Browse > Article
http://dx.doi.org/10.5666/KMJ.2013.53.4.647

On the Dynamical Behavior of a Two-Prey One-Predator System with Two-Type Functional Responses  

Baek, Hunki (Department of Mathematics Education, Catholic University of Daegu)
Publication Information
Kyungpook Mathematical Journal / v.53, no.4, 2013 , pp. 647-660 More about this Journal
Abstract
In the paper, a two-prey one-predator system with defensive ability and Holling type-II functional responses is investigated. First, the stability of equilibrium points of the system is discussed and then conditions for the persistence of the system are established according to the existence of limit cycles. Numerical examples are illustrated to attest to our mathematical results. Finally, via bifurcation diagrams, various dynamic behaviors including chaotic phenomena are demonstrated.
Keywords
a two-prey one-predator system; two-type functional responses; Holling type-II functional responses; bifurcation diagrams;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 S. Lv and M. Zhao, The dynamic complexity of a three species food chain model, Chaos Solitons and Fractals, 37(2008), 1469-1480.   DOI   ScienceOn
2 R. K. Naji and A. T. Balasim, Dynamical behaior of a three species food chain model with Beddington-DeAngelis functional response, Chaos, Solitions and Fractals, 32(2007), 1853-1866.   DOI   ScienceOn
3 Y. Pei, G. Zeng and L. Chen, Species extinction and permanence in a prey-predator model with two-type functional responses and impulsive biological control, Nonlinear Dyn., 52(2008), 71-81.   DOI
4 S. Ruan and D. Xiao, Global analysis in a predator-prey system with nonmonotonic functional response, SIAM J. Appl. Math., 61(4)(2001), 1445-1472.   DOI   ScienceOn
5 G. C. W. Sabin and D. Summers, Chaos in a periodically forced predator-prey ecosystem model, Math. Bioscience, 113(1993), 91-113.   DOI   ScienceOn
6 E, Saez and E. Gonzalez-Olivares, Dynamics of a predator-prey model, SIAM J. Appl. Math., 59(5)(1999), 1867-1878.   DOI   ScienceOn
7 L. Segel, Modelling dynamic phenomena in molecular and cellular biology, Cambridge Universtiy Press, Cambridge, England, 1984.
8 C. Shen, Permanence and global attractivity of the food-chain system with Holling IV type functional response, Appl. Math and Comp., 194(2007), 179-185.   DOI   ScienceOn
9 J. Sugie, R. Kohno and R. Miyazaki, On a predator-prey system of Holling type, Proced. of the Amer. Math. Soc, 125(7)(1997), 2041-2050.
10 J. A. Vano, J. C. Wildenberg, M. B. Anderson, J. K. Noel and J. C. Sprott, Chaos in low-dimensional Lotka-Volterra models of competition, Nonlinearity, 19(2006), 2391-2404.   DOI   ScienceOn
11 H. Zhu, S. A. Campbell and Gail S. K. Wolkowicz, Bifurcation analysis of a predator-prey system with nonmonotonic Functional Response, SIAM J. Appl. Math., 63(2)(2002), 636-682.
12 Q. Wang, M. Fan and K. Wang, Dynamics of a class of nonautonomous semi-ratiodependent predator-prey systems with functional responses, J. of Math. Analy. and Appl., 278(2003), 443-471.   DOI   ScienceOn
13 H. Baek, Extinction and Permanence of a Holling I Type Impulsive Predator-prey Model, Kyungpook Math. Journal, 49(2009), 763-770.   과학기술학회마을   DOI   ScienceOn
14 Sze-Bi Hsu, Tzy-Wei Hwang and Yang Kuang, A ratio-dependent food chain model and its application to biological control, Math. Biosci., 181(2003), 55-83.   DOI   ScienceOn
15 B. Liu, Z. Teng and L. Chen, Analsis of a predator-prey model with Holling II functional response concerning impulsive control strategy, J. of Comp. and Appl. Math., 193(1)(2006), 347-362.   DOI   ScienceOn
16 J. M. Cushing, Periodic time-dependent predator-prey systems, SIAM J. Appl. Math., 32(1977), 82-95.   DOI   ScienceOn
17 R. Arditi and L. R. Ginzburg, Coupling in predator-prey dynamics:Ratio-dependence, J. Theor. Biol., 139(1989), 311-326.   DOI
18 F. Brauer and C. Castillo-Chavez, Mathematical models in population biology and epidemiology, Texts in applied mathematics 40, Springer-Verlag, New York(2001).
19 F. Cao and L. Chen, Asymptotic behavior of nonautonomous diffusive Lotka-Volterra model, Syst. Sci. Math. Sci., 11(2)(1998), 107-111.
20 Z. Cheng, Y. Lin and J. Cao, Dynamical behaviors of a partial-dependent predatorprey system, Chaos, Solitons and Fractals, 28(2006), 67-75.   DOI   ScienceOn
21 H. I. Freedman and P. Waltman, Persistence in models of three interecting predatorprey populations, Math. Biosciece, 68(1984), 213-231.   DOI   ScienceOn
22 K. Hasik, Uniqueness of limit cycle in the predator-prey system with sysmmetric prey isocline, Math. Biosciences, 164(2000), 203-215.   DOI   ScienceOn
23 A. Hastings and T. Powell, Chaos in a three-species food chain, Ecology, 72(3)(1991), 896-903.   DOI   ScienceOn
24 C. S. Holling, The functional response of predator to prey density and its role in mimicry and population regulation, Mem. Entomol. Soc. Can., 45(1965), 1-60.
25 Ji-cai Huang and Dong-mei Xiao, Analyses of Bifurcations and Stability in a Predatorprey System with Holling Type-IV Functional Response, Acta Mathematicae Applicatae Sinica(English Series), 20(1)(2004), 167-178.   DOI
26 A. Klebanoff and A. Hastings, Chaos in three species food chains, J. Math. Biol., 32(1994), 427-451.   DOI   ScienceOn