• Title/Summary/Keyword: Poly-Si TFTs

Search Result 175, Processing Time 0.031 seconds

Characteristics of Low-Temperature Polysilicon Thin Film Transistors

  • Kim, Young-Ho
    • Korean Journal of Materials Research
    • /
    • v.5 no.2
    • /
    • pp.203-207
    • /
    • 1995
  • Polysilicon this film transistors (poly-Si TFTs) with different channel dimensions were fabricated on low-temperature crystalized amorphous silicon films and on as-deposited polysilicon films. The electrical characteristics of these TFTs were characterized and compared. The performance of the TFTs fabricated on the solid-phase crystalized amophous silicon films ws showon to be superior to that of the TFTs fabricated on the as-deposited polysilicon films. It was found that the performance of poly-Si TFTs depends strongly on the material characteristics of the polysilicon films used as the active layers, but only weakly on the channel dimensions.

  • PDF

Fabrication of the Poly-Si Thin Film Transistor on the Mica Substrate

  • Lee, Seung-Ryul;Lee, Jin-Ho;Ahn, Byung-Tae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1182-1184
    • /
    • 2006
  • A mica has been introduced as a new substrate material for the fabrication of the poly-Si TFTs. A poly-Si film is produced on the mica substrate at $550^{\circ}C$ by the nickel-induced crystallization and the poly-Si TFTs on the mica substrate are successfully fabricated for the first time.

  • PDF

The Fabrication of Four-Terminal Poly-Si TFTs with Buried Channel (Buried Channel 4단자 Poly-Si TFTs 제작)

  • Jeong, Sang-Hun;Park, Cheol-Min;Yu, Jun-Seok;Choe, Hyeong-Bae;Han, Min-Gu
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.12
    • /
    • pp.761-767
    • /
    • 1999
  • Poly-Si TFTs(polycrystalline silicon thin film transistors) fabricated on a low cost glass substrate have attracted a considerable amount of attention for pixel elements and peripheral driving circuits in AMLCS(active matrix liquid crystal display). In order to apply poly-Si TFTs for high resolution AMLCD, a high operating frequency and reliable circuit performances are desired. A new poly-Si TFT with CLBT(counter doped lateral body terminal) is proposed and fabricated to suppress kink effects and to improve the device stability. And this proposed device with BC(buried channel) is fabricated to increase ON-current and operating frequency. Although the troublesome LDD structure is not used in the proposed device, a low OFF-current is successfully obtained by removing the minority carrier through the CLBT. We have measured the dynamic properties of the poly-Si TFT device and its circuit. The reliability of the TFTs and their circuits after AC stress are also discussed in our paper. Our experimental results show that the BC enables the device to have high mobility and switching frequency (33MHz at $V_{DD}$ = 15 V). The minority carrier elimination of the CLBT suppresses kink effects and makes for superb dynamic reliability of the CMOS circuit. We have analyzed the mechanism in order to see why the ring oscillators do not operate by analyzing AC stressed device characteristics.

  • PDF

High rate deposition of poly-si thin films using new magnetron sputtering source

  • Boo, Jin-Hyo;Park, Heon-Kyu;Nam, Kyung-Hoon;Han, Jeon-Geon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.186-186
    • /
    • 2000
  • After LeComber et al. reported the first amorphous hydrogenated silicon (a-Si: H) TFT, many laboratories started the development of an active matrix LCDs using a-Si:H TFTs formed on glass substrate. With increasing the display area and pixel density of TFT-LCD, however, high mobility TFTs are required for pixel driver of TF-LCD in order to shorten the charging time of the pixel electrodes. The most important of these drawbacks is a-Si's electron mobiliy, which is the speed at which electrons can move through each transistor. The problem of low carier mobility for the a-Si:H TFTs can be overcome by introducing polycrystalline silicon (poly-Si) thin film instead of a-Si:H as a semiconductor layer of TFTs. Therefore, poly-Si has gained increasing interest and has been investigated by many researchers. Recnetly, fabrication of such poly-Si TFT-LCD panels with VGA pixel size and monolithic drivers has been reported, . Especially, fabricating poly-Si TFTs at a temperature mach lower than the strain point of glass is needed in order to have high mobility TFTs on large-size glass substrate, and the monolithic drivers will reduce the cost of TFT-LCDs. The conventional methods to fabricate poly-Si films are low pressure chemical vapor deposition (LPCVD0 as well as solid phase crystallization (SPC), pulsed rapid thermal annealing(PRTA), and eximer laser annealing (ELA). However, these methods have some disadvantages such as high deposition temperature over $600^{\circ}C$, small grain size (<50nm), poor crystallinity, and high grain boundary states. Therefore the low temperature and large area processes using a cheap glass substrate are impossible because of high temperature process. In this study, therefore, we have deposited poly-Si thin films on si(100) and glass substrates at growth temperature of below 40$0^{\circ}C$ using newly developed high rate magnetron sputtering method. To improve the sputtering yield and the growth rate, a high power (10~30 W/cm2) sputtering source with unbalanced magnetron and Si ion extraction grid was designed and constructed based on the results of computer simulation. The maximum deposition rate could be reached to be 0.35$\mu$m/min due to a high ion bombardment. This is 5 times higher than that of conventional sputtering method, and the sputtering yield was also increased up to 80%. The best film was obtained on Si(100) using Si ion extraction grid under 9.0$\times$10-3Torr of working pressure and 11 W/cm2 of the target power density. The electron mobility of the poly-si film grown on Si(100) at 40$0^{\circ}C$ with ion extraction grid shows 96 cm2/V sec. During sputtering, moreover, the characteristics of si source were also analyzed with in situ Langmuir probe method and optical emission spectroscopy.

  • PDF

Passivation Effects of Excimer-Laser-Induced Fluorine using $SiO_{x}F_{y}$ Pad Layer on Electrical Characteristics and Stability of Poly-Si TFTs ($SiO_{x}F_{y}$/a-Si 구조에 엑시머 레이저 조사에 의해 불소화된 다결정 실리콘 박막 트랜지스터의 전기적 특성과 신뢰도 향상)

  • Kim, Cheon-Hong;Jeon, Jae-Hong;Yu, Jun-Seok;Han, Min-Gu
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.9
    • /
    • pp.623-627
    • /
    • 1999
  • We report a new in-situ fluorine passivation method without in implantation by employing excimer laser annealing of $SiO_{x}F_{y}$/a-Si structure and its effects on p-channel poly-Si TFTs. The proposed method doesn't require any additional annealing step and is a low temperature process because fluorine passivation is simultaneous with excimer-laser-induced crystallization. A in-situ fluorine passivation by the proposed method was verified form XPS analysis and conductivity measurement. From experimental results, it has been shown that the proposed method is effective to improve the electrical characteristics, specially field-effect mobility, and the electrical stability of p-channel poly-Si TFTs. The improvement id due to fluorine passivation, which reduces the trap state density and forms the strong Si-F bonds in poly-Si channel and $SiO_2/poly-Si$ interface. From these results, the high performance poly-Si TFTs canbe obtained by employing the excimer-laser-induced fluorine passivation method.

  • PDF

Effects of Electrical Stress on Polysilicon TFTs with Hydrogen Passivation (다결정 실리콘 박막 트랜지스터의 수소화에 따른 전기적 스트레스의 영향)

  • Hwang, Seong-Su;Hwang, Han-Uk;Kim, Yong-Sang
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.5
    • /
    • pp.367-372
    • /
    • 1999
  • We have investigated the effects of electrical stress on poly-Si TFTs with different hydrogen passivation conditions. The amounts of threshod voltage shift of hydrogen passivated poly-Si TFTs are much larger than those of as-fabricated devices both under the gate only and the gate and drain bias stressing. Also, we have quantitatively analyzed the degradation phenomena by analytical method. We have suggested that the electron trapping in the gate dielectric is the dominant degradation mechanism in only gate bias stressed poly-Si TFT while the creation of defects in the channel region and $poly-Si/SiO_2$ interface is prevalent in gate and drain bias stressed device.

  • PDF

Schottky barrier Thin-Film-Transistors crystallized by Excimer laser annealing and solid phase crystallization method (ELA 결정화와 SPC 결정화를 이용한 쇼트키 장벽 다결정 실리콘 박막 트랜지스터)

  • Shin, Jin-Wook;Choi, Chel-Jong;Cho, Won-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.129-130
    • /
    • 2008
  • Polycrystalline silicon (poly-Si) Schottky barrier thin film transistors (SB-TFT) are fabricated by erbium silicided source/drain for n-type SB-TFT. High quality poly-Si film were obtained by crystallizing the amorphous Si film with excimer laser annealing (ELA) or solid phase crystallization (SPC) method. The fabricated poly-Si SB-TFTs have a large on/off current ratio with a low leakage current. Moreover, the electrical characteristics of poly-Si SB TFTs are significantly improved by the additional forming gas annealing in 2 % $H_2/N_2$, because the interface trap states at the poly-Si grain boundaries and at the gate oxide/poly-Si channel decreased.

  • PDF

Recrystallized poly-Si TFTs on metal substrate (금속기판에서 재결정화된 규소 박막 트랜지스터)

  • 이준신
    • Electrical & Electronic Materials
    • /
    • v.9 no.1
    • /
    • pp.30-37
    • /
    • 1996
  • Previously, crystallization of a-Si:H films on glass substrates were limited to anneal temperature below 600.deg. C, over 10 hours to avoid glass shrinkage. Our study indicates that the crystallization is strongly influenced by anneal temperature and weakly affected by anneal duration time. Because of the high temperature process and nonconducting substrate requirements for poly-Si TFTs, the employed substrates were limited to quartz, sapphire, and oxidized Si wafer. We report on poly-Si TFT's using high temperature anneal on a Si:H/Mo structures. The metal Mo substrate was stable enough to allow 1000.deg. C anneal. A novel TFT fabrication was achieved by using part of the Mo substrate as drain and source ohmic contact electrode. The as-grown a-Si:H TFT was compared to anneal treated poly-Si TFT'S. Defect induced trap states of TFT's were examined using the thermally stimulated current (TSC) method. In some case, the poly-Si grain boundaries were passivated by hydrogen. A-SI:H and poly-Si TFT characteristics were investigated using an inverted staggered type TFT. The poly -Si films were achieved by various anneal techniques; isothermal, RTA, and excimer laser anneal. The TFT on as grown a-Si:H exhibited a low field effect mobility, transconductance, and high gate threshold voltage. Some films were annealed at temperatures from 200 to >$1000^{\circ}C$ The TFT on poly-Si showed an improved $I_on$$I_off$ ratio of $10_6$, reduced gate threshold voltage, and increased field effect mobility by three orders. Inverter operation was examined to verify logic circuit application using the poly Si TFTs.

  • PDF

Effects of Electrical Stress on Polysilicon TFTs with Hydrogen passivation (다결정 실리콘 박막 트랜지스터의 수소화에 따른 전기적 스트레스의 영향)

  • Hwang, Seong-Soo;Hwang, Han-Wook;Kim, Dong-Jin;Kim, Yong-Sang
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1315-1317
    • /
    • 1998
  • We have investigated the effects of electrical stress on poly-Si TFTs with different hydrogen passivation conditions. The amounts of threshold voltage shift of hydrogen passivated poly-Si TFTs are much larger than those of as-fabricated devices both under the gate bias stressing and under the gate and drain bias stressing. Also, we have quantitatively analized the degradation phenomena using by analytical method. we have suggested that the electron trapping in the gate dielectric is the dominant degradation mechanism in only gate bias stressed poly-Si TFT while the creation of defects in the poly-Si is prevalent in gate and drain bias stressed device.

  • PDF

Activation of Implanted tons by Microwave Annealing (마이크로 웨이브를 이용한 이온의 활성화 방법에 관한 연구)

  • Kim, Cheon-Hong;Yoo, Juhn-Suk;Park, Cheol-Min;Han, Min-Koo
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1630-1632
    • /
    • 1997
  • We have investigated activation phenomena of implanted ions on silicon wafers using microwave(2.45GHz). It is found that the higher concentration of impurities makes the better activation effects by microwave annealing. We have exposed poly-Si TFTs by microwave in order to anneal and improved the device performance. Microwave activates source/drain ions and lowers the contact resistance so that the current of the poly-Si TFTs increases. In addition, the leakage current of hydrogen passivated poly-Si TFTs is decreased after microwave annealing, due to the diffusion of hydrogen ions and curing the defects in the poly-Si active channel.

  • PDF