• 제목/요약/키워드: Poisson process.

검색결과 484건 처리시간 0.021초

[ $P_{\lambda,;,T}^M-policy$ ] of a finite dam with both continuous and Jumpwise inputs

  • Lim Kyung Eun;Baek Jee Seon;Lee Eui Yong
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2004년도 학술발표논문집
    • /
    • pp.123-128
    • /
    • 2004
  • A finite dam under $P_{\lambda,;,T}^M-policy$ is considered, where the input of water is formed by a Wiener process subject to random jumps arriving according to a Poisson process. Explicit expression is deduced for the stationary distribution of the level of water. And the long-run average cost per unit time is obtained after assigning costs to the changes of release rate, a reward to each unit of output, and a penalty which is a function of the level of water in the reservoir.

  • PDF

Cone-beam CT에서 웨이브렛 역치값을 이용한 x-ray 영상에서의 노이즈 제거 (Noise Reduction of medical X-ray Image using Wavelet Threshold in Cone-beam CT)

  • 박종덕;허영;진승오;전성채
    • 전자공학회논문지SC
    • /
    • 제44권6호
    • /
    • pp.42-48
    • /
    • 2007
  • X-ray 영상 시스템에서는, 크게 2 종류의 noise 성분이 함유되어있다. 먼저 x-ray 방사선이 조사되어질 때, 검출기에서의 방사선의 상호작용으로부터 발생되어지는 것으로서 랜덤하게 발생되어지는 Poisson noise 성분이다. 다음으로 noise 성분은 readout electronics noise, pixel pattern noise 그리고 off-set noise 등으로부터 발생되어지는 Gaussian noise 성분이다. 그러나, x-ray 영상에서는 Gaussian noise가 아닌, Poisson noise로 모델링 되어진다. Gaussian noise에 의해서 발생되어지는 noise 성분은 위너필터 혹은 웨이브렛을 사용하여 쉽게 제거가 가능하지만, Poisson noise와 같은 랜덤 noise를 제거하기 위해서는 복잡한 분석기법이 필요하게 한다. 이 논문에서는 웨이브렛 영역에서 x-ray 영상의 Poisson noise를 제거하고자 하였으며, 적용된 분석 기법은 최적화된 웨이브렛 분석기법인 IBS(Improved BayesShrink)을 사용하였다. 적용된 IBS 기법은 cone-beam CT의 x-ray 영상에서의 기존의 방법에 비해 향상된 결과를 보여주었다.

Rayleigh형과 Burr형 NHPP 소프트웨어 신뢰모형에 관한 통계적 공정관리 접근방법 비교연구 (The Assessing Comparative Study for Statistical Process Control of Software Reliability Model Based on Rayleigh and Burr Type)

  • 김희철
    • 디지털산업정보학회논문지
    • /
    • 제10권2호
    • /
    • pp.1-11
    • /
    • 2014
  • Software reliability in the software development process is an important issue. Software process improvement helps in finishing with reliable software product. In this field, SPC (Statistical process control) is a method of process management through application of statistical analysis, which involves and includes the defining, measuring, controlling, and improving of the processes. The proposed process involves evaluation of the parameter of the mean value function and hence the values of the mean value function at various inter failure times to develop relevant time control chart. In this paper, was proposed a control mechanism, based on time between failures observations using Rayleigh and Burr distribution property, which is based on Non Homogeneous Poisson Process (NHPP). In this study, the proposed model is reliable in terms of hazard function, because it is more efficient in this area can be used as an alternative to the existing model. Through this study, software developers are considered by the various intended functions, prior knowledge of the software to identify failure modes to feed to some extent shall be able to help.

AN ASYMPTOTIC DECOMPOSITION OF HEDGING ERRORS

  • Song Seong-Joo;Mykland Per A.
    • Journal of the Korean Statistical Society
    • /
    • 제35권2호
    • /
    • pp.115-142
    • /
    • 2006
  • This paper studies the problem of option hedging when the underlying asset price process is a compound Poisson process. By adopting an asymptotic approach to let the security price converge to a continuous process, we find a closed-form hedging strategy that improves the classical Black-Scholes hedging strategy in a quadratic sense. We first show that the scaled Black-scholes hedging error has a limit in law, and that limit is decomposed into a part that can be traded away and a part that is purely unreplicable. The Black-Scholes hedging strategy is then modified by adding the replicable part of its hedging error and by adding the mean-variance hedging strategy to the nonreplicable part. Some results of simulation experiment s are also provided.

Tracking Filter Design for a Maneuvering target Using Jump Processes

  • Lim, Sang-Seok
    • Journal of Electrical Engineering and information Science
    • /
    • 제3권3호
    • /
    • pp.373-384
    • /
    • 1998
  • This paper presents a maneuvering target model with the maneuver dynamics modeled as a jump process of Poisson-type. The jump process represents the deterministic maneuver(or pilot commands) and is described by a stochastic differential equation driven by a Poisson process taking values a set of discrete states. Employing the new maneuver model along with the noisy observations described by linear difference equations, the author has developed a new linear, recursive, unbiased minimum variance filter, which is structurally simple, computationally efficient, and hence real-time implementable. Futhermore, the proposed filter does not involve a computationally burdensome technique to compute the filter gains and corresponding covariance matrices and still be able to track effectively a fast maneuvering target. The performance of the proposed filter is assessed through the numerical results generated from the Monte-Carlo simulation.

  • PDF

PREDICTION MEAN SQUARED ERROR OF THE POISSON INAR(1) PROCESS WITH ESTIMATED PARAMETERS

  • Kim Hee-Young;Park You-Sung
    • Journal of the Korean Statistical Society
    • /
    • 제35권1호
    • /
    • pp.37-47
    • /
    • 2006
  • Recently, as a result of the growing interest in modeling stationary processes with discrete marginal distributions, several models for integer valued time series have been proposed in the literature. One of these models is the integer-valued autoregressive (INAR) models. However, when modeling with integer-valued autoregressive processes, the distributional properties of forecasts have been not yet discovered due to the difficulty in handling the Steutal Van Ham thinning operator 'o' (Steutal and van Ham, 1979). In this study, we derive the mean squared error of h-step-ahead prediction from a Poisson INAR(1) process, reflecting the effect of the variability of parameter estimates in the prediction mean squared error.

지수형과 로그형 위험함수 학습효과에 근거한 NHPP 소프트웨어 신뢰성장모형에 관한 비교연구 (The Comparative Study of NHPP Software Reliability Model Exponential and Log Shaped Type Hazard Function from the Perspective of Learning Effects)

  • 김희철
    • 디지털산업정보학회논문지
    • /
    • 제8권2호
    • /
    • pp.1-10
    • /
    • 2012
  • In this study, software products developed in the course of testing, software managers in the process of testing software test and test tools for effective learning effects perspective has been studied using the NHPP software. The finite failure nonhomogeneous Poisson process models presented and the life distribution applied exponential and log shaped type hazard function. Software error detection techniques known in advance, but influencing factors for considering the errors found automatically and learning factors, by prior experience, to find precisely the error factor setting up the testing manager are presented comparing the problem. As a result, the learning factor is greater than autonomous errors-detected factor that is generally efficient model could be confirmed. This paper, a failure data analysis of applying using time between failures and parameter estimation using maximum likelihood estimation method, after the efficiency of the data through trend analysis model selection were efficient using the mean square error and coefficient of determination.

A Queueing System with Work-Modulated Arrival and Service Rates

  • Lee, Jiyeon
    • Journal of the Korean Statistical Society
    • /
    • 제28권1호
    • /
    • pp.125-133
    • /
    • 1999
  • We consider a FIFO single-server queueing model in which both the arrival and service processes are modulated by the amount of work in the system. The arrival process is a non-homogeneous Poisson process(NHPP) modulated by work, that is, with an intensity that depends on the work in the system. Each customer brings a job consisting of an exponentially distributed amount of work to be processed. The server processes the work at various service rates which also depend on the work in the system. Under the stability conditions obtained by Browne and Sigman(1992) we derive the exact stationary distribution of the work W(t) and the first exit probability that the work level b is exceeded before the work level a is reached, starting from x$\in$[a, b].

  • PDF

보증기기간을 고려한 최적 소프트웨어의 보전정책 연구 (A Study on Optimal Software Maintenance Policies with Warranty Period)

  • 남경현;김도훈
    • 품질경영학회지
    • /
    • 제39권2호
    • /
    • pp.170-178
    • /
    • 2011
  • In general, a software fault detection phenonenon is described by a software reliability model based on a nonhomogeneous Poisson process(NHPP). In this paper, we propose a software reliability growth model considering the differences of the software environments in both the testing phase and the operational phase. Also, we consider the problem of determining the optimal release time and the optimal warranty period that minimize the total expected software cost which takes account of periodic software maintenance(e.g. patch, update, etc). Finally, we analyze the sensitivity of the optimal release time and warranty period based on the fault data observed in the actual testing process.

Parametric Tests and Estimation of Mean Change in Discrete Distributions

  • Kim, Jae-Hee;Cheon, Soo-Young
    • Communications for Statistical Applications and Methods
    • /
    • 제16권3호
    • /
    • pp.511-518
    • /
    • 2009
  • We consider the problem of testing for change and estimating the unknown change-point in a sequence of time-ordered observations from the binomial and Poisson distributions. Including the likelihood ratio test, Gombay and Horvath (1990) tests are studied and the proposed change-point estimator is derived from their test statistic. A power study of tests and a comparison study of change-point estimators are done via simulation.