the past decades, dif-
fusive predator-prey systems have been extensively studied, and one can refer
to [10, 15, 19, 20, 24, 25, 26, 27, 28, 32] and references cited therein.

If we take into account the inhomogeneous distribution of the predators
and prey in different spatial locations at any given time and assume that the
predator-prey system is self-contained with zero population flux across the
boundary in (1.2), then we are led to consider the following PDE system of
reaction-diffusion type:

(1.4)







































∂u
∂t

− d1∆u = G1(u), x ∈ Ω, t > 0,
∂v
∂t

− d2∆v = G2(u), x ∈ Ω, t > 0,
∂w
∂t

− d3∆w = G3(u), x ∈ Ω, t > 0,
∂u
∂ν

= ∂v
∂ν

= ∂w
∂ν

= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0,

w(x, 0) = w0(x) ≥ 0, x ∈ Ω,

where Ω ⊂ R
N is a bounded domain with smooth boundary ∂Ω, ν is the

outward unit normal vector of the boundary ∂Ω. The constants d1, d2, and
d3, called diffusion coefficients, are positive, and the initial data u0(x), v0(x),
and w0(x) are continuous functions. It is obvious that u

∗ is the unique positive
constant steady state of (1.4).

In the case that w ≡ 0 (or the species formulated by the third equation van-
ishes in population dynamics), system (1.4) reduces to a two species predator-
prey model with Holling II type functional response. Ko and Ryu [16] studied
a Holling II type predator-prey model incorporating a prey refuge under ho-
mogeneous Neumann boundary condition, in which the large time behavior
of time-dependent system, existence and nonexistence of nonconstant positive
steady states are concerned. Furthermore, Ko and Ryu [17, 18] investigated a
system (1.4) with w = 0 and general functional response p(u) (monotonic or
nonmonotonic) and established the existence and nonexistence of nonconstant
positive steady states. Du and Lou [7, 8] considered a system similar to (1.4)
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with w = 0 under Dirichlet and Neumann boundary condition, respectively.
They discussed the existence and nonexistence of nonconstant positive steady
states.

If v = 0, a = E = 1 in system (1.1), then we can get a predator-prey model
proposed by Bazykin [2], which was also considered in [33]. More precisely, the
authors of [33] introduced diffusion and ratio-dependence into this model under
homogeneous Neumann boundary condition, and gave the global asymptotic
stability of positive constant steady state by using iteration method.

Motivated by the works mentioned above, the main purpose of this article
is concerned with positive steady states of system (1.4). We first consider the
constant steady state by proving its asymptotic stability. As we all know,
in ecological models, different diffusions may play essentially different roles in
determining the pattern formation (see [28]). Our another goal is to explore the
effect of diffusion, namely, we shall consider the nonexistence of nonconstant
positive solutions to the following elliptic system:

(1.5)



















−d1∆u = G1(u), x ∈ Ω,

−d2∆v = G2(u), x ∈ Ω,

−d3∆w = G3(u), x ∈ Ω,
∂u
∂ν

= ∂v
∂ν

= ∂w
∂ν

= 0, x ∈ ∂Ω.

Our results will show the importance of diffusion rate of the species in system
(1.5). The large diffusion rate of the prey u can lead to the nonexistence of
spatially nonconstant positive solutions.

The rest of this paper is arranged as follows. In Section 2, we will investi-
gate the local/global stability of positive constant steady state u∗ with respect
to time-dependent system (1.4). In Section 3, a priori estimates for positive
solutions of elliptic system (1.5) and the nonexistence of nonconstant positive
solutions to (1.5) is established. The last section is devoted to give some bio-
logical explanations for the obtained results.

2. Asymptotic stability of u∗

In this section, we study the local/global asymptotic stability of the constant
positive steady state u∗ for reaction-diffusion system (1.4).

Before developing our argument, let us set up the following notations.
(i) 0 = µ0 < µ1 < µ2 < · · · → ∞ are the eigenvalues of −∆ on Ω under

homogeneous Neumann boundary condition.
(ii) E(µi) is the space of eigenfunctions corresponding to µi for i = 0, 1, 2, . . ..
(iii) Xij :=

{

c · ϕij : c ∈ R
2
}

, where {ϕij} are an orthonormal basis of E(µi)
for i = 0, 1, 2, . . . and j = 1, 2, . . . , dim[E(µi)].

(iv) X :=
{

u = (u, v) ∈ [C1(Ω̄)]2 : ∂u
∂ν

= ∂v
∂ν

= 0
}

, and so

X =
∞
⊕

i=1

Xi, where Xi =

dim[E(µi)]
⊕

j=1

Xij .(2.1)



QUALITATIVE ANALYSIS OF A DIFFUSIVE FOOD WEB 1831

To study the stability of u∗ (the existence of u∗ is clear by (1.3)), we consider
the following linearized system of (1.4) at u∗,

ut = (D∆+Gu(u
∗))u,

where u = (u(x, t), v(x, t), w(x, t))T , D = diag{d1, d2, d3}, and

Gu(u
∗) =





a11 a12 a13
a21 0 0
a31 0 a33





with

a11 =
G(B + e− b)3[b(e− b− 1)− e] +A(e − b)3(B − b)[(E −B)− (e− b)]

Ge(e− b)(B + e− b)3
,

(2.2)

a12 = −
au∗

1 + bu∗
< 0, a13 = −

Au∗

1 +Bu∗
< 0, a21 =

dev∗

(1 + bu∗)2
> 0,

a31 =
DEw∗

(1 +Bu∗)2
> 0, a33 = −GDw∗ < 0.

From the definition of a11, if

G(B + e− b)3[b(e− b− 1)− e] +A(e− b)3(B − b)[(E −B)− (e − b)] < 0,

(2.3)

then a11 < 0 holds. For each i = 0, 1, 2, . . ., it is clear that D∆ + Gu(u
∗) :

Xi → Xi. Moreover, λ is an eigenvalue of this operator on Xi if and only if
it is an eigenvalue of the matrix Mi = −µiD + Gu(u

∗). The characteristic
equation of Mi is given by

(2.4) ψi(λ) = λ3 +B1iλ
2 +B2iλ+B3i = 0,

in which

B1i = µi(d1 + d2 + d3)− (a11 + a33),

B2i = µ2
i (d1d2 + d2d3 + d1d3)− µi[a33d1 + (a11 + a33)d2 + a11d3]

+ a11a33 − a12a21 − a13a31,

B3i = µ3
i d1d2d3 − µ2

i (d1d2a33 + d2d3a11)

+ µi[(a11a33 − a31a13)d2 − a12a21d3] + a12a21a33.

Denote

A1 = −(a11 + a33), A2 = a11a33 − a12a21 − a13a31, A3 = a12a21a33.

Thus, A1, A2, A3, B1i, B2i, B3i are positive. Furthermore, we can calculate
that

B1iB2i −B3i = R1µ
3
i +R2µ

2
i +R3µi +A1A2 −A3,

with

R1 = (d1 + d2 + d3)(d1d2 + d2d3 + d1d3)− d1d2d3 > 0,
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R2 = − (a11 + a33)(d1d2 + d2d3 + d1d3)

− (d1 + d2 + d3)[a33d1 + (a11 + a33)d2 + a11d3] + d1d2a33 + d2d3a11

= − (a11 + a33)(2d1d2 + 2d2d3 + d22 + d1d3)− (a33d1 + a11d3)(d1 + d3)

> 0,

R3 = (d1 + d2 + d3)(a11a33 − a12a21 − a13a31)

+ (a11 + a33)[a33d1 + (a11 + a33)d2 + a11d3]

− [(a11a33 − a13a31)d2 − a12a21d3]

= (2a11a33 − a12a21 + a233 − a13a31)d1 + (2a11a33 − a12a21 + a211 + a233)d2

+ (2a11a33 − a13a31 + a211)d3 > 0.

Then

A1A2 −A3 = −(a11 + a33)(a11a33 − a12a21 − a13a31)− a12a21a33

= −a211a33 + a11a12a21 + a11a13a31 − a11a
2
33 + a13a31a33 > 0,

and B1iB2i−B3i > 0 for all i ≥ 0. The Routh-Hurwitz criterion shows that for
each i ≥ 0, the three roots λi,1, λi,2, λi,3 of (2.4) all have negative real parts.

Moreover, it is easy to see that there exists a positive constant δ such that
Re{λi,1}, Re{λi,2}, Re{λi,3} ≤ −δ, i ≥ 0. Consequently, the spectral of L,
consisting only of eigenvalues, lies in {Reλ ≤ −δ}, and then the local stability
of u∗ follows by applying Theorem 5.1.1 of Henry [12].

Summarizing the arguments above, we have the following theorem.

Theorem 2.1. Assume that the condition (1.3) and (2.3) hold. Then the

positive constant steady state u∗ of (1.4) is locally asymptotically stable.

Next, we consider the global stability of the positive constant steady state
u∗ for (1.4), which implies that the three species of prey and predator will
be spatially homogeneously distributed as time converges to infinities. To this
end, we assume that

(2.5) G(B + e− b)2[b(e− b)− e] +A(e− b)2(B − b)[(E −B)− (e− b)] < 0.

Theorem 2.2. Suppose that the conditions (1.3) and (2.5) hold. Then the

positive constant steady state u∗ is globally asymptotically stable.

Proof. Let (u(x, t), v(x, t), w(x, t)) be a positive solution of (1.4). To prove
our statement, it suffices to construct a proper Lyapunov function. For that
purpose, adapting the Lyapunov function in [29], we define

W (u, v, w) =

∫ u

u∗

u− u∗

u
du+ β

∫ v

v∗

v − v∗

v
dv + γ

∫ w

w∗

w − w∗

w
dw,

and

E(t) =

∫

Ω

W (u(x, t), v(x, t), w(x, t))dx,
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where β, γ are positive constants to be determined. Simple computations yield
that

dE(t)

dt

=

∫

Ω

{Wuut +Wvvt +Wwwt}dx

=

∫

Ω

{

u− u∗

u

[

d1∆u+ u

(

1− u−
av

1 + bu
−

Aw

1 +Bu

)]

+ β
v − v∗

v

[

d2∆v + dv

(

−1 +
eu

1 + bu

)]

+γ
w − w∗

w

[

d3∆w +Dw

(

−1−Gw +
Eu

1 +Bu

)]}

dx

=

∫

Ω

(

d1
u− u∗

u
∆u+ βd2

v − v∗

v
∆v + γd3

w − w∗

w
∆w

)

dx

+

∫

Ω

{

(u− u∗)

(

1− u−
av

1 + bu
−

Aw

1 +Bu

)

+dβ(v − v∗)

(

−1 +
eu

1 + bu

)

+Dγ(w − w∗)

(

−1−Gw +
Eu

1 +Bu

)}

dx

= I1(t) + I2(t),

in which the definitions of I1(t) and I2(t) are clear.
Due to the homogeneous Neumann boundary condition, it is evident that

I1(t) = −

∫

Ω

{

d1
u∗

u2
|∇u|2 + d2β

v∗

v2
|∇v|2 + d3γ

w∗

w2
|∇w|2

}

dx ≤ 0.

Furthermore,

I2(t) =

∫

Ω

{

(u− u∗)

[

−(u− u∗) +
av∗

1 + bu∗
−

av

1 + bu
+

Aw∗

1 +Bu∗
−

Aw

1 +Bu

]

+ βd(v − v∗)

(

eu

1 + bu
−

eu∗

1 + bu∗

)

+γD(w − w∗)

(

Gw∗ −Gw +
Eu

1 +Bu
−

Eu∗

1 +Bu∗

)}

dx

=

∫

Ω

{

(u− u∗)2
[

−1 +
abv∗

(1 + bu)(1 + bu∗)
+

ABw∗

(1 +Bu)(1 +Bu∗)

]

+
1

1 + bu

[

−a+ βde −
βbdeu∗

1 + bu∗

]

(u− u∗)(v − v∗)

+
1

1 +Bu

[

−A+ γDE −
γBDEu∗

1 +Bu∗

]

(u− u∗)(w − w∗)

−γGD(w − w∗)2
}

dx.
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Let β = a
(e−b)d , γ = A(B+e−b)

ED(e−b) . Then

I2(t) =

∫

Ω

{

(u− u∗)2
(

−1 +
abv∗

(1 + bu)(1 + bu∗)
+

ABw∗

(1 +Bu)(1 +Bu∗)

)

−
AG(B + e− b)

E(e − b)
(w − w∗)2

}

dx.

Under the assumption (2.5), we obtain

−1 +
abv∗

(1 + bu)(1 + bu∗)
+

ABw∗

(1 +Bu)(1 +Bu∗)
≤ −1 +

abv∗

1 + bu∗
+

ABw∗

1 + Bu∗
< 0.

Hence, I2(t) ≤ 0, and thus dE(t)
dt = I1(t) + I2(t) ≤ 0, which implies the desired

assertion since the equality holds only when (u, v, w) = (u∗, v∗, w∗). The proof
is complete. �

3. Nonexistence of nonconstant positive steady states

In this section, we shall discuss the nonexistence of nonconstant positive
solutions of (1.5), which indicates the effect of large diffusivity. Firstly, we
give a priori positive upper bounds for the positive solutions of elliptic problem
(1.5). For the aim, we first cite two lemmas which are due to Lin, Ni and
Takagi [21], and Lou and Ni [23], respectively.

Lemma 3.1 (Harnack Inequality [21]). Assume that c ∈ C(Ω) and let w ∈
C2(Ω)∩C1(Ω) be a positive solution to ∆w(x)+c(x)w(x) = 0 in Ω, ∂w

∂ν
= 0 on

∂Ω. Then there exists a positive constant C∗ = C∗(‖c‖∞) such that maxΩw ≤
C∗ minΩw.

Lemma 3.2 (Maximum Principle [23]). Suppose that g ∈ C(Ω× R).
(i) Assume that w ∈ C2(Ω) ∩ C1(Ω) satisfies ∆w(x) + g(x,w(x)) ≥ 0 in Ω

and ∂w
∂ν

≤ 0 on ∂Ω. If w(x0) = maxΩw, then g(x0, w(x0)) ≥ 0.

(ii) Assume that w ∈ C2(Ω) ∩ C1(Ω) satisfies ∆w(x) + g(x,w(x)) ≤ 0 in Ω
and ∂w

∂ν
≥ 0 on ∂Ω. If w(x0) = minΩw, then g(x0, w(x0)) ≤ 0.

Throughout the rest of this paper, the solutions refers to the classical solu-
tion, by which we mean a solution in C2(Ω) ∩ C1(Ω). By virtue of the stan-
dard regularity theory for elliptic equations ([11]), Lemma 3.1 and Lemma
3.2 can be applied to system (1.5). For notational convenience, we write
Λ = Λ(a, b, d, e, A,B,D,E,G). In the next paragraph, the generic constants,
C∗, C, C0, L1, L2, will depend on the domain Ω and the dimension N . How-
ever, as Ω and N are fixed, we will not mention the dependence explicitly.

Theorem 3.3. Let d∗ be a fixed positive number and E − B − 1 > 0. If

di ≥ d∗(i = 1, 2, 3) hold, then there exist positive constants C∗ = C∗(Λ, d∗) and
C = C(Λ, d∗) such that positive solution (u, v, w) of (1.5) satisfies

max
Ω

u ≤ Cmin
Ω
u, max

Ω
v ≤ Cmin

Ω
v, max

Ω
w ≤ Cmin

Ω
w;(3.1)
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max
Ω

u ≤ 1, max
Ω

v ≤ C∗, max
Ω

w ≤
E −B − 1

G(1 +B)
.(3.2)

Proof. Firstly, a direct application of the maximum principle to the first equa-
tion of (1.5) gives u ≤ 1 on Ω, since

u(1− u)−
auv

1 + bu
−

Auw

1 +Bu
≤ u(1− u).

It further implies that

Dw

(

−1−Gw +
Eu

1 +Bu

)

≤ Dw

(

−1−Gw +
E

1 +B

)

,

which yields the third inequality of (3.2) by applying the maximum principle
again.

Let u0 = maxΩ u. From the first equation of (1.5) and the maximum prin-
ciple, we obtain

1− u(x0)−
av(x0)

1 + bu(x0)
−

Aw(x0)

1 +Bu(x0)
≥ 0,

and thus,
av(x0)

1 + bu(x0)
≤ 1− u(x0)−

Aw(x0)

1 +Bu(x0)
≤ 1.

Hence, v(x0) ≤ (1 + b)/a. Let

−∆v =
v

d2

(

−d+
eu

1 + bu

)

:= c2(x)v.

Then, when d2 ≥ d∗, we get

|c2(x)| =

∣

∣

∣

∣

d

d2

(

−1 +
eu

1 + bu

)∣

∣

∣

∣

≤
d

d∗

(

1 +
e

1 + b

)

.

It follows from the Harnack inequality that there exists a positive constant C2

such that

max
Ω

v ≤ C2 min
Ω
v ≤ C2

1 + b

a
:= C∗.

In order to prove the first and second inequality of (3.2), we define

c1(x) =
1

d1

(

1− u−
av

1 + bu
−

Aw

1 +Bu

)

,

c3(x) =
D

d3

(

−1−Gw +
Eu

1 +Bu

)

.

Then, the inequalities of (3.1) indicate that there exists a positive constant
C0 = C0(Λ, d

∗) such that ‖c1‖∞ ≤ C0, ‖c2‖∞ ≤ C0, when d1 ≥ d∗ and d3 ≥ d∗.
Hence, by applying the Harnack inequality, then there exists a positive constant
C = C(Λ, d∗) such that

max
Ω

u ≤ Cmin
Ω
u, max

Ω
w ≤ Cmin

Ω
w;
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The proof is completed. �

Theorem 3.4. Let d∗2 and d∗3 be fixed positive constants and satisfy

d∗2µ1 >
d(e − b− 1)

1 + b
, d∗3µ1 >

D(E −B − 1)

1 +B
.

Then there exists a positive constant D1 = D1(Λ, d
∗
2, d

∗
3) such that (1.5) has no

nonconstant positive solution provided that d1 > D1, d2 ≥ d∗2 and d3 ≥ d∗3.

Proof. Assume that (u, v, w) is a positive solution of (1.5). Let ϕ̄ = 1
|Ω|

∫

Ω ϕdx

for any ϕ ∈ L1(Ω). Multiplying (u − ū) to the first equation in (1.5) and
integrating over Ω by parts, we have that

∫

Ω

d1|∇u|
2dx

=

∫

Ω

[G1(u)−G1(ū)](u− ū)dx

=

∫

Ω

[

u(1− u)−
auv

1 + bu
−

Auw

1 +Bu

−

(

ū(1− ū)−
aūv̄

1 + bū
−

Aūw̄

1 +Bū

)]

(u− ū)dx

=

∫

Ω

[

(u− ū)2[1− (u+ ū)]−
(abuū+ aū)(u − ū)(v − v̄) + av(u− ū)2

(1 + bu)(1 + bū)

−
(ABuū+Aū)(u − ū)(w − w̄) +Aw(u − ū)2

(1 +Bu)(1 +Bū)

]

dx.

In a similar way, we can obtain that
∫

Ω

d2|∇v|
2dx =

∫

Ω

[G2(u) −G2(ū)](v − v̄)dx

=

∫

Ω

[

dv

(

−1 +
eu

1 + bu

)

− dv̄

(

−1 +
eū

1 + bū

)]

(v − v̄)dx

=

∫

Ω

[

−d(v − v̄)2 +
deū(1 + bu)(v−v̄)2

(1 + bu)(1 + bū)
+
dev(u − ū)(v − v̄)

(1 + bu)(1 + bū)

]

dx

and
∫

Ω

d3|∇w|
2dx =

∫

Ω

[G3(u)−G3(ū)](w − w̄)dx

=

∫

Ω

[

Dw

(

−1−Gw +
Eu

1 +Bu

)

−Dw̄

(

−1−Gw̄ +
Eū

1 +Bū

)]

(w − w̄)dx

=

∫

Ω

[

−[D +G(w + w̄)](w − w̄)2 +
DEū(1 + Bu)(w − w̄)2

(1 +Bu)(1 +Bū)
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+
DEw(u− ū)(w − w̄)

(1 +Bu)(1 +Bū)

]

dx.

What we have done implies the following estimates:
∫

Ω

{

d1|∇u|
2 + d2|∇v|

2 + d3|∇w|
2
}

dx

≤

∫

Ω

[

(u− ū)2 − d(v − v̄)2 +
deū(1 + bu)(v − v̄)2

(1 + bu)(1 + bū)
+
dev(u − ū)(v − v̄)

(1 + bu)(1 + bū)

−D(w − w̄)2 +
DEū(1 +Bu)(w − w̄)2

(1 +Bu)(1 +Bū)
+
DEw(u − ū)(w − w̄)

(1 +Bu)(1 +Bū)

]

dx

≤

∫

Ω

[

(u− ū)2 − d(v − v̄)2 +
de

1 + b
(v − v̄)2 +

dev(u− ū)(v − v̄)

(1 + bu)(1 + bū)

−D(w − w̄)2 +
DE

1 +B
(w − w̄)2 +

DEw(u − ū)(w − w̄)

(1 +Bu)(1 +Bū)

]

dx

≤

∫

Ω

[

(u− ū)2 − d(v − v̄)2 +
de

1 + b
(v − v̄)2 + 2L1|u− ū||v − v̄|

−D(w − w̄)2 +
DE

1 +B
(w − w̄)2 + 2L2|u− ū||w − w̄|

]

dx

≤

∫

Ω

[

(u− ū)2 +
d(e− b− 1)

1 + b
(v − v̄)2 + 2L1|u− ū||v − v̄|

+
D(E −B − 1)

1 +B
(w − w̄)2 + 2L2|u− ū||w − w̄|

]

dx

≤

∫

Ω

[

(u− ū)2
(

1 +
L1

ǫ1
+
L2

ǫ2

)

+ (v − v̄)2
(

d(e − b− 1)

1 + b
+ ǫ1L1

)

+(w − w̄)2
(

D(E −B − 1)

1 +B
+ ǫ2L2

)]

dx

for some positive constants L1, L2 and arbitrarily small positive constants ǫ1,
ǫ2, in which the last inequality was obtained by the following fact,

2L1|u− ū||v − v̄| = 2

√

L1

ǫ1
|u− ū| ·

√

ǫ1L1|v − v̄| ≤
L1

ǫ1
|u− ū|2 + ǫ1L1|v − v̄|2,

2L2|u− ū||w− w̄| = 2

√

L2

ǫ2
|u− ū| ·

√

ǫ2L2|w− w̄| ≤
L2

ǫ2
|u− ū|2 + ǫ2L2|w− w̄|2.

Applying the Poincáre inequality, it is clear that
∫

Ω

{

d1µ1|u− ū|2 + d2µ1|v − v̄|2 + d3µ1|w − w̄|2
}

dx

≤

∫

Ω

{

(u− ū)2
(

1 +
L1

ǫ1
+
L2

ǫ2

)

+ (v − v̄)2
(

d(e − b− 1)

1 + b
+ ǫ1L1

)

+(w − w̄)2
(

D(E −B − 1)

1 +B
+ ǫ2L2

)}

dx.
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From the assumption, we can find sufficiently small constants ǫ1,0, ǫ2,0 > 0
such that

d∗2µ1 ≥
d(e − b− 1)

1 + b
+ ǫ1,0L1, d∗3µ1 ≥

D(E −B − 1)

1 +B
+ ǫ2,0L2.

Finally, by taking D1 := 1
µ1

(

1 + L1

ǫ1,0
+ L2

ǫ2,0

)

, one can conclude that when

d1 > D1, then u = ū, v = v̄ and w = w̄ hold. This completes the proof. �

4. Concluding remarks

In this paper, we study a diffusive two predators and one prey model with
Holling type II functional response under homogeneous Neumann boundary
conditions. From Theorem 2.2, we can see that under suitable conditions of
the parameters, the unique positive constant equilibrium u∗ of system (1.4) is
globally asymptotically stable which is coincident with the results of the corre-
sponding model without diffusion studied in [29]. In this case, the free diffusion
does not affect the global stability of the unique constant positive equilibrium
and thus nonconstant positive solutions do no exist. However, when the diffu-
sion coefficients are large enough, i.e., the case of large diffusivity, we can see
that the diffusion has a certain influence on the population evolution. From
Theorem 3.4, under proper conditions concerned with the diffusion coefficients
d2 and d3, there is no nonconstant positive steady state provided that diffusion
coefficient d1 of the prey is sufficiently large. These results seem to be coinci-
dent with the natural phenomena in ecological systems. When the prey species
diffuses fast, the coexistence state is exactly the constant positive steady state.
In this situation, the system is similar to the spatially homogeneous case. On
the contrary, if the predator species diffuses fast, then at some spatial loca-
tions, the coexistence state may be different from the constant positive steady
state, that is to say, how to give a priori positive lower bounds for the positive
solutions of elliptic problem (1.5) and establish the existence of nonconstant
positive steady states is worth further investigations.

Acknowledgement. The author would like to thank the anonymous referees
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