References
- ALONSO, A. M., PENA, D. AND ROMO, J. (2002). 'Forecasting time series with sieve bootstrap', Journal of Statistical Planning and Inference, 100, 1-11 https://doi.org/10.1016/S0378-3758(01)00092-1
- AL-OSH, M. A. AND ALZAID, A. (1987). 'First-order integer-valued autoregressive (INAR(1)) process', Journal of Time Series Analysis, 8, 261-275 https://doi.org/10.1111/j.1467-9892.1987.tb00438.x
- ALZAID, A. A. AND AL-OSH, M. (1990). 'An integer-valued pth-order autoregressive structure (INAR(p)) process', Journal of Applied Probability, 27, 314-324 https://doi.org/10.2307/3214650
- BHANSALI, R. J. (1974). 'Asymptotic mean-square error of predicting more than one-step ahead using the regression method', Journal of Royal Statistical society, Ser. C, 23, 3542
- BLOOMFIELD, P. (1972). 'On the error of prediction of a time series', Biometrika, 59, 501-507 https://doi.org/10.1093/biomet/59.3.501
- Cox, D. R. (1981). 'Statistical analysis of time series: some recent developments (with discussion)', Scandinavian Journal of Statistics. Theory and Applications, 8, 93-115
- DU, J.GUAN AND LI, Y. (1991). 'The integer-valued autoregressive (INAR(p)) model', Journal of Time Series Analysis, 12, 129-142 https://doi.org/10.1111/j.1467-9892.1991.tb00073.x
- FREELAND, R. K. AND MCCABE, B. P. M. (2004). 'Forecasting discrete valued low count time series', International Journal of Forecasting, 20, 427-434 https://doi.org/10.1016/S0169-2070(03)00014-1
- JUNG, R. C. AND TREMAYNE, A. R. (2006). 'Coherent forecasting in integer time series models', International Journal of Forecasting, to appear
- KLIMKO, L. A. AND NELSON, P. I. (1978). 'On conditional least squares estimation for stochastic processes', The Annals of Statistics, 6, 629-642 https://doi.org/10.1214/aos/1176344207
- LATOUR, A. (1998). 'Existence and stochastic structure of non-negative inter-valued autoregressive process', Journal of Time Series Analysis, 19, 439-455 https://doi.org/10.1111/1467-9892.00102
- MCCABE, B. P. M. AND MARTIN, G. M. (2005). 'Bayesian predictions of low count time series', International Journal of Forecasting, 21, 315-330 https://doi.org/10.1016/j.ijforecast.2004.11.001
- McKENZIE, E. (1985). 'Some simple models for discrete variate time series', Water Resources Bulletin, 21, 645-650 https://doi.org/10.1111/j.1752-1688.1985.tb05379.x
- McKENZIE, E. (1988). 'Some ARMA models for dependent sequences of Poisson counts', Advances in Applied Probability, 20, 822-835 https://doi.org/10.2307/1427362
- PARK, Y. S. AND KIM, H. Y. (2000). 'On the auto covariance function of INAR(1) process with a negative binomial or a Poisson marginal', Journal of the Korean Statistical Society, 29, 269-284
- PARK, Y. S., CHOI, J. W. AND KIM, H. Y. (2006). 'Forecasting Cause-Age specific mortality using two random processes', Journal of American Statistical Association, to appear
- SCHMIDT, P. (1974). 'The asymptotic distribution of forecasts in the dynamic simulation of an econometric model', Econometrika, Journal of Econometric Society, 42, 303-309 https://doi.org/10.2307/1911980
- SILVA, M. E. AND OLIVEIRA, V. L. (2005). 'Difference equations for the higher order moments and cumulants of the INAR(p) model', Journal of Time Series Analysis, 26, 17-36 https://doi.org/10.1111/j.1467-9892.2005.00388.x
- STEUTEL, F. W. AND VAN HARN, K. (1979). 'Discrete analogues of self-decomposability and stability', The Annals of Probability, 7, 893-899 https://doi.org/10.1214/aop/1176994950
- YAMAMOTO, T. (1976). 'Asymptotic mean square prediction error for an autoregressive model with estimated coefficients', Journal of the Royal Statistical Society, Ser. C, 25, 123-127