• Title/Summary/Keyword: PowerMOSFET

Search Result 637, Processing Time 0.022 seconds

A SiC MOSFET Based High Efficiency Interleaved Boost Converter for More Electric Aircraft

  • Zaman, Haider;Zheng, Xiancheng;Yang, Mengxin;Ali, Husan;Wu, Xiaohua
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.23-33
    • /
    • 2018
  • Silicon Carbide (SiC) MOSFET belongs to the family of wide-band gap devices with inherit property of low switching and conduction losses. The stable operation of SiC MOSFET at higher operating temperatures has invoked the interest of researchers in terms of its application to high power density (HPD) power converters. This paper presents a performance study of SiC MOSFET based two-phase interleaved boost converter (IBC) for regulation of avionics bus voltage in more electric aircraft (MEA). A 450W HPD, IBC has been developed for study, which delivers 28V output voltage when supplied by 24V battery. A gate driver design for SiC MOSFET is presented which ensures the operation of converter at 250kHz switching frequency, reduces the miller current and gate signal ringing. The peak current mode control (PCMC) has been employed for load voltage regulation. The efficiency of SiC MOSFET based IBC converter is compared against Si counterpart. Experimentally obtained efficiency results are presented to show that SiC MOSFET is the device of choice under a heavy load and high switching frequency operation.

A Power MOSFET Driver with Protection Circuits (보호 회로를 포함한 전력 MOSFET 구동기)

  • Han, Sang-Chan;Lee, Soon-Seop;Kim, Soo-Won;Lee, Duk-Min;Kim, Seong-Dong
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.2
    • /
    • pp.71-80
    • /
    • 1999
  • In this paper, a power MOSFET driver with protection circuits is designed using a 2${\mu}m$ high-voltage CMOS process. For stable operations of control circuits a power managing circuit is designed, and a voltage-detecting short-circuit protection(VDSCP) is proposed to protect a voltage regulator in the power control circuit. The proposed VDSCP scheme eliminates voltage drop caused by a series resistor, and turns off output current under short-circuit state. To protect a power MOSFET, a short-load protection, a gate-voltage limiter, and an over-voltage protection circuit are also designed A high voltage 2 ${\mu}m$ technology provides the breakdown voltage of 50 V. The driver consumes the power of 20 ~ 100 mW along its operation state excluding the power of the power MOSFET. The active area of the power MOSFET driver occupies $3.5 {\times}2..8mm^2$.

  • PDF

Study on the Design of Power MOSFET with ESD Protection Circuits (Zener ESD 보호회로 내장 전력 MOSFET 최적 설계)

  • Nahm, Eui-Seok;Kang, Ey Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.9
    • /
    • pp.555-560
    • /
    • 2015
  • This paper was proposed 900 V Power MOSFET with ESD protection circuits using zener diodes. And we were carried out and analyzed its electrical characteristics. As a result of designing 900 V power MOSFET, we obtained 1,000 V breakdown voltage, 3.49 V threshold voltage and $0.249{\Omega}{\cdot}cm^2$. And we designed ESD circuits using 2 series zener diode and 4 series zener diodes. After analyzing electrical characteristics, we obtained 26 V forward voltage drop and 47 V breakdown voltage. Therefore, This devices can enoughly use power module, SMPS and Automotive.

Optimization simulation for High Voltage 4H-SiC DiMOSFET fabrication (고전압 4H-SiC DiMOSFET 제작을 위한 최적화 simulation)

  • Kim, Sang-Cheol;Bahng, Wook;Kim, Nam-Kyun;Kim, Eun-Dong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.353-356
    • /
    • 2004
  • This paper discribes the analysis of the I-V characteristics of 4H-SiC DiMOSFET with single epi-layer Silicon Carbide has been around for over a century. However, only in the past two to three decades has its semiconducting properties been sufficently studied and applied, especially for high-power and high frequency devices. We present a numerical simulation-based optimization of DiMOSFET using the general-purpose device simulator MINIMIS-NT. For simulation, a loin thick drift layer with doping concentration of $5{\times}10^{15}/cm^3$ was chosen for 1000V blocking voltage design. The simulation results were used to calculate Baliga's figure of Merit (BFOM) as the criterion structure optimization and comparison.

  • PDF

Comparative Performance Evaluation of Si MOSFET and GaN FET Power System (Si MOSFET과 GaN FET Power System 성능 비교 평가)

  • Ahn, Jung-Hoon;Lee, Byoung-Kuk;Kim, Jong-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.283-289
    • /
    • 2014
  • This paper carries out a series of analysis of power system using Gallium Nitride (GaN) FET which has wide band gap (WBG) characteristics comparing to conventional Si MOSFET-used power system. At first, for comparison of each semiconductor device, the switching-transient parameter is quantitatively extracted from released information of GaN FET. And GaN FET model which reflect this dynamic property is configured. By using this model, the performance of GaN FET is analyzed comparing to Si MOSFET. Also, in order to enable a representative assessment on the power system level, Si MOSFET and GaN FET are applied to the most common structure of power system, full-bridge, and each power systems are compared based on various criteria, such as performance, efficiency and power density. The entire process is verified with the aid of mathematical analysis and simulation.

High Efficiency DC-DC Converter Using IGBT-MOSFET Parallel Swit (IGBT-MOSFET 병렬 스위치를 이용한 고효율 직류-직류 변환기)

  • 장동렬;서영민;홍순찬;윤덕용;황용하
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.460-465
    • /
    • 1998
  • Due to high power ratings and low conduction loss, the IGBT has become more attractive in switching power supplies. However, its turn-on and turn-off characteristics cause severe switching loss and switching frequency limitation. This paper proposes 2.4kW, 48V, high efficiency half-bridge DC-DC converter using paralleled IGBT-MOSFET switch concept, where each of IGBT and MOSFET plays its part during on-periods and switching instants. The switching loss is analyzed by using the linearized model and the opteration of the converter are investigated by simulation results.

  • PDF

The Improvement in the Forward Blocking Characteristics of Lateral Trench Electrode Power MOSFET by using Local Doping (로컬 도핑을 이용한 수평형 트렌치 전극 파워 MOSFET의 순방향 블로킹특성 개선)

  • Kim, Dae-Jong;Kim, Dae-Won;Sung, Man-Young;Rhie, Dong-Hee;Kang, Ey-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.19-22
    • /
    • 2003
  • In this paper, a new small size Lateral Trench Electrode Power MOSFET with local doping is proposed. This new structure is based on the conventional lateral power MOSFET. The entire electrodes of proposed device are placed in trench oxide. The forward blocking voltage of the proposed device is improved by 3.3 times with that of the conventional lateral power MOSFET. The forward blocking voltage of proposed device is about 500V. At the same size, a increase of the forward blocking voltage of about 3.3 times relative to the conventional lateral power MOSFET is observed by using TMA-MEDICI which is used for analyzing device characteristics. Because the electrodes of the proposed device are formed in trench oxide respectively, the electric field in the device are crowded to trench oxide. And because of the structure which has a narrow drain doping width, the punch through breakdown can be occurred in higher voltage than that of conventional lateral power MOSFET. We observed that the characteristics of the proposed device was improved by using TMA-MEDICI and that the fabrication of the proposed device is possible by using TMA-TSUPREM4.

  • PDF

Thermal Characteristics according to Trench Etch angle of Super Junction MOSFET (Super Junction MOSFET의 트렌치 식각 각도에 따른 열 특성 분석에 관한 연구)

  • Kang, Ey Goo
    • Journal of IKEEE
    • /
    • v.18 no.4
    • /
    • pp.532-535
    • /
    • 2014
  • This paper analyzed thermal characteristics of super junction MOSFET using process and design parameters. Trench process is very important to super junction MOSFET process. We analyzed the difference of temperature, thermal resistance, total power consumption according to trench etch angle. As a result we obtained minimum value of temperature difference and thermal resistance at $89.3^{\circ}$ of trench etch angle. The electrical characteristics distribution of super junction MOSFET is not showed tendency according to trench etch angle. We need iterative experiments and simulation for optimal value of electrical characteristics. The super junction power MOSFET that has superior thermal characteristics will use automobile and industry.

Analysis of an AC/DC Resonant Pulse Power Converter for Energy Harvesting Using a Micro Piezoelectric Device

  • Chung Gyo-Bum;Ngo Khai D.T.
    • Journal of Power Electronics
    • /
    • v.5 no.4
    • /
    • pp.247-256
    • /
    • 2005
  • In order to harvest power in an efficient manner from a micro piezoelectric (PZT) device for charging the battery of a remote system, a new AC/DC resonant pulse power converter is proposed. The proposed power converter has two stages in the power conversion process. The first stage includes N-type MOSFET full bridge rectifier. The second stage includes a boost converter having an N-type MOSFET and a P-type MOSFET. MOSFETs work in the $1^{st}$ or $3^{rd}$ quadrant region. A small inductor for the boost converter is assigned in order to make the size of the power converter as small as possible, which makes the on-interval of the MOSFET switch of the boost converter ultimately short. Due to this short on-interval, the parasitic junction capacitances of MOSFETs affect the performance of the power converter system. In this paper, the performance of the new converter is analytically and experimentally evaluated with consideration of the parasitic capacitance of switching devices.