PREDICTION MEAN SQUARED ERROR OF THE POISSON INAR(1) PROCESS WITH ESTIMATED PARAMETERS

  • Published : 2006.03.01

Abstract

Recently, as a result of the growing interest in modeling stationary processes with discrete marginal distributions, several models for integer valued time series have been proposed in the literature. One of these models is the integer-valued autoregressive (INAR) models. However, when modeling with integer-valued autoregressive processes, the distributional properties of forecasts have been not yet discovered due to the difficulty in handling the Steutal Van Ham thinning operator 'o' (Steutal and van Ham, 1979). In this study, we derive the mean squared error of h-step-ahead prediction from a Poisson INAR(1) process, reflecting the effect of the variability of parameter estimates in the prediction mean squared error.

Keywords

References

  1. ALONSO, A. M., PENA, D. AND ROMO, J. (2002). 'Forecasting time series with sieve bootstrap', Journal of Statistical Planning and Inference, 100, 1-11 https://doi.org/10.1016/S0378-3758(01)00092-1
  2. AL-OSH, M. A. AND ALZAID, A. (1987). 'First-order integer-valued autoregressive (INAR(1)) process', Journal of Time Series Analysis, 8, 261-275 https://doi.org/10.1111/j.1467-9892.1987.tb00438.x
  3. ALZAID, A. A. AND AL-OSH, M. (1990). 'An integer-valued pth-order autoregressive structure (INAR(p)) process', Journal of Applied Probability, 27, 314-324 https://doi.org/10.2307/3214650
  4. BHANSALI, R. J. (1974). 'Asymptotic mean-square error of predicting more than one-step ahead using the regression method', Journal of Royal Statistical society, Ser. C, 23, 3542
  5. BLOOMFIELD, P. (1972). 'On the error of prediction of a time series', Biometrika, 59, 501-507 https://doi.org/10.1093/biomet/59.3.501
  6. Cox, D. R. (1981). 'Statistical analysis of time series: some recent developments (with discussion)', Scandinavian Journal of Statistics. Theory and Applications, 8, 93-115
  7. DU, J.GUAN AND LI, Y. (1991). 'The integer-valued autoregressive (INAR(p)) model', Journal of Time Series Analysis, 12, 129-142 https://doi.org/10.1111/j.1467-9892.1991.tb00073.x
  8. FREELAND, R. K. AND MCCABE, B. P. M. (2004). 'Forecasting discrete valued low count time series', International Journal of Forecasting, 20, 427-434 https://doi.org/10.1016/S0169-2070(03)00014-1
  9. JUNG, R. C. AND TREMAYNE, A. R. (2006). 'Coherent forecasting in integer time series models', International Journal of Forecasting, to appear
  10. KLIMKO, L. A. AND NELSON, P. I. (1978). 'On conditional least squares estimation for stochastic processes', The Annals of Statistics, 6, 629-642 https://doi.org/10.1214/aos/1176344207
  11. LATOUR, A. (1998). 'Existence and stochastic structure of non-negative inter-valued autoregressive process', Journal of Time Series Analysis, 19, 439-455 https://doi.org/10.1111/1467-9892.00102
  12. MCCABE, B. P. M. AND MARTIN, G. M. (2005). 'Bayesian predictions of low count time series', International Journal of Forecasting, 21, 315-330 https://doi.org/10.1016/j.ijforecast.2004.11.001
  13. McKENZIE, E. (1985). 'Some simple models for discrete variate time series', Water Resources Bulletin, 21, 645-650 https://doi.org/10.1111/j.1752-1688.1985.tb05379.x
  14. McKENZIE, E. (1988). 'Some ARMA models for dependent sequences of Poisson counts', Advances in Applied Probability, 20, 822-835 https://doi.org/10.2307/1427362
  15. PARK, Y. S. AND KIM, H. Y. (2000). 'On the auto covariance function of INAR(1) process with a negative binomial or a Poisson marginal', Journal of the Korean Statistical Society, 29, 269-284
  16. PARK, Y. S., CHOI, J. W. AND KIM, H. Y. (2006). 'Forecasting Cause-Age specific mortality using two random processes', Journal of American Statistical Association, to appear
  17. SCHMIDT, P. (1974). 'The asymptotic distribution of forecasts in the dynamic simulation of an econometric model', Econometrika, Journal of Econometric Society, 42, 303-309 https://doi.org/10.2307/1911980
  18. SILVA, M. E. AND OLIVEIRA, V. L. (2005). 'Difference equations for the higher order moments and cumulants of the INAR(p) model', Journal of Time Series Analysis, 26, 17-36 https://doi.org/10.1111/j.1467-9892.2005.00388.x
  19. STEUTEL, F. W. AND VAN HARN, K. (1979). 'Discrete analogues of self-decomposability and stability', The Annals of Probability, 7, 893-899 https://doi.org/10.1214/aop/1176994950
  20. YAMAMOTO, T. (1976). 'Asymptotic mean square prediction error for an autoregressive model with estimated coefficients', Journal of the Royal Statistical Society, Ser. C, 25, 123-127