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A Queueing System with Work-Modulated Arrival
and Service Rates!

Jiyeon Lee!

ABSTRACT

We consider a FIFO single-server queueing model in which both the
arrival and service processes are modulated by the amount of work in the
system. The arrival process is a non-homogeneous Poisson process(NHPP)
modulated by work, that is, with an intensity that depends on the work
in the system. Each customer brings a job consisting of an exponentially
distributed amount of work to be processed. The server processes the work
at various service rates which also depend on the work in the system. Under
the stability conditions obtained by Browne and Sigman(1992) we derive the
exact stationary distribution of the work W (¢) and the first exit probability
that the work level b is exceeded before the work level a is reached, starting
from z € (a,b}.

Keywords: Work-modulated Queue; Non-homogeneous Poisson Process; Station-
ary Distribution; First Exit Probability

1. INTRODUCTION

We consider a single-server queue with an unlimited waiting space and the
first-in first-out discipline. The nth customer arrives at the system at time t,(to =
0) and brings a job consisting of an amount of work to be processed, S, > 0, that
is exponentially distributed random variable with mean 1/v. The total work in
system, W (t), is defined as the sum of all the unprocessed work in system at time
t. It is assumed that the arrival process {f,,n > 0} forms a non-homogeneous
Poisson process(NHPP) with the intensity A(W (¢)) where A is a non-increasing
positive real-valued function on [0,00) and A(0) > O to avoid triviality. It is
further assumed that the service rate at which the server processes the work per
unit time at time t is given by u(W (¢)) for a non-decreasing function y on [0, c0)
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with £(0) = 0 meaning that the server stops processing whenever the workload
is empty. Then the sample paths of the workload process {W(t),t > 0} satisfy
the following storage equation;

t
W(t) = W(0) + A(t) - /0 (W (s))ds,

where A(t) denotes the total amount of work that arrived during (0,¢]. In our
model, A(t) = 2’31) Sn, where N(t) is the number of arrivals during (0, t], the
counting process for {t,,n > 1}. Thus, at any time ¢, the amount of work in
system is precisely the initial amount, plus how much has arrived during (0, ¢],
minus how much has been serviced during [0,t]. In Brockwell et al.(1982), A(t)
is assumed a pure positive jump Levy process whereas in Harrison et al.(1976)
and Asmussen(1987), A(t) assumes a compound Poisson process. In these classic
storage models the input A(t) is assumed to be independent of the amount of
work(or storage) in system. In our model, however, we allow A(t) to be a work-
modulated nonhomogeneous compound Poisson process i.e. we allow the intensity
of arrivals to be modulated by the work level.

Browne and Sigman(1992) established the sufficient conditions for the ex-
istence of the stationary distribution of the work W(t). Under these stability
conditions, in section 2 we obtain the stationary distribution function of W (t)
using the integro-differential equation for W(t¢). In section 3 we compute the
first exit probability that the work level b is exceeded before the work level a is
reached, starting from z € (a, b].

A few researchers studied the state-dependent queueing model in which both
the arrival process and the service process depend on the unfinished work or the
virtual waiting time instead of the number of customers in the system. Knessl et
al.(1987) considered the queue with NHPP arrivals and the exponential service
times that depend on the work. It was concerned with asymptotic approxima-
tions for the busy period distribution. Whitt(1990) derived stability conditions
and then approximations for the steady-state waiting time distribution for the
queueing model where the service times and the interarrival times depend lin-
early and randomly on the waiting time. Perry and Asmussen(1995) considered
a M/G/1 queue modified such that an arriving customer may be totally or par-
tially rejected depending on the virtual waiting time, which can be the special
case of our model.
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2. THE STATIONARY DISTRIBUTION OF W ()

We assume that the function p satisfies

lim p(z) =occ and 6(z)= /: ;L(ly)dy <oo, x>0, (2.1)

T—0

where 6(z) means the amount of time required to bring the work level z down
to 0 in the absence of any new arrivals.(Asmussen(1987)) Under these conditions
Browne and Sigman(1992) showed that the workload process {W(t),t > 0} is
positive recurrent with consecutive visits to the origin serving as regeneration
points so that {W(t),t > 0} has a unique stationary distribution.

Theorem 2.1. Under the above assumptions (2.1), the stationary distribution
of the workload process {W(t),t > 0} is given by a probability py at 0 and a
density f(z) on (0,00) such that

Py = [H/Ow%exp{ww) —vyldy]™"  and

A(0)

flz) = Po'u(z)

exp {w(z) — vz}, (2.2)

where w(z) = [ ’—\L—l

w(y)

Proof: Let F(z,t) = P{W(t) < z} denote the distribution function of W (¢).
Then notice that F(z,?) consists of a discrete probability F(0,t) and a density
f(z,t) for £ > 0. To derive the integro-differential equation for F(z,t) we define

d(z,t) =67 1O(x) +1t), fort>0,2>0

for the strictly increasing function #(z). Then ¢(z,t) is the work level from which
the workload process reaches at the level z after time ¢ in the absence of arrivals.
Observe that for ¢ > 0,

Flz,t+6t) =
P{W(t) = 0,W(t + 5t) < z} + P{0 < W(t) < ¢(z, 68), W (t + 6t) < z}.
(2.3)

Conditioning on whether the customer arrives or not during the time interval
(t,t + 6t), we obtain that

P{W(t)=0,W(t+0t) <z} = F(0,t) — F(0,t)\0)exp{—v¢(z,it)}ét
+o(6t) (2.4)
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and
P{0 < W(t) < ¢(z,0t), W(t + dt) < =}
¢(x,dt) o(z,0t)
= [T sar= [T 1,070 exp {-(6(a, 5) - )t
+o(dt). (2.5)
From equation (2.3), (2.4) and (2.5) we have that
F(z,t+0t) = F(¢(z,6t),t) — F(0,t)A(0) exp {—v¢(z, it)}dt

(z,4t)
- /0 £, )My) exp {—v((x, 8t) — y)}dyst + o(52).

Performing a Taylor series expansion on F{¢(z,dt),t), rearranging the above
equation and letting 6t — 0, from the fact that limg 0 ¢(z, 8t) = z and limg o { (2, 6t)—
z}/6t = p(z) we can derive the following integro-differential equation

3thv,t) w(z)f(z,t) — F(0,t)A(0) exp {—vz}

/ fly, )My) exp {~v(z — y)}dy.

Notice that the stationary distribution is the same as the limiting distribution
limyy 00 F(x,t), since the workload process {W(t),t > 0} is positive recurrent
(Harrison and Resnick(1976)). Putting M = 0 and letting lim; 4o f(z,t) =
f(z) and lim;_, o F(0,t) = po the following 1ntegral equation for f(z) is obtained;

#(z) = poK (2,0) + /O " K (e, 9)f(4)dy, (2.6)

where K(z,y) = %exp{—u(m —y)}for 0 <y <z < o0.

To solve the above equation (2.6) we use the iteration method in Asmussen(1987).
Define recursively

Ki(z,y) = K(z,y)
/K(x,z)Kn(z,y)dz, n > 1.
y

it

Kpii(z,y)

It follows easily by induction that

Ay)

w(z) —w n-l
Knlo,4) = 5 oxp (—v(o - X2y,

(n—1)! ’
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Since w(z) < M0)6(z) < oo for all z > 0, K*(z,y) = Y or, Ku(z,y) is well-
defined and finite. Furthermore

K%ayﬁ=§%enw—Wx—w+ww»—mw}

Iterating the equation (2.6) N — 1 times, this yields

N T
f(@)=po Y Knlz,0) +/0 Kn(z,y)f(y)dy.
n=1

Letting N — oo and using the bounded convergence theorem we get
f(z) = poK*(z,0)
which implies the density f(z) and the probability py in equation (2.2). O

Example 2.1. Consider a M/M/1 queue which has an arrival rate A and an
exponential service time with parameter v. In this example the service time is
considered as the amount of the work to be processed. The server processes the
work at the rate u(z) = 1+ z (4(0) = 0) when the total work in system W (¢) is
equal to z. Let V(t) denote the virtual waiting time at time t. Then

W(t) 1
V(t):/o ——dz = In(1+ W (1))

We assume that the arriving customer is rejected if the virtual waiting time in
front of the customer exceeds a specified time Vj, that is, the arriving customer
who finds his waiting time exceeds his impatience Vp is not admitted. Then it
follows that the arrival process is the nonhomogeneous Poisson process with the
intensity

A, 0<z<exp{W}-1
A =
(z) { 0, z>exp{Vp} -1

Since the service rate p(z) satisfies the stability conditions (2.1) the stationary
distribution of W (t) is given by
o= (1 [ gl
Jo
f("L') = )‘p()g(‘r)a > Oa
where

(z) = exp{—vz}(1 + z)* 1, 0<z<exp{W}-1
9(z) = exp{A\Vo —vz}(1 +2z)7!, z>exp{Vp} -1
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3. FIRST EXIT PROBABILITY

Harrison and Resnick(1976) obtained the first exit probability for the stor-
age process of which the arrival times are work-independent. Using the time
transformation we can extend their result to the case of work-modulated NHPP
arrivals. We assume that 0 < a < b < 0o. Let t*(a) = inf{t > 0|W(¢) < a} and
t*(b) = inf{t > O|W (¢) > b} and we define

U(z) = P{t*(b) < t*"(a)]W(0) =z} for z >0.

Then U(z) is the probability that the work level b is exceed before the level a is
reached, starting from z. It follows immediately that U(z) = 0 for = € [0, a] and
U(z) = 1 for z € (b,00) from the fact that W (¢) almost surely converges to W (0)
as t = 0. To obtain U(z) for z € (a,b] consider the storage process {V (t),¢ > 0}
with an arrival intensity 1, release rate r(z) = p(z)/A(z) and the exponential
size-jump with mean 1/v.

Proposition 3.1. The storage process {V(t),t > 0} and the workload process
{W(t),t > 0} can be coupled as random time transformation of each other, that
18

W (t) = V(A()),
where A(t) = [ N(W (s))ds.

Proof: Define

Wi (t) = V(A(1),

where A(t fo (W1(s))ds. Then the probability that W;(¢) has an arrival in
[t,t + 6t] is
[A(t + 6t) — A(t)] - 1 = A'(8)dt = N(W1(2))dt.

Also, in between jumps we have

dwi(t)  dV(A@t) dA(t)

dt  dA(t) dt
= —r(V(A[ONAMW(2))
= —p(Wi(?)).

Hence {Wy(t),t > 0} has the arrival intensity A(W1(t)) and the service rate
p(W1(t)) so that this process is our workload process {W(t),t > 0}. (
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Theorem 3.1. Let a = 1 ~ U(b). Then under the assumptions (2.1) for x €

(a, ],
U@ = [ ut)ay,
where
ua) = a5 exp (~v(b - 2) + w(t) - w(a)} (3.1)
and
b
a=[1+ /a ;‘—g—;— exp {—v(b — z) + w(b) — w(z)}dz] L.
Proof: Let

T*(@) = inf{T >0V (T) < a}
T*(b) = inf{T > 0|V(T) > b}.

Then it easily follows that

t*(a) A™H(T*(a))
() = ATHT*®)).

Since both A and A~! are strictly increasing we have that t*(b) < t*(a) if and
only if T*(b) < T*(a). Therefore we get that

U(z) = P{T*(b) < T*(a)[V(0) = z}.

Let Ty denote the first input time of the storage process {V(T),T > 0} and
Sy its jump size. Notice that w(z) —w(a) = [[r(y)]~'dy is the time required for
{V(T),T > 0} to move from the storage level z down to level a. By the strong

Markov property we have that
U(z) = E[UV(T)),Ti <w(z) - w(a)|V(0) = g}

w(z)—w(a)
= [T e -0 B ) - o + silae

- /: 7'(1_'1;)- exp {—[w(z) — w(y)]} /Ooo U(y + z)vexp {—vz}dzdy.
(3.2)
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Taking the factor exp {—w(z)} outside the integral, we can differentiate (3.2)
to get

u(r) = r_(la—:j /OOO[U(:I: + z) — U(z)]vexp {—vz}dz. (3.3)
Substituting

f{“ u(y)ddy ifz+z<b

U(m+z)—U(:v)={ [uly)dy+a if z+z>0

into equation (3.3) yields
b

u(z) = ()[aexp{— u(b - )} + / u(y)exp {~v(y - 2)}dyl.  (3.4)

T

Recalling K(z,y) = A(y)exp{—v(z —y)}/u(z) and r(z z)/Mz),
rewrite (3.4) as

u(x) B b p(y)
N ula) = oK (b.3) + f K(y,0) S uly)dy

and iterate this relationaship N — 1 times to obtain

al b p(y)
o) x)=an¥1Kn(b,x)+/z KN(y,z)mu(y)dy.

Letting N — oo under the conditions (2.1) in section 2 we obtain

Muzza* z)
2 u(a) = oK (5,2

which implies (3.1). a
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