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Abstract

In x-ray imaging system, two kinds of noises are involved. First, the charge generated from the radiation interaction
with the detector during exposure. Second, the signal is then added by readout electronics noise. But, x-ray images are
not modeled by Gaussian noise but as the realization of a Poisson process. In this paper, we apply a new approach to
remove Poisson noise from medical X-ray image in the wavelet domain, the applied methods shows more excellent results

in cone-beam CT
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I. Introduction

Noise in X-ray imagesm is primarily categorized
into quantum mottle, which is related to the number
of incident X-ray, and artificial noise is due to the
grid etc. The effect of quantum mottle is manifested
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as an increase in the graininess of an X-ray image.
Moreover, in order to minimize graininess, the dose
must be increased, which is undesirable in terms of
patient exposure. Therefore, noise reduction is great
significance in medical X-ray images. The noise of
X-ray images obeys a Poisson process and, hence, is
highly dependent on the underlying light intensity
pattern being imagedm.

Classically, denoising methods have been based on
apply linear filters as the wiener filter to the image,
however linear methods tend to blur the edge
structure of the imége. Several denoising methods
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based on nonlinear filters have been introduced to
avoid this problem”™ ™.

Recent work®™@ has proposed a wavelet-based
technique for estimating signal from a noisy image.
This technique exploits the image signal using a 2-D
discrete wavelet transform (DWT). Wavelet domain
thresholding techniques are employed to suppress
noise after decorrelating the data via the 2-D DWT.

But, in the case of Poisson noise, where the noise
variance is proportional to image pixels, there is a
disadvantage. It is only effective for small amplitude

noise for

coefficients, and not effective
large-amplitude noise coefficients which exceed the
thresholding value. This paper develops a new
wavelet-domain filtering approach for medical X-ray
image that addresses the drawbacks of conventional
filtering techniques and the BayesShrink method. We
use improved BayesShrink (IBS) to kill small
amplitude noise coefficients, in order to reduce large
amplitude noise coefficients, we use that we apply
the new type of Directional Adaptive Median Filter
(DAMF).

In this work, a comparative study of several
denoising techniques for x-ray images is presented.
The filters considered are: 1) a local Wiener filter, 2)
a filter based on the denoising method of Doncho
based on the minimax thresholding strategy, roughly
speaking, based on a soft thresholding of the wavelet
transformed coefficients of the image, and, 3) a filter
based on the improved BayesShrink of the image.

Denoised x-ray image is used data for reconstruction.
. Denoising Algorithm

1. Adaptive wiener filter

The classical denoising filter is the Wiener filter,
defined as the linear filter that minimizes the mean
squared error (MSE). The first denoising method
used in this work consists in applying a Wiener filter
to an image adaptively, tailoring itself to the local
image variance. Where the variance is large, the
Wiener filter performs little smoothing. Where the
variance is small, the Wiener filter performs more
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smoothing. This approach often produces better
results than linear filtering. The adaptive Wiener
filter preserves edges and contours of the ridges in
the fingerprint image. Filtering is performed on a
pixelwise level based on statistics estimated from a
The optimal
window size was found to be 33. The function
estimates the local neighbourhood mean and standard

deviation

local neighbourhood of each pixel.

and performs filtering  accordingly.
Consecutively all holes would be smoothed. The
adaptive filter is more selective than a comparable
and other high

linear filter, preserving edges

frequency parts of an image.

2. Wavelet transform
The shrinkage  methods
symptotically near optimal minimax mean-square

wavelet achieve
error for a wide range of signals corrupted by an
additive white Gaussian noise. The methods derive
from the basic idea that the energy of a signal will
often be concentrated in a few coefficients in wavelet
domain while the energy of noise is spread among all
the
nonlinear shrinkage function in wavelet domain will

coefficients in wavelet domain. Therefore,
tend to keep a few larger coefficients representing
the signal while the noise coefficients will tend to
reduce to zero.

The wavelet shrinkage can be described as

threeé-step procedure:

1. A noisy signal is transformed to the wavelet
domain by DWT.

2. The coefficients representing details are shrunk.

3. The shrunk wavelet coefficients are returned to
the time domain by the inverse DWT. The result is a
wavelet shrinkage estimator of the denoised signal.

Donoho et al. showed that in estimating denoised
signals simple shrinkage rules have asymptotic
optimality properties for a rich class of function
spaces. Examples are hard and soft thresholding
rules, given by
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where A\ is a threshold parameter and 1(-) is an
indicator function.

For a fixed shrinkage policy, the parameters of
shrinkage (eg. threshold A) can be selected in many
ways. The method of selecting threshold A in soft
thresholding rule (2) proposed by Donocho has a form:

)
Vn

where § is the estimator of standard deviation of
details coefficients, and n is the number of details

A= v 2logn (3)

coefficients.

3. BayesShrink Method

BS™ was proposed for image signals with detail
subband coefficients having a Generalized Gaussian
(GG) distribution. It has been experimentally shown
and used in many applications that for a large class
of images, the wavelet coefficients of the detail
subbands (HH, HL, LH) obey a GG distribution for
FEach subband can be
thought of as a random vector with elements that are
independently and identically distributed GG random
variables. The probability density function of a GG
random variable is defined as

all decomposition levels.

_, Bala,, )

fa,ﬂ = O'm 211(1/[3) (4)
_ [/

a(amﬁ)— [F(l/ﬂ)] (5)

“!du is the gamma

where F(t)=f eyt
0

function, o, is the standard dewviation and g is the

shape parameter; Assuming such a distribution for
the wavelet coefficients, we empirically estimate A3
for each subband and try to find the
threshold 7. We often use the threshold value of
BS which is calculated by Eq. (6).

and o,
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is very close to numerical value.
We use the Robust Median Estimator to estimate
the value of noise standard deviation.

7

Median]| Y [ ]E subband w(l’d)

7= T 06745

where Y, is wavelet coefficient in the diagonal

ij
direction when the decomposition level is 1. The

variance of the degraded model (noisy image) is
®

where n? is the size of the subband under

consideration and X; ; is the coefficient of subband

under consideration.
The o, is estimated by Eq. 9.

{\/ —02,foray > o?

for oy’ <o°
In this case of o4< o°, gy is taken to be 0.

i)

9

That is, 7 is 1 or, in practice, T = max(|X;

and all coefficients are set to 0.

4. Improved BayesShrink method

It is well known that the variance of a Poisson
random variable is equal to mean. Therefore, the
variability of the noise is proportional to the intensity
and, hence, signal dependent. This signal dependence
has dashed traditional noise removal attempts. We
can knowthat noise level depends on the local pixel
It shown that the
signal-to-noise ratio (SNR) for noise is linear in

in the image. is easily
signal. Regarding the characteristics of the Poisson
noise, the noise power will differ between wavelet
coefficients according to the image pixel under the
support of the associated wavelet basis function. This
spatial variation of the noise must be accounted for
in the wavelet domain filter design. The BS method

does not adjust for these differences. In this section,
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we provide a new filter framework in the wavelet
domain based on the BS method. Fig. 1 is the
compositive diagram of the denoising system.

Firstly, we analyze the coefficients of wavelet
transform. We do experiments by NoisyX-ray image
with Poisson noise and X-ray image. The values are
obtained by the of the
coefficients. H, V and D represent horizontal
directional coefficients, vertical directional coefficients,
and diagonal directional coefficients, respectively. The
suffix j of H,
level. As the wavelet coefficients of X-ray image are
smaller than common image, the obtained thresholds
by BS method are not suitable for X-ray image, so
that noise cannot be removed well. In order to obtain

magnitudes wavelet

V;, D; denotes the decompositional

the optimum threshold for X-ray image, we improve
count-method of threshold of BS method by a mount
of simulation for X-ray images. The difference of
IBS and BS is that the threshold is calculated by
Tp=0’/0% in BS, but the threshold is calculated
by T = ac’/o% in IBS, we add a parameter a in
the equation of BS. a changes with the size of the
subband under consideration and decompositional
level. We do experiments using different combination

of denominator and numerator, we obtain the best

PSNR by the following equation,

=X M 44 A SC H
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where n? is the size of the subband under
consideration. We experiment using IBS for X-ray
image.

II. Experimental

In this article, we will concentrate on meeting the
x-ray imaging and perform a study of effectiveness
We demonstrate the
effectiveness of the proposed method using 512 x 512

for denoising algorithms.
x-ray images. 360 projection data are collected at
from 0°to 360°by cone-beam CT.
used data
reconstruction. The reconstruction algorithm we used
the extended filtered back projection(FBP)
reconstruction  algorithm by Feldkamp[8]. The
algorithms of the denoising methods have been
implemented by using Matlab 7.0.

every angle

Denoised images are for 1image

is

Fig 2 shows a photograph of the Cone-Beam CT
prototype for dental application. The components of
the system are the x-ray source, the rotation stage,
and the flat panel detector. The x-ray source has a
nominal focal spot size of 0.6mm, 40kV-120kV high
voltage, and the maximum 12 mA target current. The
imaging detector used in this investigation was
a-Si'H flat panel detector, which wascoupled with
Csl scintillator.

e A|AE MBS {8 CBCT prototype.

A photograph of the CBCT prototype for
dental application.

agl 2

Fig. 2.
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We know that X-ray images have not original
image to calculate the PSNR. Then, we regard the
high dose image as original image. PSNR is used as
the distortional measurement between the original
image and denoised image. The wavelet transform
employs Daubechies’ least asymmetric compactly—
supported wavelet with 4 vanishing moments with 3
scales of orthogonal decomposition.

To assess the performance of the applied method,
it is compared with wiener filter and normal wavelet.
To compare the results of different algorithms, PSNR
is used as the. distortional measurement between the

original image and denoised image. It can be
calculated by the following equation.
Pizel .
PSNR= 10 ¥ logy| — = 1D

H L 2
MSE= H>1<L wglygl(d(xvy)—O(wfy))) (12)
IV. Resulis

In order to perform the denoising experiments
some images were selected from the Cone-beam CT
data. Original images from the x-ray images were
corrupted by adding a Poisson noise. We give the
denoised images in Fig. 3, 4. (a)~(e) show original
image, noisy image, denoised image by Wiener filter,
denoised image by wavelet and denoised image by
mmproved BayesShrink method, respectively.

It is well known that wiener filter is the optimal
filter, which minimize the mean square error. Since it
corresponds to linear filter, it may amplify the noise in
the image. Therefore, we can see that a few stains are
remained from Fig (¢) when using wiener filter. (d),
the noise is reduced and the edge is also prevented by
using the wavelet. However, Fig (e) show that noise
reduction and edge prevention in bright position can
be improved by using the IBS method. Regarding
Poisson noise characteristics, when the pixel value is
high in the image, the noise amplitude is also larger. It
is difficult to remove the large amplitude noise by

Cone—beam CTHA HO[23 HX|ZE 0|&F x—ray BHUMY LO|= X7
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PSNR results with different denoising method.

Object Noisy Wiener Wavelet IBS

274 29.0 31.2

Head 21,5

{a) Original {(b) Noisy

{c) Wiener filter (@ Wavelet

(e} IBS
a8 3. wo|= FAB To|=Jt HH FaHoiz|)
Fig. 3. Noisy image and denoised images(Head).
E 2 CIE To|=HMAH wWHof ofst PSNR Z 32}
Table 2. PSNR results with different denoising method.
Object Noisy Wiener Wavelet IBS
Hand 213 274 284 32.8

using conventional wavelet transform. The applied
method can remove small amplitude noise by IBS,
acquiring the clearer image. From the figures and
tables shown above, we know that the presented



20074 118 HMX3%3 ==X X 44 H SC ® A 6

@

Original {b) Noisy

(d) Wavelet

{c) Wiener filter

(e} 1BS

% 4 wO|= HA Lo|=JF MH Ak
Fig. 4. Noisy image and dencised images(Hand).

(a) Head(dental)

{b) Hand

ojALS
SS=

a8 5 LOo|=MA = x-ray ofgsh 3D A7A
Fig. 5. Reconstruction of denocised x-ray image.

algonthm achieves the highest quality.

The denocised cone-beam CT image can be
reconstructed from these denoised The
denoised sectional images are shown in Fig. 5. The

images.
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quality of CT images will be better with the
increased quality of the X-ray images.

V. Conclusions

We have studied the problem of denocising for
medical X-ray image in this paper. We have seen .
that exiting methods need some assumptions and
possess limitations. In order to remove noise better,
we have proposed a new method in the wavelet
domain. Firstly, we process wavelet coefficients using
the IBS method. Secondly, we execute the process for
edge detection with the Wiener filter. This method
has shown better results and the PSNR values in
visual images. Our future research will focus on
finding more accommodating convergent values for
wavelet coefficients. We also want to generalize it to

all wavelets and employ it for other kinds of noise.
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